
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 97–110
November 4-9, 2025 ©2025 Association for Computational Linguistics

Abstract

Autoregressive models dominate text

generation but suffer from left-to-right

decoding constraints that limit efficiency

and bidirectional reasoning. Diffusion-

based models offer a flexible alternative but

face challenges in adapting to discrete text

efficiently. We propose LAD (LoRA-

Adapted Diffusion), a framework for non-

autoregressive generation that adapts

LLaMA models for iterative, bidirectional

sequence refinement using LoRA adapters.

LAD employs a structural denoising

objective combining masking with text

perturbations (swaps, duplications and span

shifts), enabling full sequence editing

during generation. We aim to demonstrate

that LAD could be a viable and efficient

alternative to training diffusion models

from scratch, by providing both validation

results as well as two interactive demos

directly available online:
https://ruurdkuiper.github.io/tini-lad/

https://huggingface.co/spaces/Ruurd/tini-lad

Inference and training code:
https://github.com/RuurdKuiper/lad-code

1 Introduction

In recent years, the field of natural language

generation (NLG) has been transformed by the

introduction of large language models (LLMs),

predominantly based on transformer models

generating text using the autoregressive (AR)

paradigm (Vaswani et al. 2017). While these

models excel at sequential prediction, their

inherent left-to-right generation process presents

limitations in efficiency, flexibility, and

bidirectional reasoning (Zhu and Zhao 2023; Yi et

al. 2024; Zou, Kim, and Kang 2023; Nie et al.

2025). Recently, diffusion models (Sohl-Dickstein

et al. 2015), initially achieving state-of-the-art

performance in continuous domains like image and

audio synthesis, have emerged as a promising

alternative to AR models. Diffusion models operate

via iterative denoising, progressively refining a

noisy initial sample towards a novel sample that

mimics the original distribution, offering potential

advantages in parallel generation and bidirectional

information transfer. Applying diffusion principles

to the discrete nature of text, however, requires

significant adaptation, which has led to an

emerging field of active exploration within the

NLP community (Zhu and Zhao 2023; Y. Li et al.

2023).

Research in text diffusion has primarily followed

two trajectories: modifying the diffusion process to

operate directly on discrete token spaces, often

involving masking or absorbing states (He et al.

2022; Nie et al. 2024; Sahoo et al. 2024; Ye et al.

2023; Shi et al. 2024; von Rütte et al. 2025; Austin

et al. 2021; Gong et al. 2024; Schiff et al. 2024;

Cardei et al. 2025; Lou, Meng, and Ermon 2023;

Yuan et al. 2022), or embedding discrete text into

continuous latent spaces where standard Gaussian

LAD: LoRA-Adapted Diffusion

Ruurd J. A. Kuiper1, Lars de Groot2, Bram van Es2, Maarten van Smeden1, Ayoub Bagheri2

1University Medical Center Utrecht. 2Utrecht University.

r.j.a.kuiper@umcutrecht.nl

Figure 1: The noising process applied during training. The left illustration shows masked noising, where

noising is applied by masking a random percentage of tokens. The middle shows structured noising, where

tokens are randomly swapped, duplicated or spans of tokens are shifted. On the right combined noising is

shown, where both masking and structured noising is applied, which is the noising strategy used to train all

models in this study. Noising is applied only on the response tokens.

MASK MASK

Query Response

Masking: 0-100%

Masked noising

Query Response

Swap Duplication
Span shift

Structured noising

Query Response

MASK MASK MASK

Combined noising

97

https://ruurdkuiper.github.io/tini-lad/
https://huggingface.co/spaces/Ruurd/tini-lad
https://github.com/RuurdKuiper/lad-code

diffusion can be applied (Zhang et al. 2023;

Lovelace et al. 2022; X. L. Li et al. 2022).

Recent innovations that have improved diffusion

model performance include linguistically informed

masking strategies (Chen et al. 2023), simplified

continuous-time objectives (Shi et al. 2024) and

novel loss functions like score entropy (Lou, Meng,

and Ermon 2023). Furthermore, recognizing the

computational cost of training large models from

scratch, recent studies have often employed

existing pretrained AR models, adapting them for

diffusion-based generation (Gong et al. 2024; Nie

et al. 2024), demonstrating competitive

performance (Nie et al. 2025). Post-training

techniques like reinforcement learning are also

being explored to enhance reasoning in these

models (Zhao et al. 2025).

Despite recent progress, several challenges limit

the adoption of text diffusion models. Training

large models, either from scratch or via full-

parameter tuning, is computationally expensive,

making efficient adaptation strategies attractive.

Inference methods like those in Masked Diffusion

Models (MDMs) often fix tokens once unmasked

(Sahoo et al. 2024; Schiff et al. 2024; Nie et al.

2025, 2024; Shi et al. 2024), limiting the model's

ability to perform holistic refinement or recover

from early errors. Efficiently using the knowledge

encoded within large pretrained AR models for

diffusive generation remains an open goal(Han et

al. 2024).

We introduce LAD (LoRA-Adapted Diffusion), a

method for non-autoregressive generation that

adapts pretrained AR models—Llama 3.2 1B/3B

and Llama 3.1 8B (Grattafiori et al. 2024) using

bidirectional attention and lightweight Low-Rank

Adaptation (Hu et al. 2021), trained using a novel

structural noising scheme. LoRA enables

parameter-efficient finetuning, preserving

pretrained knowledge while avoiding ‘catastrophic

forgetting’ (Luo et al. 2023; Goodfellow et al.

2013).

Additionally, instead of relying solely on mask

tokens such as typical MDMs, we also apply a

structured corruption process using token swaps,

duplications, and span shifts. These perturbations

mimic common diffusive generation errors,

helping the model learn corrections and enabling

updates even when no mask tokens are present.

Finally, LAD is trained directly on instruction data,

unifying diffusion adaptation and instruction-

tuning without requiring a separate pretraining

phase.

Our main contributions can thus be summarized as

follows:

• A method for adapting AR LLMs to diffusion

using LoRA and bidirectional attention.

• A combined structural-masking noising

scheme enabling full-sequence editing.

• Unified diffusion adaptation and instruction

tuning on instruction data.

• Two real-time demo interfaces exposing key

generation parameters like re-noising and

max steps.

Figure 2: The inference process. The left column illustrates inference with intermediate remasking: tokens are

predicted for each position in every iteration. After each prediction, part of the generated text is remasked. For

inference without remasking, tokens are never remasked. However, the model still refines the output because it has

been trained to correct structurally corrupted text as well.

