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Abstract

Autoregressive models dominate text
generation but suffer from left-to-right
decoding constraints that limit efficiency
and bidirectional reasoning. Diffusion-
based models offer a flexible alternative but
face challenges in adapting to discrete text
efficiently. We propose LAD (LoRA-
Adapted Diffusion), a framework for non-
autoregressive generation that adapts
LLaMA models for iterative, bidirectional
sequence refinement using LoRA adapters.
LAD employs a structural denoising
objective combining masking with text
perturbations (swaps, duplications and span
shifts), enabling full sequence editing
during generation. We aim to demonstrate
that LAD could be a viable and efficient
alternative to training diffusion models
from scratch, by providing both validation
results as well as two interactive demos
directly available online:
https://ruurdkuiper.github.io/tini-lad/
https://huggingface.co/spaces/Ruurd/tini-lad
Inference and training code:
https://github.com/RuurdKuiper/lad-code

1 Introduction

In recent years, the field of natural language
generation (NLG) has been transformed by the
introduction of large language models (LLMs),
predominantly based on transformer models
generating text using the autoregressive (AR)

Query Response Query

paradigm (Vaswani et al. 2017). While these
models excel at sequential prediction, their
inherent left-to-right generation process presents
limitations in efficiency, flexibility, and
bidirectional reasoning (Zhu and Zhao 2023; Yi et
al. 2024; Zou, Kim, and Kang 2023; Nie et al.
2025). Recently, diffusion models (Sohl-Dickstein
et al. 2015), initially achieving state-of-the-art
performance in continuous domains like image and
audio synthesis, have emerged as a promising
alternative to AR models. Diffusion models operate
via iterative denoising, progressively refining a
noisy initial sample towards a novel sample that
mimics the original distribution, offering potential
advantages in parallel generation and bidirectional
information transfer. Applying diffusion principles
to the discrete nature of text, however, requires
significant adaptation, which has led to an
emerging field of active exploration within the
NLP community (Zhu and Zhao 2023; Y. Li et al.
2023).

Research in text diffusion has primarily followed
two trajectories: modifying the diffusion process to
operate directly on discrete token spaces, often
involving masking or absorbing states (He et al.
2022; Nie et al. 2024; Sahoo et al. 2024; Ye et al.
2023; Shi et al. 2024; von Riitte et al. 2025; Austin
et al. 2021; Gong et al. 2024; Schiff et al. 2024;
Cardei et al. 2025; Lou, Meng, and Ermon 2023;
Yuan et al. 2022), or embedding discrete text into
continuous latent spaces where standard Gaussian
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Figure 1: The noising process applied during training. The left illustration shows masked noising, where
noising is applied by masking a random percentage of tokens. The middle shows structured noising, where
tokens are randomly swapped, duplicated or spans of tokens are shifted. On the right combined noising is
shown, where both masking and structured noising is applied, which is the noising strategy used to train all
models in this study. Noising is applied only on the response tokens.
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diffusion can be applied (Zhang et al. 2023;
Lovelace et al. 2022; X. L. Li et al. 2022).

Recent innovations that have improved diffusion
model performance include linguistically informed
masking strategies (Chen et al. 2023), simplified
continuous-time objectives (Shi et al. 2024) and
novel loss functions like score entropy (Lou, Meng,
and Ermon 2023). Furthermore, recognizing the
computational cost of training large models from
scratch, recent studies have often employed
existing pretrained AR models, adapting them for
diffusion-based generation (Gong et al. 2024; Nie
et al. 2024), demonstrating competitive
performance (Nie et al. 2025). Post-training
techniques like reinforcement learning are also
being explored to enhance reasoning in these
models (Zhao et al. 2025).

Despite recent progress, several challenges limit
the adoption of text diffusion models. Training
large models, either from scratch or via full-
parameter tuning, is computationally expensive,
making efficient adaptation strategies attractive.
Inference methods like those in Masked Diffusion
Models (MDMs) often fix tokens once unmasked
(Sahoo et al. 2024; Schiff et al. 2024; Nie et al.
2025, 2024; Shi et al. 2024), limiting the model's
ability to perform holistic refinement or recover
from early errors. Efficiently using the knowledge
encoded within large pretrained AR models for
diffusive generation remains an open goal(Han et
al. 2024).

