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Abstract 

Autoregressive models dominate text 

generation but suffer from left-to-right 

decoding constraints that limit efficiency 

and bidirectional reasoning. Diffusion-

based models offer a flexible alternative but 

face challenges in adapting to discrete text 

efficiently. We propose LAD (LoRA-

Adapted Diffusion), a framework for non-

autoregressive generation that adapts 

LLaMA models for iterative, bidirectional 

sequence refinement using LoRA adapters. 

LAD employs a structural denoising 

objective combining masking with text 

perturbations (swaps, duplications and span 

shifts), enabling full sequence editing 

during generation. We aim to demonstrate 

that LAD could be a viable and efficient 

alternative to training diffusion models 

from scratch, by providing both validation 

results as well as two interactive demos 

directly available online: 
https://ruurdkuiper.github.io/tini-lad/ 

https://huggingface.co/spaces/Ruurd/tini-lad 

Inference and training code: 
https://github.com/RuurdKuiper/lad-code 

1 Introduction 

In recent years, the field of natural language 

generation (NLG) has been transformed by the 

introduction of large language models (LLMs), 

predominantly based on transformer models 

generating text using the autoregressive (AR) 

paradigm (Vaswani et al. 2017). While these 

models excel at sequential prediction, their 

inherent left-to-right generation process presents 

limitations in efficiency, flexibility, and 

bidirectional reasoning (Zhu and Zhao 2023; Yi et 

al. 2024; Zou, Kim, and Kang 2023; Nie et al. 

2025). Recently, diffusion models (Sohl-Dickstein 

et al. 2015), initially achieving state-of-the-art 

performance in continuous domains like image and 

audio synthesis, have emerged as a promising 

alternative to AR models. Diffusion models operate 

via iterative denoising, progressively refining a 

noisy initial sample towards a novel sample that 

mimics the original distribution, offering potential 

advantages in parallel generation and bidirectional 

information transfer. Applying diffusion principles 

to the discrete nature of text, however, requires 

significant adaptation, which has led to an 

emerging field of active exploration within the 

NLP community (Zhu and Zhao 2023; Y. Li et al. 

2023). 

Research in text diffusion has primarily followed 

two trajectories: modifying the diffusion process to 

operate directly on discrete token spaces, often 

involving masking or absorbing states (He et al. 

2022; Nie et al. 2024; Sahoo et al. 2024; Ye et al. 

2023; Shi et al. 2024; von Rütte et al. 2025; Austin 

et al. 2021; Gong et al. 2024; Schiff et al. 2024; 

Cardei et al. 2025; Lou, Meng, and Ermon 2023; 

Yuan et al. 2022), or embedding discrete text into 

continuous latent spaces where standard Gaussian 
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Figure 1: The noising process applied during training. The left illustration shows masked noising, where 

noising is applied by masking a random percentage of tokens. The middle shows structured noising, where 

tokens are randomly swapped, duplicated or spans of tokens are shifted. On the right combined noising is 

shown, where both masking and structured noising is applied, which is the noising strategy used to train all 

models in this study. Noising is applied only on the response tokens. 
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diffusion can be applied (Zhang et al. 2023; 

Lovelace et al. 2022; X. L. Li et al. 2022).  

Recent innovations that have improved diffusion 

model performance include linguistically informed 

masking strategies (Chen et al. 2023), simplified 

continuous-time objectives (Shi et al. 2024) and 

novel loss functions like score entropy (Lou, Meng, 

and Ermon 2023). Furthermore, recognizing the 

computational cost of training large models from 

scratch, recent studies have often employed 

existing pretrained AR models, adapting them for 

diffusion-based generation (Gong et al. 2024; Nie 

et al. 2024), demonstrating competitive 

performance (Nie et al. 2025). Post-training 

techniques like reinforcement learning are also 

being explored to enhance reasoning in these 

models (Zhao et al. 2025). 

Despite recent progress, several challenges limit 

the adoption of text diffusion models. Training 

large models, either from scratch or via full-

parameter tuning, is computationally expensive, 

making efficient adaptation strategies attractive. 

Inference methods like those in Masked Diffusion 

Models (MDMs) often fix tokens once unmasked 

(Sahoo et al. 2024; Schiff et al. 2024; Nie et al. 

2025, 2024; Shi et al. 2024), limiting the model's 

ability to perform holistic refinement or recover 

from early errors. Efficiently using the knowledge 

encoded within large pretrained AR models for 

diffusive generation remains an open goal(Han et 

al. 2024). 

We introduce LAD (LoRA-Adapted Diffusion), a 

method for non-autoregressive generation that 

adapts pretrained AR models—Llama 3.2 1B/3B 

and Llama 3.1 8B (Grattafiori et al. 2024) using 

bidirectional attention and lightweight Low-Rank 

Adaptation (Hu et al. 2021), trained using a novel 

structural noising scheme. LoRA enables 

parameter-efficient finetuning, preserving 

pretrained knowledge while avoiding ‘catastrophic 

forgetting’ (Luo et al. 2023; Goodfellow et al. 

2013).   