Inference with remasking

Query Response

Predict

MASK MASK MASK MASK MASK MASK MASK

Predict

MASK MASK MASK MASK

Masked renoising

Predict

Inference without remasking

Query Response

Predict

MASK MASK MASK MASK MASK MASK MASK

Predict

Predict

98

2 Methods

2.1 Models

All LAD models are based on Llama 3.2 1B/3B-

Instruct and Llama 3.1 8B-Instruct (Grattafiori et

al. 2024). To enable non-autoregressive generation,

we replaced causal attention with bidirectional

masks and applied LoRA fine-tuning, freezing all

weights except the output layer. Following (Hu et

al. 2021) we limited LoRA to the query and value

projections, which capture most of its performance

benefits, and set α = r across models. We trained six

LAD variants: two 1B models (r=128, 512), two

3B models (r=512, 1024), and two 8B models

(r=1024, 2048), to study scaling effects of model

size and LoRA rank. Model naming and details can

be found in Table 1, while detailed

hyperparameters are in Appendix A.

2.2 Data

Because we used pre-trained models, our training

corpus consisted solely of instruction finetuning

datasets. Three general question-answering

datasets were used: tatsu-lab/alpaca (Taori et al.

2023) , vicgalle/alpaca-gpt4 (Peng et al. 2023) and

a filtered subset of crumb/Clean-Instruct-3M

(Crumb 2023). We found that ‘catastrophic

forgetting’ (Goodfellow et al. 2013) would occur

when the model was not also trained on more

specialized tasks, such as multiple-choice

questions, coding, and math. Therefore, task-

specific corpora were included. Only the training

partition of each of these datasets was used for

training. For multiple choice question answering,

we used MMLU (Hendrycks et al. 2020), ARC-

Easy (Clark et al. 2018) and HellaSwag (Zellers et

al. 2019). For math, the GSM8K (Cobbe et al.

2021) and ORCA (Mitra et al. 2024) datasets were

used. For coding, the OpenCoder (Huang et al.

2024) dataset was used. All datasets were filtered

so the prompt and output together were less than

896 characters. This resulted in a combined dataset

of 951k examples, which was subsequently split

into training (98%), validation (1%), and test (1%)

sets. All strings were tokenized, either truncated or

padded with ‘end-of-sequence’ tokens to a length

of 256, and formatted using standard Llama

instruction templates. Splits were saved for

consistent comparison of loss curves.

Figure 3: Training cross-entropy loss. The lightly colored lines

show raw loss values, while the bold lines represent smoothed

losses using a progressive moving average.

Table 1: Comparison of the trained models. The model

naming reflects both the size of the base model and LoRA

rank, which determines the number of trainable

parameters.
Model

(LAD-)

Total

params

Trainable

params

Trainable

(%)

LoRA

Rank

Training

(hours)

1B-r128 1.2B 13.6M 1.1 128 2.5

1B-r512 1.2B 54.4M 4.2 512 2.8

3B-r512 3.4B 146.8M 4.4 512 7.5

3B-r1024 3.5B 293.6M 8.4 1024 8.1

8B-r1024 8.5B 436.2M 5.1 1024 16.0

8B-r2048 8.9B 872.4M 9.8 2048 16.5

99

2.3 Noising

When applying diffusion models to text, we found

that intermediate outputs often retain useful lexical

content yet suffer from structural issues, such as

repeated words, misordered phrases, and

fragmented sentences, that require correction. To

train a model capable of identifying and correcting

such errors, we introduced similar perturbations

into the training data through structured noising.

However, using only structured noising, there is no

well-defined end-point at which a sample would be

‘fully noised’. For MDMs, this is commonly

represented by a fully masked sequence (Austin et

al. 2021; Lou, Meng, and Ermon 2023; Nie et al.

2025; Ou et al. 2024). Therefore, we also

incorporated the more regularly employed strategy

of incrementally adding ‘mask’ tokens. The

combination enables the model to denoise from an

entirely masked input while iteratively refining

partially coherent sequences, as illustrated in

Figure 1.

Unlike formal MDMs, which use an invertible,

probabilistic corruption process and derive a

variational bound on the data likelihood, our

process, based on local swaps, duplications, and

span shifts, is non-invertible. Therefore, we do not

model the reverse process in a likelihood-based

framework and instead train the model directly

using a standard cross-entropy loss.. More details

about the training and noising schedule are

provided in Appendix B.

2.4 Training

For computational efficiency, all models were

trained using float16 mixed precision. The AdamW

optimizer (Loshchilov and Hutter 2017) was used

with an initial learning rate of 1×10−5, a cosine

learning rate schedule with 1000 warmup steps,

and a weight decay of 0.01. The batch size was set

to 8. Gradient clipping was used with a maximum

norm of 0.5. All models were trained for 100k

iterations using a batch size of 8 and a context

window of 256 tokens to adhere to memory

constraints. This means that a total of 205 million

tokens were used to train each model. Training was

performed on a single NVIDIA A100 GPU

(40GB). Full model checkpoints were saved every

10,000 steps to inspect the training process and

estimate convergence. All models were trained to

minimize the cross-entropy loss between the output

logits and the original, uncorrupted token

sequence.

2.5 Inference

At inference time, the models can generate text

using two modes: a scheduled denoising approach

analogous to traditional MDMs, and a self-refining

approach that relies on the model's ability to correct

sequences without explicit renoising. Both

generation strategies are illustrated in Figure 2.

The first method follows a conventional iterative

denoising schedule. Given a prompt, the process

for generating a response sequence, !, begins with

Figure 4: Median perplexity and distinct 2-gram fraction of LAD-8B-

1024 model outputs across varying max iterations. Shaded areas show
interquartile ranges. Dashed lines mark reference answer metrics. Stars

show results without renoising.

100

a fully masked initial state, !!"#, of a predefined

length. The model then enters a refinement loop for

a maximum of N steps. At each iteration " , the

model takes the current sequence !!$%&# as input

and produces a new, complete sequence prediction, !#!$#.
Following this prediction, a fraction $%"& of the

tokens in !#!$# are randomly re-masked to produce

the input for the next iteration, !!$#. This fraction is

determined by an exponentially decreasing noise-

schedule, $%"&. The noise schedule is defined as:

$%"& ' $" (%'(!$)*#) (%'*) (%'

Here, + is a hyperparameter controlling the

sharpness of the decay, and $" is the initial noise

level at " ' ,. This process continues until the final

iteration - , at which point no tokens are re-

masked.