We introduce LAD (LoRA-Adapted Diffusion), a
method for non-autoregressive generation that
adapts pretrained AR models—Llama 3.2 1B/3B
and Llama 3.1 8B (Grattafiori et al. 2024) using
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bidirectional attention and lightweight Low-Rank
Adaptation (Hu et al. 2021), trained using a novel
structural noising scheme. LoRA enables
parameter-efficient finetuning, preserving
pretrained knowledge while avoiding ‘catastrophic
forgetting’” (Luo et al. 2023; Goodfellow et al.
2013).

Additionally, instead of relying solely on mask
tokens such as typical MDMs, we also apply a
structured corruption process using token swaps,
duplications, and span shifts. These perturbations
mimic common diffusive generation errors,
helping the model learn corrections and enabling
updates even when no mask tokens are present.
Finally, LAD is trained directly on instruction data,
unifying diffusion adaptation and instruction-
tuning without requiring a separate pretraining
phase.

Our main contributions can thus be summarized as
follows:

¢ A method for adapting AR LLMs to diffusion
using LoRA and bidirectional attention.

e A combined structural-masking noising
scheme enabling full-sequence editing.

e Unified diffusion adaptation and instruction
tuning on instruction data.

e Two real-time demo interfaces exposing key
generation parameters like re-noising and
max steps.
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Figure 2: The inference process. The left column illustrates inference with intermediate remasking: tokens are
predicted for each position in every iteration. After each prediction, part of the generated text is remasked. For
inference without remasking, tokens are never remasked. However, the model still refines the output because it has
been trained to correct structurally corrupted text as well.
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Figure 3: Training cross-entropy loss. The lightly colored lines
show raw loss values, while the bold lines represent smoothed
losses using a progressive moving average.

2 Methods

2.1 Models

All LAD models are based on Llama 3.2 1B/3B-
Instruct and Llama 3.1 8B-Instruct (Grattafiori et
al. 2024). To enable non-autoregressive generation,
we replaced causal attention with bidirectional
masks and applied LoRA fine-tuning, freezing all
weights except the output layer. Following (Hu et
al. 2021) we limited LoRA to the query and value
projections, which capture most of its performance
benefits, and set oo =r across models. We trained six
LAD variants: two 1B models (r=128, 512), two
3B models (r=512, 1024), and two 8B models
(r=1024, 2048), to study scaling effects of model
size and LoRA rank. Model naming and details can
be found in Table 1, while detailed
hyperparameters are in Appendix A.

2.2 Data

Because we used pre-trained models, our training
corpus consisted solely of instruction finetuning
datasets. Three general question-answering
datasets were used: tatsu-lab/alpaca (Taori et al.
2023) , vicgalle/alpaca-gpt4 (Peng et al. 2023) and
a filtered subset of crumb/Clean-Instruct-3M
(Crumb 2023). We found that -‘catastrophic
forgetting” (Goodfellow et al. 2013) would occur
when the model was not also trained on more
specialized tasks, such as multiple-choice
questions, coding, and math. Therefore, task-

specific corpora were included. Only the training
partition of each of these datasets was used for
training. For multiple choice question answering,
we used MMLU (Hendrycks et al. 2020), ARC-
Easy (Clark et al. 2018) and HellaSwag (Zellers et
al. 2019). For math, the GSM8K (Cobbe et al.
2021) and ORCA (Mitra et al. 2024) datasets were
used. For coding, the OpenCoder (Huang et al.
2024) dataset was used. All datasets were filtered
so the prompt and output together were less than
896 characters. This resulted in a combined dataset

Table 1: Comparison of the trained models. The model

naming reflects both the size of the base model and LoRA

rank, which determines the number of trainable

parameters.

Model Total Trainable Trainable LoRA Training
(LAD-) params params (%) Rank (hours)
1B-r128 1.2B 13.6M 1.1 128 2.5
1B-r512 1.2B 54.4M 42 512 2.8
3B-r512 3.4B 146.8M 4.4 512 7.5
3B-r1024 3.5B 293.6M 8.4 1024 8.1
8B-r1024 8.5B 436.2M 5.1 1024 16.0
8B-r2048 8.9B 872.4M 9.8 2048 16.5
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of 951k examples, which was subsequently split
into training (98%), validation (1%), and test (1%)
sets. All strings were tokenized, either truncated or
padded with ‘end-of-sequence’ tokens to a length
of 256, and formatted using standard Llama
instruction templates. Splits were saved for
consistent comparison of loss curves.