Additionally, instead of relying solely on mask 

tokens such as typical MDMs, we also apply a 

structured corruption process using token swaps, 

duplications, and span shifts. These perturbations 

mimic common diffusive generation errors, 

helping the model learn corrections and enabling 

updates even when no mask tokens are present. 

Finally, LAD is trained directly on instruction data, 

unifying diffusion adaptation and instruction-

tuning without requiring a separate pretraining 

phase. 

Our main contributions can thus be summarized as 

follows: 

• A method for adapting AR LLMs to diffusion 

using LoRA and bidirectional attention. 

• A combined structural-masking noising 

scheme enabling full-sequence editing. 

• Unified diffusion adaptation and instruction 

tuning on instruction data. 

• Two real-time demo interfaces exposing key 

generation parameters like re-noising and 

max steps. 

 

Figure 2: The inference process. The left column illustrates inference with intermediate remasking: tokens are 

predicted for each position in every iteration.  After each prediction, part of the generated text is remasked. For 

inference without remasking, tokens are never remasked. However, the model still refines the output because it has 

been trained to correct structurally corrupted text as well. 
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2 Methods 

2.1 Models 

All LAD models are based on Llama 3.2 1B/3B-

Instruct and Llama 3.1 8B-Instruct (Grattafiori et 

al. 2024). To enable non-autoregressive generation, 

we replaced causal attention with bidirectional 

masks and applied LoRA fine-tuning, freezing all 

weights except the output layer. Following (Hu et 

al. 2021) we limited LoRA to the query and value 

projections, which capture most of its performance 

benefits, and set α = r across models. We trained six 

LAD variants: two 1B models (r=128, 512), two 

3B models (r=512, 1024), and two 8B models 

(r=1024, 2048), to study scaling effects of model 

size and LoRA rank. Model naming and details can 

be found in Table 1, while detailed 

hyperparameters are in Appendix A. 

2.2 Data 

Because we used pre-trained models, our training 

corpus consisted solely of instruction finetuning 

datasets. Three general question-answering 

datasets were used: tatsu-lab/alpaca (Taori et al. 

2023) , vicgalle/alpaca-gpt4 (Peng et al. 2023) and 

a filtered subset of crumb/Clean-Instruct-3M 

(Crumb 2023). We found that ‘catastrophic 

forgetting’ (Goodfellow et al. 2013) would occur 

when the model was not also trained on more 

specialized tasks, such as multiple-choice 

questions, coding, and math. Therefore, task-

specific corpora were included. Only the training 

partition of each of these datasets was used for 

training. For multiple choice question answering, 

we used MMLU (Hendrycks et al. 2020), ARC-

Easy (Clark et al. 2018) and HellaSwag (Zellers et 

al. 2019). For math, the GSM8K (Cobbe et al. 

2021) and ORCA (Mitra et al. 2024) datasets were 

used. For coding, the OpenCoder (Huang et al. 

2024)  dataset was used. All datasets were filtered 

so the prompt and output together were less than 

896 characters. This resulted in a combined dataset 

of 951k examples, which was subsequently split 

into training (98%), validation (1%), and test (1%) 

sets. All strings were tokenized, either truncated or 

padded with ‘end-of-sequence’ tokens to a length 

of 256, and formatted using standard Llama 

instruction templates. Splits were saved for 

consistent comparison of loss curves. 

 

Figure 3: Training cross-entropy loss. The lightly colored lines 

show raw loss values, while the bold lines represent smoothed 

losses using a progressive moving average.  

 

Table 1: Comparison of the trained models. The model 

naming reflects both the size of the base model and LoRA 

rank, which determines the number of trainable 

parameters. 
Model 

(LAD-) 

Total  

params 

Trainable  

params 

Trainable  

(%) 

LoRA  

Rank 

Training 

(hours) 

1B-r128 1.2B 13.6M 1.1 128 2.5 

1B-r512 1.2B 54.4M 4.2 512 2.8 

3B-r512 3.4B 146.8M 4.4 512 7.5 

3B-r1024 3.5B 293.6M 8.4 1024 8.1 

8B-r1024 8.5B 436.2M 5.1 1024 16.0 

8B-r2048 8.9B 872.4M 9.8 2048 16.5 
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2.3 Noising 

When applying diffusion models to text, we found 

that intermediate outputs often retain useful lexical 

content yet suffer from structural issues, such as 

repeated words, misordered phrases, and 

fragmented sentences, that require correction. To 

train a model capable of identifying and correcting 

such errors, we introduced similar perturbations 

into the training data through structured noising. 

However, using only structured noising, there is no 

well-defined end-point at which a sample would be 

‘fully noised’. For MDMs, this is commonly 

represented by a fully masked sequence (Austin et 

al. 2021; Lou, Meng, and Ermon 2023; Nie et al. 

2025; Ou et al. 2024). Therefore, we also 

incorporated the more regularly employed strategy 

of incrementally adding ‘mask’ tokens. The 

combination enables the model to denoise from an 

entirely masked input while iteratively refining 

partially coherent sequences, as illustrated in 

Figure 1.  