The second method used the model’s capability to

correct text directly without masking tokens.

Similar to the scheduled approach, generation

begins with an initial prediction !#!&# from a fully

masked response sequence. However, in all

subsequent iterations (" . *), the explicit renoising

step is omitted. Instead, the full, unmasked output

from the previous step, !#!$%&#, is fed directly back

into the model to produce the next refinement, !#!$#.
In this mode, the model both identifies misplaced

or incorrect tokens, and replaces these by a better

fitting alternative.

It should be noted that both methods are not

equivalent to standard MDM generation. Firstly,

any token can be re-masked when the first method

is used. Moreover, for both methods the model can

amend any token in the sequence, not just those that

were explicitly masked.

Lastly, both methods employ an early stopping

criterion. The generation process is considered to

have converged and is terminated before the preset

maximum number of iterations if the output

sequence remains identical for three consecutive

iterations.

2.6 Evaluation

We evaluated all models on five benchmarks:

ARC-Easy and ARC-Challenge (Clark et al. 2018),

MMLU (Hendrycks et al. 2020), HellaSwag

(Zellers et al. 2019), and GSM8K (Cobbe et al.

2021), using GPT-4o to judge the correctness of

generated answers. For most benchmarks, purely

diffusive generation was used, except for GSM8K,

where semi-autoregressive generation was used.

Inference details can be found in Appendix C. For

each benchmark, 100 samples were tested per

model. To assess text fluency, we computed

perplexity using the larger and more recent Phi-4

14B model (Abdin et al., 2024). Output diversity

was quantified using the distinct 2-gram fraction,

which measures the proportion of unique

consecutive word pairs in the generated text. We

evaluated six diffusion-based models and three

autoregressive base models, all limited to a

maximum output length of 256 tokens.

Finally, we also measured the impact of the

maximum number of iterations on output fluency

for the LAD-8B-1024r model.

2.7 User interface

To demonstrate the test time compute flexibility of

the LAD models, we developed two interfaces for

Table 2: Summary of benchmark scores (% correct) for varying model and LoRA sizes.

Generative perplexity and distinct-2 gram fractions are also included. Results for the three Llama

basemodels, evaluated using our own protocol, are shown for comparison.

Underline = best diffusion model; * = best model for its size; bold = best overall model

 Model LAD Llama

 - Size 1B 3B 8B 1B 3B 8B

 - LoRA rank 128 512 512 1024 1024 2048 - - -

Benchmarks

ARC-Easy 56 *58 91 *93 93 93 57 91 *94

MMLU 29 30 43 *48 54 53 *48 *48 *65

ARC-Challenge *42 35 68 74 79 *80 40 *77 *80

HellaSwag 27 26 51 *58 *80 76 *38 55 62

GSM8K 5 4 37 43 44 45 *49 *72 *80

Intrinsic metrics
Perplexity 17.1 14.7 11.0 10.1 9.1 9.5 *2.9 *2.8 *2.7

Distinct 2-grams 0.88 0.90 0.92 0.94 0.94 0.94 0.92 0.98 0.94

101

interactive experimentation (Figure 5). The simple

interface allows a user to provide a prompt, set the

maximum number of generation iterations, and

toggle between the two inference methods. A pause

function is included to visualize the step-by-step

generation process.

The advanced interface provides more detailed

control over the generation process. It allows

tuning of hyperparameters for the noise schedule

(initial fraction, decay sharpness), sampling

strategy (top-k, top-p), and bias towards end-of-

sequence tokens. This interface also enables

alternative methods such as confidence-guided

noising, which preferentially re-masks low-

confidence tokens, and semi-autoregressive

generation, where text is produced in smaller,

sequential blocks.

3 Results

Exact model sizes and training durations for the

diffusion models are shown in Table 1. The 1B, 3B,

and 8B models were trained in approximately 3, 8,

and 16 hours, respectively.

Figure 3 shows the training loss curves for all

models. Lower final cross-entropy loss values are

observed for models with larger parameter sizes

and higher LoRA ranks.

The fluency metrics for the LAD-8B-1024r model

across different numbers of diffusion iterations are

shown in Figure 4. Perplexity decreases as the

number of iterations increases, while the distinct 2-

gram fraction remains stable and similar to that of

the reference text. The figure also includes results

for the same model run without intermediate re-

noising. In this setting, perplexity remains

comparable to the model with re-noising for the

same number of iterations, while the distinct 2-

gram fraction is slightly lower.

Table 2 presents benchmark scores for all models

across five datasets, along with perplexity and

distinct 2-gram fraction. Results are reported for

diffusion models of varying size and LoRA rank,

as well as for the original Llama foundation

models. Across most benchmarks—ARC-Easy,

MMLU, ARC-Challenge, and HellaSwag—the

diffusion models perform comparable to the base

models, also for similar sized smaller models. On

GSM8K, however, the foundation models show

clearly higher accuracy. Perplexity values are

higher for all diffusion models compared to the

base models, while the distinct 2-gram fractions are

similar across all models.

Finally, a short quantitative and qualitative study of

diffusive generation without renoising can be seen

in Appendix D and E.

4 Discussion

The results demonstrate that LAD effectively

adapts pretrained autoregressive LLMs into

diffusion-style models with competitive

performance and efficient training.

The LAD models were fine-tuned using only 100k

iterations, which amounted to 200 million training

tokens. For comparison, the base model LLaMA

3.1-8B (Grattafiori et al. 2024) was trained on 15

trillion tokens, and comparable diffusion models

such as LlaDa (Nie et al. 2025), used 2.3 trillion

tokens. This means LAD used just 0.001% and

0.008% of their respective token counts.

Model performance scales with both model size

and LoRA rank, although diminishing returns were

seen for large LoRA ranks. This was apparent from

both the training loss curves (Figure 3) as well as

the benchmark and text fluency results (Table 2).

Base model size plays a dominant role in

performance, validating the choice to use pre-

trained frozen autoregressive backbones with

lightweight bidirectional LoRA adapters.

Increasing the number of diffusion refinement

iterations reduced perplexity (Figure 4), meaning

that increasing ‘test time compute’ increased the

performance of the model. This behavior could

enable the user to make choices on whether speed

or quality is more important, which is a unique

feature that is not available through autoregressive

generation. The diminishing returns observed

beyond a certain number of iterations do suggest

practical limits for speed-quality trade-off. We also

showed that the model can be used without

intermediate re-noising (Figure 6 and Figure 7).