Fluency metrics for LAD-8B-1024r
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Figure 4: Median perplexity and distinct 2-gram fraction of LAD-8B-
1024 model outputs across varying max iterations. Shaded areas show
interquartile ranges. Dashed lines mark reference answer metrics. Stars

show results without renoising.

2.3 Noising

When applying diffusion models to text, we found
that intermediate outputs often retain useful lexical
content yet suffer from structural issues, such as
repeated words, misordered phrases, and
fragmented sentences, that require correction. To
train a model capable of identifying and correcting
such errors, we introduced similar perturbations
into the training data through structured noising.
However, using only structured noising, there is no
well-defined end-point at which a sample would be
‘fully noised’. For MDMs, this is commonly
represented by a fully masked sequence (Austin et
al. 2021; Lou, Meng, and Ermon 2023; Nie et al.
2025; Ou et al. 2024). Therefore, we also
incorporated the more regularly employed strategy
of incrementally adding ‘mask’ tokens. The
combination enables the model to denoise from an
entirely masked input while iteratively refining
partially coherent sequences, as illustrated in
Figure 1.

Unlike formal MDMs, which use an invertible,
probabilistic corruption process and derive a
variational bound on the data likelihood, our
process, based on local swaps, duplications, and
span shifts, is non-invertible. Therefore, we do not
model the reverse process in a likelihood-based
framework and instead train the model directly
using a standard cross-entropy loss.. More details
about the training and noising schedule are
provided in Appendix B.

2.4 Training

For computational efficiency, all models were
trained using float16 mixed precision. The AdamW
optimizer (Loshchilov and Hutter 2017) was used
with an initial learning rate of 1x107°, a cosine
learning rate schedule with 1000 warmup steps,
and a weight decay of 0.01. The batch size was set
to 8. Gradient clipping was used with a maximum
norm of 0.5. All models were trained for 100k
iterations using a batch size of 8 and a context
window of 256 tokens to adhere to memory
constraints. This means that a total of 205 million
tokens were used to train each model. Training was
performed on a single NVIDIA A100 GPU
(40GB). Full model checkpoints were saved every
10,000 steps to inspect the training process and
estimate convergence. All models were trained to
minimize the cross-entropy loss between the output
logits and the original, uncorrupted token
sequence.

2.5 Inference

At inference time, the models can generate text
using two modes: a scheduled denoising approach
analogous to traditional MDMs, and a self-refining
approach that relies on the model's ability to correct
sequences without explicit renoising. Both
generation strategies are illustrated in Figure 2.

The first method follows a conventional iterative
denoising schedule. Given a prompt, the process
for generating a response sequence, X, begins with
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a fully masked initial state, x(%), of a predefined
length. The model then enters a refinement loop for
a maximum of N steps. At each iteration i, the
model takes the current sequence x¢~1 as input
and produces a new, complete sequence prediction,
@,

Following this prediction, a fraction n(i) of the
tokens in X are randomly re-masked to produce
the input for the next iteration, x(). This fraction is
determined by an exponentially decreasing noise-
schedule, 77(i). The noise schedule is defined as:

e—s-(i/N) —e=S

N =no—7—,=

Here, s is a hyperparameter controlling the
sharpness of the decay, and 1, is the initial noise
level at i = 0. This process continues until the final
iteration N, at which point no tokens are re-
masked.

The second method used the model’s capability to
correct text directly without masking tokens.
Similar to the scheduled approach, generation
begins with an initial prediction (*) from a fully
masked response sequence. However, in all
subsequent iterations (i > 1), the explicit renoising
step is omitted. Instead, the full, unmasked output
from the previous step, (=1 is fed directly back
into the model to produce the next refinement, (.
In this mode, the model both identifies misplaced
or incorrect tokens, and replaces these by a better
fitting alternative.

It should be noted that both methods are not
equivalent to standard MDM generation. Firstly,
any token can be re-masked when the first method
1s used. Moreover, for both methods the model can

amend any token in the sequence, not just those that
were explicitly masked.

Lastly, both methods employ an early stopping
criterion. The generation process is considered to
have converged and is terminated before the preset
maximum number of iterations if the output
sequence remains identical for three consecutive
iterations.

2.6 Evaluation

We evaluated all models on five benchmarks:
ARC-Easy and ARC-Challenge (Clark et al. 2018),
MMLU (Hendrycks et al. 2020), HellaSwag
(Zellers et al. 2019), and GSM8K (Cobbe et al.
2021), using GPT-4o to judge the correctness of
generated answers. For most benchmarks, purely
diffusive generation was used, except for GSM8K,
where semi-autoregressive generation was used.
Inference details can be found in Appendix C. For
each benchmark, 100 samples were tested per
model. To assess text fluency, we computed
perplexity using the larger and more recent Phi-4
14B model (Abdin et al., 2024). Output diversity
was quantified using the distinct 2-gram fraction,
which measures the proportion of unique
consecutive word pairs in the generated text. We
evaluated six diffusion-based models and three
autoregressive base models, all limited to a
maximum output length of 256 tokens.

Finally, we also measured the impact of the
maximum number of iterations on output fluency
for the LAD-8B-1024r model.

2.7 User interface

To demonstrate the test time compute flexibility of
the LAD models, we developed two interfaces for

Table 2: Summary of benchmark scores (% correct) for varying model and LoRA sizes.
Generative perplexity and distinct-2 gram fractions are also included. Results for the three Llama
basemodels, evaluated using our own protocol, are shown for comparison.

Underline = best diffusion model; * = best model

for its size; bold = best overall model

Model LAD Llama
- Size 1B 3B 8B 1B 3B 8B
- LoRA rank 128 512 512 1024 1024 2048 - - -
ARC-Easy 56  *58 91 *93 93 93 57 91 *94
MMLU 29 30 43 *48 54 53 | *48  *48  *65
Benchmarks ARC-Challenge  *42 35 68 74 79  *80 40  *77  *80
HellaSwag 27 26 51 *S8  *80 76 | *38 55 62
GSM8K 5 4 37 43 44 45 | *49 *72  *80
Perplexity 17.1 147 11.0 10.1 9.1 9.5 | *29 *28 *2.7

Intrinsic metrics o
Distinct 2-grams  0.88  0.90

092 094 094 094|092 098 0.94
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interactive experimentation (Figure 5). The simple
interface allows a user to provide a prompt, set the
maximum number of generation iterations, and
toggle between the two inference methods. A pause
function is included to visualize the step-by-step
generation process.

The advanced interface provides more detailed
control over the generation process. It allows
tuning of hyperparameters for the noise schedule
(initial fraction, decay sharpness), sampling
strategy (top-k, top-p), and bias towards end-of-
sequence tokens. This interface also enables
alternative methods such as confidence-guided
noising, which preferentially re-masks low-
confidence tokens, and semi-autoregressive
generation, where text is produced in smaller,
sequential blocks.

3 Results

Exact model sizes and training durations for the
diffusion models are shown in Table 1. The 1B, 3B,
and 8B models were trained in approximately 3, 8,
and 16 hours, respectively.

Figure 3 shows the training loss curves for all
models. Lower final cross-entropy loss values are
observed for models with larger parameter sizes
and higher LoRA ranks.

The fluency metrics for the LAD-8B-1024r model
across different numbers of diffusion iterations are
shown in Figure 4. Perplexity decreases as the
number of iterations increases, while the distinct 2-
gram fraction remains stable and similar to that of
the reference text. The figure also includes results
for the same model run without intermediate re-
noising. In this setting, perplexity remains
comparable to the model with re-noising for the
same number of iterations, while the distinct 2-
gram fraction is slightly lower.

Table 2 presents benchmark scores for all models
across five datasets, along with perplexity and
distinct 2-gram fraction. Results are reported for
diffusion models of varying size and LoRA rank,
as well as for the original Llama foundation
models. Across most benchmarks—ARC-Easy,
MMLU, ARC-Challenge, and HellaSwag—the
diffusion models perform comparable to the base
models, also for similar sized smaller models. On
GSMB8K, however, the foundation models show
clearly higher accuracy. Perplexity values are
higher for all diffusion models compared to the
base models, while the distinct 2-gram fractions are
similar across all models.

Finally, a short quantitative and qualitative study of
diffusive generation without renoising can be seen
in Appendix D and E.