This strategy ensures no intermediate information

generated by the model is lost, as the model has

access to all information generated in the previous

iteration.

Benchmark (Table 2) results further showed that

LAD models achieve comparable accuracy to base

autoregressive models on most datasets despite

their non-autoregressive nature, although

performance lags on complex reasoning tasks like

GSM8K.

Finally, the interactive user interfaces (Figure 5)

concretely demonstrate the flexibility enabled by

LAD’s diffusion framework. By exposing control

over generation iterations, noise scheduling,

102

sampling strategies, and novel techniques like

confidence-guided noising and semi-

autoregressive generation, users can tailor compute

and output quality trade-offs in real time.

5 Conclusion

LAD provides an efficient and flexible framework

to adapt pretrained autoregressive models for

diffusion-based generation, demonstrating for the

first time that LoRA finetuning alone can enable

this transformation. Our unique structured noising

strategy makes diffusion without denoising

possible, though it does not yet outperform

diffusion with renoising. While LAD matches base

models on some tasks, complex reasoning

challenges like GSM8K remain areas for

improvement. Overall, LAD lays a foundation for

scalable, controllable diffusion models, with

further evaluation needed on diffusion without

renoising.

Figure 5: Interfaces of the LAD model used for inference. Top shows the

interface of the simple demo and decide the inference method. Bottom shows the

extended demo which includes a larger number of customization options

103

Limitations

Our work shares part of its motivation with (von

Rütte et al. 2025) who enabled sequence-level

correction in diffusion models by augmenting

masking with discrete uniform noise (random

token replacement). They noted this method, while

promising, often degraded benchmark

performance. They attributed this to the increased

task complexity requiring larger models. We

observed similar performance drops using our

models, reinforcing the idea that larger models

might be necessary to achieve similar results as

autoregressive models. However, using the LAD

training paradigm might provide a solution to this

problem.

Firstly, by applying LoRA to large, pre-existing

models, we enable the use of larger networks with

only a fraction of the compute required for training

from scratch. This parameter-efficient approach

training approach could thus offer a viable

approach to further test the scalability hypothesis

posed by von Rütte et al. Second, we see that fewer

iterations are necessary to achieve similar results

when using larger models. This could offset the

increased compute cost of using the larger models.

Comprehensive evaluation of large language

models requires substantial effort, as there are

many dimensions to consider—ranging from

reasoning ability and factual accuracy to

multilingual performance and robustness. While

we have attempted to test key aspects of the LAD

framework, a full exploration of all capabilities was

beyond the scope and length constraints of this

study. Nonetheless, the following limitations

highlight important areas for future research.

Firstly, diffusion models uniquely enable

bidirectional attention and editing, which we did

not explicitly study here. Measuring bidirectional

reasoning behavior is non-trivial and should be

included when validating these models further, as

it is a desirable feature of diffusion models.

We were also not able to compare perplexity scores

between LAD and other diffusion-based text

models. This was primarily due to mismatched

generation settings: most diffusion models in prior

work are evaluated under unconditional

generation, while LAD was trained for instruction-

following. Direct comparison would thus be

misleading, as conditional perplexity is typically

lower.

Furthermore, evaluation was limited to five

benchmarks and two intrinsic metrics (perplexity

and distinct-2). While these provide a useful first

indication of model quality, future work should

expand to a broader range of tasks, particularly

ones that stress reasoning, factuality, or

multilingual capabilities. This will help to better

judge the strengths and limitations of diffusion-

based text generation.

Likewise, we have so far tested LAD on models up

to 8B parameters. While this is already on par with

the largest open-source diffusion LLMs to date

(Nie et al. 2024, 2025), scaling further should be

possible using LoRA finetuning. However, one of

our goals was to show that AR models could be

adapted for diffusive generation using minimal

resources. Even with our parameter-efficeint

finetuning methods, models larger than 8B will

require access to GPUs with more than 40GB

VRAM or multi-GPU setups.

Finally, while our structural noising strategy was

designed to simulate typical generation errors, it

remains hand-engineered and not learned. This

meant that the training samples do not necessarily

reflect the intermediate samples generated during

inference.

Finally, we provide interactive interfaces for tuning

inference hyperparameters, which enables users to

intuitively find settings that work best for them.

However, a deeper exploration of optimal settings

(e.g. for top-k, sharpness, or re-noising schedule)

was outside the scope of this paper. These choices

may have a strong effect on output quality, and

merit further systematic study.

Ethics Statement

This work follows the general principles of the

ACM Code of Ethics. No human or sensitive data

was used, and we relied solely on publicly

available datasets. Ethical risks were considered in

line with standard practice for language model

research.

Acknowledgments

This research was supported by the Utrecht

University Focus Area Applied Data Science. We

thank the ADS steering committee for their

support.

104

References

Austin, Jacob, Daniel D. Johnson, Jonathan Ho, Daniel

Tarlow, and Rianne van den Berg. 2021.

“Structured Denoising Diffusion Models in

Discrete State-Spaces.” ArXiv [Cs.LG]. arXiv.

http://arxiv.org/abs/2107.03006.

Cardei, Michael, Jacob K. Christopher, Thomas

Hartvigsen, Brian R. Bartoldson, Bhavya

Kailkhura, and Ferdinando Fioretto. 2025.

“Constrained Language Generation with

Discrete Diffusion Models.” ArXiv [Cs.CL].
arXiv. http://arxiv.org/abs/2503.09790.

Chen, Jiaao, Aston Zhang, Mu Li, Alex Smola, and Diyi

Yang. 2023. “A Cheaper and Better Diffusion

Language Model with Soft-Masked Noise.”

ArXiv [Cs.CL]. arXiv.

https://doi.org/10.48550/arxiv.2304.04746.

Clark, Peter, Isaac Cowhey, Oren Etzioni, Tushar Khot,

Ashish Sabharwal, Carissa Schoenick, and

Oyvind Tafjord. 2018. “Think You Have

Solved Question Answering? Try ARC, the

AI2 Reasoning Challenge.” ArXiv [Cs.AI].

arXiv. http://arxiv.org/abs/1803.05457.
Cobbe, Karl, Vineet Kosaraju, Mohammad Bavarian,

Mark Chen, Heewoo Jun, Lukasz Kaiser,

Matthias Plappert, et al. 2021. “Training

Verifiers to Solve Math Word Problems.”

ArXiv [Cs.LG]. arXiv.

http://arxiv.org/abs/2110.14168.