4 Discussion

The results demonstrate that LAD effectively
adapts pretrained autoregressive LLMs into
diffusion-style = models  with  competitive
performance and efficient training.

The LAD models were fine-tuned using only 100k
iterations, which amounted to 200 million training
tokens. For comparison, the base model LLaMA
3.1-8B (Grattafiori et al. 2024) was trained on 15
trillion tokens, and comparable diffusion models
such as LlaDa (Nie et al. 2025), used 2.3 trillion
tokens. This means LAD used just 0.001% and
0.008% of their respective token counts.

Model performance scales with both model size
and LoRA rank, although diminishing returns were
seen for large LoR A ranks. This was apparent from
both the training loss curves (Figure 3) as well as
the benchmark and text fluency results (Table 2).
Base model size plays a dominant role in
performance, validating the choice to use pre-
trained frozen autoregressive backbones with
lightweight bidirectional LoRA adapters.
Increasing the number of diffusion refinement
iterations reduced perplexity (Figure 4), meaning
that increasing ‘test time compute’ increased the
performance of the model. This behavior could
enable the user to make choices on whether speed
or quality is more important, which is a unique
feature that is not available through autoregressive
generation. The diminishing returns observed
beyond a certain number of iterations do suggest
practical limits for speed-quality trade-off. We also
showed that the model can be used without
intermediate re-noising (Figure 6 and Figure 7).
This strategy ensures no intermediate information
generated by the model is lost, as the model has
access to all information generated in the previous
iteration.

Benchmark (Table 2) results further showed that
LAD models achieve comparable accuracy to base
autoregressive models on most datasets despite
their  non-autoregressive  nature, although
performance lags on complex reasoning tasks like
GSMBK.

Finally, the interactive user interfaces (Figure 5)
concretely demonstrate the flexibility enabled by
LAD’s diffusion framework. By exposing control
over generation iterations, noise scheduling,
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sampling strategies, and novel techniques like
confidence-guided noising and semi-
autoregressive generation, users can tailor compute
and output quality trade-offs in real time.

5 Conclusion

LAD provides an efficient and flexible framework
to adapt pretrained autoregressive models for
diffusion-based generation, demonstrating for the
first time that LoRA finetuning alone can enable
this transformation. Our unique structured noising

strategy makes diffusion without denoising
possible, though it does not yet outperform
diffusion with renoising. While LAD matches base
models on some tasks, complex reasoning
challenges like GSMS8K remain areas for
improvement. Overall, LAD lays a foundation for
scalable, controllable diffusion models, with
further evaluation needed on diffusion without
renoising.

User Question

What do you know about the city of Amsterdam?

Enable intermediate noising
Pause between iterations

Increase the maximum number of iterations.

1 GO
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Figure 5: Interfaces of the LAD model used for inference. Top shows the
interface of the simple demo and decide the inference method. Bottom shows the
extended demo which includes a larger number of customization options
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Limitations

Our work shares part of its motivation with (von
Riitte et al. 2025) who enabled sequence-level
correction in diffusion models by augmenting
masking with discrete uniform noise (random
token replacement). They noted this method, while
promising, often degraded benchmark
performance. They attributed this to the increased
task complexity requiring larger models. We
observed similar performance drops using our
models, reinforcing the idea that larger models
might be necessary to achieve similar results as
autoregressive models. However, using the LAD
training paradigm might provide a solution to this
problem.

Firstly, by applying LoRA to large, pre-existing
models, we enable the use of larger networks with
only a fraction of the compute required for training
from scratch. This parameter-efficient approach
training approach could thus offer a viable
approach to further test the scalability hypothesis
posed by von Riitte et al. Second, we see that fewer
iterations are necessary to achieve similar results
when using larger models. This could offset the
increased compute cost of using the larger models.

Comprehensive evaluation of large language
models requires substantial effort, as there are
many dimensions to consider—ranging from
reasoning ability and factual accuracy to
multilingual performance and robustness. While
we have attempted to test key aspects of the LAD
framework, a full exploration of all capabilities was
beyond the scope and length constraints of this
study. Nonetheless, the following limitations
highlight important areas for future research.
Firstly, diffusion models wuniquely enable
bidirectional attention and editing, which we did
not explicitly study here. Measuring bidirectional
reasoning behavior is non-trivial and should be
included when validating these models further, as
it is a desirable feature of diffusion models.

We were also not able to compare perplexity scores
between LAD and other diffusion-based text
models. This was primarily due to mismatched
generation settings: most diffusion models in prior
work are evaluated under unconditional
generation, while LAD was trained for instruction-
following. Direct comparison would thus be
misleading, as conditional perplexity is typically
lower.

Furthermore, evaluation was limited to five
benchmarks and two intrinsic metrics (perplexity
and distinct-2). While these provide a useful first
indication of model quality, future work should
expand to a broader range of tasks, particularly
ones that stress reasoning, factuality, or
multilingual capabilities. This will help to better
judge the strengths and limitations of diffusion-
based text generation.

Likewise, we have so far tested LAD on models up
to 8B parameters. While this is already on par with
the largest open-source diffusion LLMs to date
(Nie et al. 2024, 2025), scaling further should be
possible using LoRA finetuning. However, one of
our goals was to show that AR models could be
adapted for diffusive generation using minimal
resources. Even with our parameter-efficeint
finetuning methods, models larger than 8B will
require access to GPUs with more than 40GB
VRAM or multi-GPU setups.

Finally, while our structural noising strategy was
designed to simulate typical generation errors, it
remains hand-engineered and not learned. This
meant that the training samples do not necessarily
reflect the intermediate samples generated during
inference.

Finally, we provide interactive interfaces for tuning
inference hyperparameters, which enables users to
intuitively find settings that work best for them.
However, a deeper exploration of optimal settings
(e.g. for top-k, sharpness, or re-noising schedule)
was outside the scope of this paper. These choices
may have a strong effect on output quality, and
merit further systematic study.
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A Model hyperparameters

All models were trained using the same
training framework. The foundation models
used were the Llama 3.2 1B- and 3B-Instruct
and Llama 3.1 8B-Instruct models. For
computational efficiency, all training was
performed using 16-bit floating-point
precision. The adamw optimizer was used
with a cosine learning rate scheduler,
starting with a learning rate of 1e-5 after 100
warmup steps. We used a weight decay of
0.01 and a maximum gradient norm of 0.5.
The models were trained for a single epoch
with a per-device batch size of 8. All input
sequences were tokenized and then padded
or truncated to a fixed length of 256 tokens.

To analyze the impact of parameter-efficient
fine-tuning, we evaluated several model
variants by applying Low-Rank Adaptation
(LoRA) to the base model. As summarized
in the main text, we varied the LoRA rank
(r) across values of 128, 512, 1024 and
2048, also depending on the model size. For
all LoRA configurations, the scaling
parameter lora alpha was set equal to the
rank, and LoRA was applied to the query
(g_proj) and value (v_pro7j) matrices of the
attention mechanism. No dropout was used
in the LoRA layers. This approach allowed
us to create a range of models with varying

parameter counts while keeping the core
architecture and training hyperparameters
consistent.

B Training noising schedule

Our approach is motivated by the empirical
observation that when applying diffusion-style
models to text, intermediate outputs often contain
relevant lexical content but exhibit structural
issues, such as repeated words, incorrect word
order, or sentence fragments. To train a model
capable of correcting such errors, we introduce a
hybrid corruption process that combines token
masking with structured, non-local perturbations.
Letx = (x4, x5,...,X;) represent a clean sequence
of tokens from the data distribution pg,, (Xx). Our
corruption process, C(X), is a stochastic function
that produces a corrupted sequence X. This process
is a composition of two distinct noising strategies:
e Token masking ( Cp, ): We employ a
masking operator that replaces a fraction of
tokens with a special [MASK] token. This is
analogous to the forward process in Masked
Diffusion Models (MDMs). Let m € {0,1}*
be a binary mask vector sampled from a
uniform random distribution, where m; = 1
indicates masking. The masking process can be

defined as:
_ ([MASK] ifm; =1
Cmask(x' m)i - {xi ifml- =0

e Structural perturbation (Cy.,.): We apply a
set of non-invertible, structure-altering

Algorithm 1: Masked and Structured Noising for Denoising Training

Require: token sequence x = [xi, ..., Xn|, masking token MASK, noise probability p € [0, 0.5], RNG

1: With 50% probability:
Sample mask fraction f ~ Uniform(0, 1)
Let m « floor(f x n)