Crumb, A. I. 2023. “Clean-Instruct-3M.”

https://huggingface.co/datasets/crumb/Clean-

Instruct-3M.

Gong, Shansan, Shivam Agarwal, Yizhe Zhang,

Jiacheng Ye, Lin Zheng, Mukai Li, Chenxin
An, et al. 2024. “Scaling Diffusion Language

Models via Adaptation from Autoregressive

Models.” ArXiv [Cs.CL]. arXiv.

https://github.com/HKUNLP/DiffuLLaMA.

Goodfellow, Ian J., Mehdi Mirza, Da Xiao, Aaron

Courville, and Yoshua Bengio. 2013. “An

Empirical Investigation of Catastrophic

Forgetting in Gradient-Based Neural

Networks.” ArXiv [Stat.ML]. arXiv.

http://arxiv.org/abs/1312.6211.

Grattafiori, Aaron, Abhimanyu Dubey, Abhinav Jauhri,

Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, et al. 2024. “The

Llama 3 Herd of Models.” ArXiv [Cs.AI].

arXiv. http://arxiv.org/abs/2407.21783.

Han, Kehang, Kathleen Kenealy, Aditya Barua, Noah

Fiedel, and Noah Constant. 2024. “Transfer

Learning for Text Diffusion Models.” ArXiv

[Cs.CL]. arXiv.

https://doi.org/10.48550/arxiv.2401.17181.

He, Zhengfu, Tianxiang Sun, Kuanning Wang, Xuanjing

Huang, and Xipeng Qiu. 2022.

“DiffusionBERT: Improving Generative
Masked Language Models with Diffusion

Models.” ArXiv [Cs.CL]. arXiv.

http://arxiv.org/abs/2211.15029.

Hendrycks, Dan, Collin Burns, Steven Basart, Andy

Zou, Mantas Mazeika, Dawn Song, and Jacob

Steinhardt. 2020. “Measuring Massive

Multitask Language Understanding.” ArXiv

[Cs.CY]. arXiv.
http://arxiv.org/abs/2009.03300.

Hu, Edward J., Yelong Shen, Phillip Wallis, Zeyuan

Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,

and Weizhu Chen. 2021. “LoRA: Low-Rank

Adaptation of Large Language Models.” ArXiv

[Cs.CL]. arXiv.

http://arxiv.org/abs/2106.09685.

Huang, Siming, Tianhao Cheng, J. K. Liu, Jiaran Hao,

Liuyihan Song, Yang Xu, J. Yang, et al. 2024.

“OpenCoder: The Open Cookbook for Top-

Tier Code Large Language Models.” ArXiv
[Cs.CL]. arXiv.

http://arxiv.org/abs/2411.04905.

Li, Xiang Lisa, John Thickstun, Ishaan Gulrajani, Percy

Liang, and Tatsunori B. Hashimoto. 2022.

“Diffusion-LM Improves Controllable Text

Generation.” ArXiv [Cs.CL]. arXiv.

https://doi.org/10.48550/arXiv.2205.14217.

Li, Yifan, Kun Zhou, Wayne Xin Zhao, and Ji-Rong

Wen. 2023. “Diffusion Models for Non-

Autoregressive Text Generation: A Survey.”

ArXiv [Cs.CL]. arXiv.

https://doi.org/10.48550/arxiv.2303.06574.
Loshchilov, Ilya, and Frank Hutter. 2017. “Decoupled

Weight Decay Regularization.” ArXiv

[Cs.LG]. arXiv.

http://arxiv.org/abs/1711.05101.

Lou, Aaron, Chenlin Meng, and Stefano Ermon. 2023.

“Discrete Diffusion Modeling by Estimating

the Ratios of the Data Distribution.” ArXiv

[Stat.ML]. arXiv.

http://arxiv.org/abs/2310.16834.

Lovelace, Justin, Varsha Kishore, Chao Wan, Eliot

Shekhtman, and Kilian Q. Weinberger. 2022.
“Latent Diffusion for Language Generation.”

ArXiv [Cs.CL]. arXiv.

http://arxiv.org/abs/2212.09462.

Luo, Yun, Zhen Yang, Fandong Meng, Yafu Li, Jie Zhou,

and Yue Zhang. 2023. “An Empirical Study of

Catastrophic Forgetting in Large Language

Models during Continual Fine-Tuning.” ArXiv

[Cs.CL]. arXiv.

http://arxiv.org/abs/2308.08747.

Mitra, Arindam, Hamed Khanpour, Corby Rosset, and

Ahmed Awadallah. 2024. “Orca-Math:

Unlocking the Potential of SLMs in Grade
School Math.” ArXiv [Cs.CL]. arXiv.

http://arxiv.org/abs/2402.14830.

Nie, Shen, Fengqi Zhu, Chao Du, Tianyu Pang, Qian

Liu, Guangtao Zeng, Min Lin, and Chongxuan

Li. 2024. “Scaling up Masked Diffusion

Models on Text.” ArXiv [Cs.AI]. arXiv.

http://arxiv.org/abs/2410.18514.

Nie, Shen, Fengqi Zhu, Zebin You, Xiaolu Zhang,

Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin, Ji-

105

Rong Wen, and Chongxuan Li. 2025. “Large

Language Diffusion Models.” ArXiv [Cs.CL].

arXiv. http://arxiv.org/abs/2502.09992.

Ou, Jingyang, Shen Nie, Kaiwen Xue, Fengqi Zhu,

Jiacheng Sun, Zhenguo Li, and Chongxuan Li.
2024. “Your Absorbing Discrete Diffusion

Secretly Models the Conditional Distributions

of Clean Data.” ArXiv [Cs.LG]. arXiv.

http://arxiv.org/abs/2406.03736.

Peng, Baolin, Chunyuan Li, Pengcheng He, Michel

Galley, and Jianfeng Gao. 2023. “Instruction

Tuning with GPT-4.” ArXiv [Cs.CL]. arXiv.

http://arxiv.org/abs/2304.03277.

Rütte, Dimitri von, Janis Fluri, Yuhui Ding, Antonio

Orvieto, Bernhard Schölkopf, and Thomas

Hofmann. 2025. “Generalized Interpolating
Discrete Diffusion.” ArXiv [Cs.CL]. arXiv.

https://github.com/dvruette/gidd/.

Sahoo, Subham Sekhar, Marianne Arriola, Yair Schiff,

Aaron Gokaslan, Edgar Marroquin, Justin T.