For each i € I mask, set x; < MASK
For each positioni € {1, ..., n—1}:

With probability p/4, swap X; and x_{i+1}
8: For each positioni € {1, ..., n}:
9: With probability p/4, do:
10: Sample direction d € {—1, +1}
11: Ifi+d€e[l,n],setx <« x_{itd}
12: With probability p/4:
13: Sample span length s € {1, 2, 3}

2:
3:
4: Randomly select m indices I_mask S {1, ..., n} without replacement
S:
6:
7:

14: Sample shift distance § € {1, ..., 4} and directiond € {—1, +1}

15: Letstart€ {1,..,n—s+ 1}

16: Let span «— x_{start : start +s — 1}

17: Let target «— clamp(start +d x 3, I, n—s+ 1)
18: Overwrite x_{target : target + s — 1} «— span
19: Return x

# Masking

# Swapping

# Duplication

# Span shift




transformations, including local token swaps,
duplications, and random shifts of token spans.
These operators are designed to mimic the
specific structural artifacts we observe during
iterative generation.

The full corruption X = C(x) is a probabilistic
application of these operators. This hybrid
approach enables us to create a distribution of
corrupted samples that trains the model to correct
both content-level (via masking) and structure-
level errors.
Our methodology departs from the usual formal
probabilistic framework of Masked Diffusion
Models (MDMs) as presented by, among others,
(Shi et al. 2024; Ou et al. 2024; Nie et al. 2025;
Sahoo et al. 2024). A typical MDM defines a time-
indexed forward process q(X;|Xo) that gradually
masks tokens, where t € [0,1] represents the noise
level, and each token is independently masked with
probability t. This process allows for the derivation
of a reverse process pg (X;_1|X;) and an objective
function L£(0) that serves as a variational upper
bound on the negative log-likelihood of the data:
—Ex~py. [108P (X)] < L(6)
This provides a principled, likelihood-based
training framework. In contrast, our corruption
process C(X) is not defined as a time-indexed,
reversible Markov chain. The structural
perturbations in Cgy,, are deterministic operations
applied stochastically which are not directly
invertible. Consequently, we cannot define a
corresponding probabilistic forward model or
derive a tractable variational bound on the data
likelihood.
Given the nature of our corruption process, we
frame the training as a direct denoising auto-
encoding task rather than likelihood maximization.
The model parameterized by 6, is trained to
reconstruct the original sequence X from its
corrupted version X. The objective is to minimize
the standard cross-entropy loss between the
model's output distribution and the original clean
sequence:

L
L8 (8) = Exepyps-ce [—Z log pe (xili)]
i=1
While this prevents tractable likelihood evaluation,
it allows the model to learn a practical denoising
function. The masking component serves two
critical roles within this framework. First, a fully
masked input (X generated with a 100% mask rate)

provides a well-defined starting point for
generation from pure noise, analogous to X; in
formal diffusion. Second, partial masking provides
stochasticity during the inference process that
enables more diverse and natural responses, which
complements the convergence to grammatically
sound sentences offered by the structured
corruptions. This combined approach trains a
single model capable of both iterative refinement
of flawed text and conditional generation from a
corrupted prompt.

To simulate intermediate inference steps, we apply
a structured noising function to each sequence of
tokens. For each sequence, a noise probability
P€[0.0,0.5] is sampled uniformly and used to
parameterize three types of corruption. First, with
50% probability, a random fraction (between 0%
and 100%) of the tokens is replaced with a special
MASK token. Second, adjacent tokens are randomly
swapped with probability p/4. Third, tokens are
duplicated either from the previous or next
position, also with probability p/4. Finally, with
probability p/4, a short span of 1 to 3 tokens is
copied and shifted to a new location within the
sequence, moved by 1 to 4 positions in either
direction. These noising operations are applied
during preprocessing via a batched mapping
function and are only performed on sequences of at
least two tokens. The resulting corrupted input
serves as the model input, while the original
sequence is used as the target for supervised
training. An algorithmic notation of the noising
process is shown in Algorithm 1.

Fluency metrics for diffusive generation without renoising
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Figure 6: Perplexity and distinct 2-gram
fraction for multiple LAD models without
intermediate re-noising. Each star represents a
model’s performance at its average convergence
iteration, shown on the x-axis.
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C Evaluation details

We evaluated model performance on five standard
benchmarks: ARC-Easy, MMLU, ARC-Challenge,
HellaSwag, and GSM8K. For each benchmark, we
sampled 100 representative examples per model.
Answers were generated using a custom diffusion-
based decoding process, with settings tailored to
each benchmark.

For ARC-Easy, MMLU, ARC-Challenge, and
HellaSwag, model responses were generated using
16 diffusion steps, with a noise schedule starting at
1.0, a maximum generation length of 256 tokens,
top-k sampling set to 1, and top-p sampling set to
0.1. These settings encourage the model to refine
highly noised inputs into coherent answers over a
fixed number of iterations.

For GSMSK, which involves multi-step
mathematical reasoning, we used a different
configuration: the generation process was allowed
up to 256 diffusion steps, with no initial noise (i.e.,
noise start = 0.0), a maximum generation length of
256 tokens, top-k set to 1, and top-p set to 1.0. In
addition, we used semi-autoregressive generation,
allowing the model to generate and refine 4 tokens
at a time. A noising sharpness value of 1.0 was used

to guide the refinement process. We followed the
semi-autoregressive implementation described by
(Nie et al. 2025).

Answer correctness was evaluated using GPT-4o,
prompted in a zero-shot setting to determine
whether each model’s response correctly answered
the original question. All diffusion-based models
were capped at a maximum of 256 generated
tokens. In addition to the six diffusion-tuned
models, we also evaluated three autoregressive
base models under identical constraints.

To assess fluency, we calculated perplexity using
the Phi-4 14B model (Abdin et al., 2024), a large
autoregressive language model trained for strong
generalization and language modeling quality. We
selected Phi-4 for this purpose under the
assumption that stronger models produce more
reliable and meaningful evaluations of fluency.
Evaluating weaker or mid-sized models with a
more  capable evaluator helps  prevent
underestimation of fluency due to evaluator
limitations.

To measure lexical diversity, we computed the
distinct 2-gram fraction for each model output.
This metric represents the proportion of unique
consecutive word pairs (bigrams) in the generated
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[ Final answer: 90 output tokens in 32 iterations ] [ Final answer: 87 output tokens in 16 iterations ]

Denoising with remasking

Denoising without remasking

Figure 7: Examples of model output with and without renoising after various iterations. Left: Denoising with
renoising after each step. Tokens are renoising with decreasing frequency to allow iterative correction. Right:
Denoising without renoising. Tokens are refined only once, reducing flexibility but speeding up inference. For
both versions, token shading reflects model confidence, ranging from red (low certainty) to green (high certainty).
"MASK" refers to a masking token.
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text, offering a simple yet informative measure of
repetition and variation. A higher distinct-2 score
indicates more varied, less repetitive output.
Perplexity and distinct-2 scores were computed for
each model using 64 diffusion iterations. In
addition, we performed an ablation study on the
LAD-8B-1024r model to examine the effect of
varying the number of diffusion steps. This model
was tested at 8, 16, 32, 64, 128, 256 and 512
iterations. We also evaluated model performance
without re-noising, allowing the model to
iteratively refine its output until convergence or a
hard limit of 256 iterations. All tests were
conducted with a maximum context window of 256
tokens.

D Diffusion without renoising

The results in Figure 6 indicate that increasing
model size leads to lower perplexity when
performing  diffusion  without intermediate
renoising, reflecting improved fluency, particularly
when scaling from 1B to 3B parameters. Further
scaling to 8B not only reduces perplexity but also
decreases the average number of iterations required
for convergence, suggesting faster refinement. A
similar trend is observed with higher LoRA ranks,
which contribute to both improved perplexity and
efficiency. Across all models, distinct 2-gram
fractions remain consistently high between 0.8 and
0.9, indicating relatively stable lexical diversity
regardless of model size or LoRA rank.

E Inference Examples

Figure 6 illustrates a side-by-side comparison of an
answer to a single prompt, denoised using LAD
with and without intermediate renoising. Diffusion
with renoising allows for flexible sequence-level
corrections over time, often leading to more
coherent and confident completions. In contrast,
the right panel shows inference without renoising,
where each token is refined only once. While this
approach is faster, it limits the model's ability to
revisit and revise earlier decisions, resulting in less
polished outputs in some cases.
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