Chiu, Alexander Rush, and Volodymyr

Kuleshov. 2024. “Simple and Effective

Masked Diffusion Language Models.” ArXiv

[Cs.CL]. arXiv.

http://arxiv.org/abs/2406.07524.

Schiff, Yair, Subham Sekhar Sahoo, Hao Phung,

Guanghan Wang, Sam Boshar, Hugo Dalla-

torre, Bernardo P. de Almeida, Alexander
Rush, Thomas Pierrot, and Volodymyr

Kuleshov. 2024. “Simple Guidance

Mechanisms for Discrete Diffusion Models.”

ArXiv [Cs.LG]. arXiv.

http://arxiv.org/abs/2412.10193.

Shi, Jiaxin, Kehang Han, Zhe Wang, Arnaud Doucet,

and Michalis K. Titsias. 2024. “Simplified and

Generalized Masked Diffusion for Discrete

Data.” ArXiv [Cs.LG]. arXiv.

http://arxiv.org/abs/2406.04329.

Sohl-Dickstein, Jascha Narain, Eric A. Weiss, Niru
Maheswaranathan, and S. Ganguli. 2015.

“Deep Unsupervised Learning Using

Nonequilibrium Thermodynamics.” Edited by

Francis Bach and David Blei. International

Conference on Machine Learning, Proceedings

of Machine Learning Research,

abs/1503.03585 (March): 2256–65.

Taori, Rohan, Ishaan Gulrajani, Tianyi Zhang, Yann

Dubois, Xuechen Li, Carlos Guestrin, Percy

Liang, and Tatsunori Hashimoto. 2023.

“Stanford Alpaca: An Instruction-Following

LLaMA Model.” https://github.com/tatsu-
lab/stanford_alpaca.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob

Uszkoreit, Llion Jones, Aidan N. Gomez,

Lukasz Kaiser, and Illia Polosukhin. 2017.

“Attention Is All You Need.” ArXiv [Cs.CL].

arXiv. http://arxiv.org/abs/1706.03762.

Ye, Jiasheng, Zaixiang Zheng, Yu Bao, Lihua Qian, and

Quanquan Gu. 2023. “Diffusion Language

Models Can Perform Many Tasks with Scaling

and Instruction-Finetuning.” ArXiv [Cs.CL].

arXiv. http://arxiv.org/abs/2308.12219.

Yi, Qiuhua, Xiangfan Chen, Chenwei Zhang, Zehai

Zhou, Linan Zhu, and Xiangjie Kong. 2024.

“Diffusion Models in Text Generation: A
Survey.” PeerJ. Computer Science 10 (e1905):

e1905.

Yuan, Hongyi, Zheng Yuan, Chuanqi Tan, Fei Huang,

and Songfang Huang. 2022. “SeqDiffuSeq:

Text Diffusion with Encoder-Decoder

Transformers.” ArXiv [Cs.CL]. arXiv.

http://arxiv.org/abs/2212.10325.

Zellers, Rowan, Ari Holtzman, Yonatan Bisk, Ali

Farhadi, and Yejin Choi. 2019. “HellaSwag:

Can a Machine Really Finish Your Sentence?”

ArXiv [Cs.CL]. arXiv.
http://arxiv.org/abs/1905.07830.

Zhang, Yizhe, Jiatao Gu, Zhuofeng Wu, Shuangfei Zhai,

Josh Susskind, and Navdeep Jaitly. 2023.

“PLANNER: Generating Diversified

Paragraph via Latent Language Diffusion

Model.” ArXiv [Cs.CL]. arXiv.

http://arxiv.org/abs/2306.02531.

Zhao, Siyan, Devaansh Gupta, Qinqing Zheng, and

Aditya Grover. 2025. “D1: Scaling Reasoning

in Diffusion Large Language Models via

Reinforcement Learning.” ArXiv [Cs.CL].

arXiv. http://arxiv.org/abs/2504.12216.
Zhu, Yuansong, and Yu Zhao. 2023. “Diffusion Models

in NLP: A Survey.” ArXiv [Cs.CL]. arXiv.

https://doi.org/10.48550/arxiv.2303.07576.

Zou, Hao, Zae Myung Kim, and Dongyeop Kang. 2023.

“A Survey of Diffusion Models in Natural

Language Processing.” ArXiv [Cs.CL]. arXiv.

https://www.semanticscholar.org/paper/4ca82

4e792f3a2c777ffa5896a2e7cdf11b9518d.

106

A Model hyperparameters

All models were trained using the same

training framework. The foundation models

used were the Llama 3.2 1B- and 3B-Instruct

and Llama 3.1 8B-Instruct models. For

computational efficiency, all training was

performed using 16-bit floating-point

precision. The AdamW optimizer was used

with a cosine learning rate scheduler,

starting with a learning rate of 1e-5 after 100

warmup steps. We used a weight decay of

0.01 and a maximum gradient norm of 0.5.

The models were trained for a single epoch

with a per-device batch size of 8. All input

sequences were tokenized and then padded

or truncated to a fixed length of 256 tokens.

To analyze the impact of parameter-efficient

fine-tuning, we evaluated several model

variants by applying Low-Rank Adaptation

(LoRA) to the base model. As summarized

in the main text, we varied the LoRA rank

(r) across values of 128, 512, 1024 and

2048, also depending on the model size. For

all LoRA configurations, the scaling

parameter lora_alpha was set equal to the

rank, and LoRA was applied to the query

(q_proj) and value (v_proj) matrices of the

attention mechanism. No dropout was used

in the LoRA layers. This approach allowed

us to create a range of models with varying

parameter counts while keeping the core

architecture and training hyperparameters

consistent.

B Training noising schedule

Our approach is motivated by the empirical

observation that when applying diffusion-style

models to text, intermediate outputs often contain

relevant lexical content but exhibit structural

issues, such as repeated words, incorrect word

order, or sentence fragments. To train a model

capable of correcting such errors, we introduce a

hybrid corruption process that combines token

masking with structured, non-local perturbations.

Let ! ' %/&0 /+0 1 1 1 0 /,& represent a clean sequence

of tokens from the data distribution 2data%!&. Our

corruption process, 3%!&, is a stochastic function

that produces a corrupted sequence !4. This process

is a composition of two distinct noising strategies:

• Token masking (3mask): We employ a

masking operator that replaces a fraction of

tokens with a special [MASK] token. This is

analogous to the forward process in Masked

Diffusion Models (MDMs). Let 5 6 7,0*8,

be a binary mask vector sampled from a

uniform random distribution, where 9$ ' *

indicates masking. The masking process can be

defined as:

3mask%!05&$ ' :[MASK] if 9$ ' */$ if 9$ ' ,

• Structural perturbation (3struct): We apply a

set of non-invertible, structure-altering

Algorithm 1: Masked and Structured Noising for Denoising Training

Require: token sequence x = [x₁, ..., xₙ], masking token MASK, noise probability p ∈ [0, 0.5], RNG

1: With 50% probability: # Masking

2: Sample mask fraction f ∼ Uniform(0, 1)
3: Let m ← floor(f × n)

4: Randomly select m indices I_mask ⊆ {1, ..., n} without replacement

5: For each i ∈ I_mask, set xᵢ ← MASK

6: For each position i ∈ {1, ..., n−1}: # Swapping
7: With probability p/4, swap x̂ᵢ and x̂_{i+1}

8: For each position i ∈ {1, ..., n}: # Duplication
9: With probability p/4, do:

10: Sample direction d ∈ {−1, +1}

11: If i + d ∈ [1, n], set x̂ᵢ ← x̂_{i+d}
12: With probability p/4: # Span shift

13: Sample span length s ∈ {1, 2, 3}

14: Sample shift distance δ ∈ {1, ..., 4} and direction d ∈ {−1, +1}

15: Let start ∈ {1, ..., n − s + 1}
16: Let span ← x_{start : start + s − 1}
17: Let target ← clamp(start + d × δ, 1, n − s + 1)
18: Overwrite x_{target : target + s − 1} ← span

19: Return x

107

transformations, including local token swaps,

duplications, and random shifts of token spans.

These operators are designed to mimic the

specific structural artifacts we observe during

iterative generation.

The full corruption !4 ' 3%!& is a probabilistic

application of these operators. This hybrid

approach enables us to create a distribution of

corrupted samples that trains the model to correct

both content-level (via masking) and structure-

level errors.

Our methodology departs from the usual formal

probabilistic framework of Masked Diffusion

Models (MDMs) as presented by, among others,

(Shi et al. 2024; Ou et al. 2024; Nie et al. 2025;

Sahoo et al. 2024). A typical MDM defines a time-

indexed forward process ;%!-<!"& that gradually

masks tokens, where = 6 >,0*? represents the noise

level, and each token is independently masked with

probability =. This process allows for the derivation

of a reverse process 2.%!-%&<!-& and an objective

function @%A& that serves as a variational upper

bound on the negative log-likelihood of the data:)B/01data
>CDE2.%!&? F @%A&

This provides a principled, likelihood-based

training framework. In contrast, our corruption

process G%!& is not defined as a time-indexed,

reversible Markov chain. The structural

perturbations in 3struct are deterministic operations

applied stochastically which are not directly

invertible. Consequently, we cannot define a

corresponding probabilistic forward model or

derive a tractable variational bound on the data

likelihood.

Given the nature of our corruption process, we

frame the training as a direct denoising auto-

encoding task rather than likelihood maximization.

The model parameterized by A , is trained to

reconstruct the original sequence ! from its

corrupted version !4. The objective is to minimize

the standard cross-entropy loss between the

model's output distribution and the original clean

sequence:

@CE%A& ' B/01data2/304!/#
H)ICDE,

$5&

2.%/$<!4&J
While this prevents tractable likelihood evaluation,

it allows the model to learn a practical denoising

function. The masking component serves two

critical roles within this framework. First, a fully

masked input (!4 generated with a 100% mask rate)

provides a well-defined starting point for

generation from pure noise, analogous to !& in

formal diffusion. Second, partial masking provides

stochasticity during the inference process that

enables more diverse and natural responses, which

complements the convergence to grammatically

sound sentences offered by the structured

corruptions. This combined approach trains a

single model capable of both iterative refinement

of flawed text and conditional generation from a

corrupted prompt.

To simulate intermediate inference steps, we apply

a structured noising function to each sequence of

tokens. For each sequence, a noise probability

p6[0.0,0.5] is sampled uniformly and used to

parameterize three types of corruption. First, with

50% probability, a random fraction (between 0%

and 100%) of the tokens is replaced with a special

MASK token. Second, adjacent tokens are randomly

swapped with probability p/4. Third, tokens are

duplicated either from the previous or next

position, also with probability p/4. Finally, with

probability p/4, a short span of 1 to 3 tokens is

copied and shifted to a new location within the

sequence, moved by 1 to 4 positions in either

direction. These noising operations are applied

during preprocessing via a batched mapping

function and are only performed on sequences of at

least two tokens. The resulting corrupted input

serves as the model input, while the original

sequence is used as the target for supervised

training. An algorithmic notation of the noising

process is shown in Algorithm 1.

Figure 6: Perplexity and distinct 2-gram

fraction for multiple LAD models without

intermediate re-noising. Each star represents a

model’s performance at its average convergence

iteration, shown on the x-axis.

108

C Evaluation details

We evaluated model performance on five standard

benchmarks: ARC-Easy, MMLU, ARC-Challenge,

HellaSwag, and GSM8K. For each benchmark, we

sampled 100 representative examples per model.

Answers were generated using a custom diffusion-

based decoding process, with settings tailored to

each benchmark.

For ARC-Easy, MMLU, ARC-Challenge, and

HellaSwag, model responses were generated using

16 diffusion steps, with a noise schedule starting at

1.0, a maximum generation length of 256 tokens,

top-k sampling set to 1, and top-p sampling set to

0.1. These settings encourage the model to refine

highly noised inputs into coherent answers over a

fixed number of iterations.

For GSM8K, which involves multi-step

mathematical reasoning, we used a different

configuration: the generation process was allowed

up to 256 diffusion steps, with no initial noise (i.e.,

noise start = 0.0), a maximum generation length of

256 tokens, top-k set to 1, and top-p set to 1.0. In

addition, we used semi-autoregressive generation,

allowing the model to generate and refine 4 tokens

at a time. A noising sharpness value of 1.0 was used

to guide the refinement process. We followed the

semi-autoregressive implementation described by

(Nie et al. 2025).

Answer correctness was evaluated using GPT-4o,

prompted in a zero-shot setting to determine

whether each model’s response correctly answered

the original question. All diffusion-based models

were capped at a maximum of 256 generated

tokens. In addition to the six diffusion-tuned

models, we also evaluated three autoregressive

base models under identical constraints.

To assess fluency, we calculated perplexity using

the Phi-4 14B model (Abdin et al., 2024), a large

autoregressive language model trained for strong

generalization and language modeling quality. We

selected Phi-4 for this purpose under the

assumption that stronger models produce more

reliable and meaningful evaluations of fluency.

Evaluating weaker or mid-sized models with a

more capable evaluator helps prevent

underestimation of fluency due to evaluator

limitations.

To measure lexical diversity, we computed the

distinct 2-gram fraction for each model output.

This metric represents the proportion of unique

consecutive word pairs (bigrams) in the generated

Figure 7: Examples of model output with and without renoising after various iterations. Left: Denoising with

renoising after each step. Tokens are renoising with decreasing frequency to allow iterative correction. Right:

Denoising without renoising. Tokens are refined only once, reducing flexibility but speeding up inference. For

both versions, token shading reflects model confidence, ranging from red (low certainty) to green (high certainty).

"MASK" refers to a masking token.

After masking Model output

MASKMASKMASKMASKMASKMASKMASKMASKMAS

KMASKMASKMASKMASKMASKMASKMASKMASKMA

SKMASKMASKMASKMASKMASKMASKMASKMASKM

ASKMASKMASKMASKMASKMASKMASKMASKMASK

Amsterdam is largest city city of, in the the in of

famous.., the most of. famous isth known park, the,
History the a9 famous., old

Iteration 0

Amsterdam is aMASK in theMASKMASKMASKMASKMASK

history attractions, cultureMASKMASKMASK It

ItMASKMASKMASK,, parkMASKMASK architecture
architecture and allMASKMASKMASKMASK ItMASK the as

for worldMASK It beautiful city, withMASK house Anne
FrankMASKMASK andMASK of asMASKMASK..MASK

Amsterdam is a historic in the Netherlands of known for
history history,, culture, and architecture. It is its,, park,,

vibrant architecture, and all in. activities It's known the world
world for its's city city, with the house of Anna Frank
museum many its of as a as and.

Iteration 4

Amsterdam is a city in the Netherlands, known for its

architecture, history, and cultural heritage. It features

stunning architecture, beautiful water canals, andMASK
delicious cuisine. It is also one of the popular cities for its

nightlife scene, with the famous Red Light District Quarter,

and its famous LGBTQ+ liberation movement.

Amsterdam is a city in the Netherlands, known for its

architecture, history, and cultural heritage. It features

stunning architecture, beautiful water canals, and hearty
delicious cuisine. It is also one of the popular cities for its

nightlife scene, with the famous Red Light District Quarter,

and its famous LGBTQ+ liberation movement.

Iteration 32

Amsterdam isMASK city in the Netherlands, knownMASK its

bikesMASK beautiful cultureMASK and architecture. It

hasMASKals,MASKs and andMASK, and rich cuisine.MASK
is considered one of world world forMASK its cityscape,

including the Van of FrankMASKMASK and and
attractionsMASK artMASK..

Amsterdam is a city in the Netherlands, known for its

beautiful, beautiful culture, and architecture. It has canals,

canss and museums, and rich cuisine. Amsterdam is
considered one of the world cities for its cityscape, including

the Van Van Franklin Museum and numerous attractions
and in art.

Iteration 8

Amsterdam is aMASK in the Netherlands, known for its art,

literature, culture and culture. ItMASK stunning architecture,

canMASKMASK museums, and a diverse cuisine.
Amsterdam isMASK one of theMASK cities for its

nightlifeMASK, including the famous area areaMASKij, and

famous for itsMASK history.

Amsterdam is a city in the Netherlands, known for its art,

literature, and and culture. It has stunning architecture,

canals can museums, and a diverse cuisine. Amsterdam is
also one of the popular cities for its nightlife scene, including

the famous Red area Redij, and famous for its liberation

history.

Iteration 16

Final answer: 90 output tokens in 32 iterations

Amsterdam is largest city in Netherlands Netherlands

country in capital,s the to, features of famous is. capital
known stunning R is7 the, the architecture iconic the in

famous countryt is

Amsterdamis the largest city in the NetherlandsNetherlandsa

country amongNetherlandsss or capital capital and most most
famous the the Rijple Street and its architecturearchitecture.
The TheAmsterdamcanal is Amsterdamis and nightlifeand as

as its the art art. Additionally, remains a home home of of
museumsmuseumsandmanyof beautifulhousesof historical.

Amsterdam is the largest city in the Netherlands, a country

known among the popular capitals. It is also famous for the

Rijks Square Square and its historic architecture. The city is
also famous for its shopping, nightlife well as the art scene.

Additionally, it remains a home for many artists, and is home
of significant significant historical significance.

Amsterdam is the largest city in the Netherlands, a country

known among the popular capitals. It is also famous for the

Rijksm Museum and its historic architecture. The city is also
famous for its shopping, as well as the art scene.

Additionally, it remains a home for many artists, and is home

to sites of historical significance.

Final answer: 87 output tokens in 16 iterations

Denoising with remasking Denoising without remasking

Model output

109

text, offering a simple yet informative measure of

repetition and variation. A higher distinct-2 score

indicates more varied, less repetitive output.

Perplexity and distinct-2 scores were computed for

each model using 64 diffusion iterations. In

addition, we performed an ablation study on the

LAD-8B-1024r model to examine the effect of

varying the number of diffusion steps. This model

was tested at 8, 16, 32, 64, 128, 256 and 512

iterations. We also evaluated model performance

without re-noising, allowing the model to

iteratively refine its output until convergence or a

hard limit of 256 iterations. All tests were

conducted with a maximum context window of 256

tokens.

D Diffusion without renoising

The results in Figure 6 indicate that increasing

model size leads to lower perplexity when

performing diffusion without intermediate

renoising, reflecting improved fluency, particularly

when scaling from 1B to 3B parameters. Further

scaling to 8B not only reduces perplexity but also

decreases the average number of iterations required

for convergence, suggesting faster refinement. A

similar trend is observed with higher LoRA ranks,

which contribute to both improved perplexity and

efficiency. Across all models, distinct 2-gram

fractions remain consistently high between 0.8 and

0.9, indicating relatively stable lexical diversity

regardless of model size or LoRA rank.

E Inference Examples

Figure 6 illustrates a side-by-side comparison of an

answer to a single prompt, denoised using LAD

with and without intermediate renoising. Diffusion

with renoising allows for flexible sequence-level

corrections over time, often leading to more

coherent and confident completions. In contrast,

the right panel shows inference without renoising,

where each token is refined only once. While this

approach is faster, it limits the model's ability to

revisit and revise earlier decisions, resulting in less

polished outputs in some cases.

110