Unlike formal MDMs, which use an invertible, 

probabilistic corruption process and derive a 

variational bound on the data likelihood, our 

process, based on local swaps, duplications, and 

span shifts, is non-invertible. Therefore, we do not 

model the reverse process in a likelihood-based 

framework and instead train the model directly 

using a standard cross-entropy loss.. More details 

about the training and noising schedule are 

provided in Appendix B.  

2.4 Training 

For computational efficiency, all models were 

trained using float16 mixed precision. The AdamW 

optimizer (Loshchilov and Hutter 2017) was used 

with an initial learning rate of 1×10−5, a cosine 

learning rate schedule with 1000 warmup steps, 

and a weight decay of 0.01. The batch size was set 

to 8. Gradient clipping was used with a maximum 

norm of 0.5. All models were trained for 100k 

iterations using a batch size of 8 and a context 

window of 256 tokens to adhere to memory 

constraints. This means that a total of 205 million 

tokens were used to train each model. Training was 

performed on a single NVIDIA A100 GPU 

(40GB). Full model checkpoints were saved every 

10,000 steps to inspect the training process and 

estimate convergence. All models were trained to 

minimize the cross-entropy loss between the output 

logits and the original, uncorrupted token 

sequence. 

2.5 Inference 

At inference time, the models can generate text 

using two modes: a scheduled denoising approach 

analogous to traditional MDMs, and a self-refining 

approach that relies on the model's ability to correct 

sequences without explicit renoising. Both 

generation strategies are illustrated in Figure 2. 

The first method follows a conventional iterative 

denoising schedule. Given a prompt, the process 

for generating a response sequence, !, begins with 

 

Figure 4: Median perplexity and distinct 2-gram fraction of LAD-8B-

1024 model outputs across varying max iterations. Shaded areas show 
interquartile ranges. Dashed lines mark reference answer metrics. Stars 

show results without renoising.  
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a fully masked initial state, !!"#, of a predefined 

length. The model then enters a refinement loop for 

a maximum of N steps. At each iteration " , the 

model takes the current sequence !!$%&#  as input 

and produces a new, complete sequence prediction, !#!$#. 
Following this prediction, a fraction $%"&  of the 

tokens in !#!$# are randomly re-masked to produce 

the input for the next iteration, !!$#. This fraction is 

determined by an exponentially decreasing noise-

schedule, $%"&. The noise schedule is defined as: 

$%"& ' $" (%'(!$)*# ) (%'* ) (%'  

Here, +  is a hyperparameter controlling the 

sharpness of the decay, and $" is the initial noise 

level at " ' ,. This process continues until the final 

iteration - , at which point no tokens are re-

masked. 

The second method used the model’s capability to 

correct text directly without masking tokens. 

Similar to the scheduled approach, generation 

begins with an initial prediction !#!&# from a fully 

masked response sequence. However, in all 

subsequent iterations (" . *), the explicit renoising 

step is omitted. Instead, the full, unmasked output 

from the previous step, !#!$%&#, is fed directly back 

into the model to produce the next refinement, !#!$#. 
In this mode, the model both identifies misplaced 

or incorrect tokens, and replaces these by a better 

fitting alternative. 

It should be noted that both methods are not 

equivalent to standard MDM generation. Firstly, 

any token can be re-masked when the first method 

is used. Moreover, for both methods the model can 

amend any token in the sequence, not just those that 

were explicitly masked.  

Lastly, both methods employ an early stopping 

criterion. The generation process is considered to 

have converged and is terminated before the preset 

maximum number of iterations if the output 

sequence remains identical for three consecutive 

iterations.  

2.6 Evaluation 

We evaluated all models on five benchmarks: 

ARC-Easy and ARC-Challenge (Clark et al. 2018), 

MMLU (Hendrycks et al. 2020), HellaSwag 

(Zellers et al. 2019), and GSM8K (Cobbe et al. 

2021), using GPT-4o to judge the correctness of 

generated answers. For most benchmarks, purely 

diffusive generation was used, except for GSM8K, 

where semi-autoregressive generation was used. 

Inference details can be found in Appendix C. For 

each benchmark, 100 samples were tested per 

model. To assess text fluency, we computed 

perplexity using the larger and more recent Phi-4 

14B model (Abdin et al., 2024). Output diversity 

was quantified using the distinct 2-gram fraction, 

which measures the proportion of unique 

consecutive word pairs in the generated text. We 

evaluated six diffusion-based models and three 

autoregressive base models, all limited to a 

maximum output length of 256 tokens.  

Finally, we also measured the impact of the 

maximum number of iterations on output fluency 

for the LAD-8B-1024r model.  

2.7 User interface 

To demonstrate the test time compute flexibility of 

the LAD models, we developed two interfaces for 

Table 2: Summary of benchmark scores (% correct) for varying model and LoRA sizes. 

Generative perplexity and distinct-2 gram fractions are also included. Results for the three Llama 

basemodels, evaluated using our own protocol, are shown for comparison.  

Underline = best diffusion model; * = best model for its size; bold = best overall model 

 Model LAD Llama 

 - Size 1B 3B 8B 1B 3B 8B 

 - LoRA rank 128 512 512 1024 1024 2048 - - - 

Benchmarks 

ARC-Easy 56 *58 91 *93 93 93 57 91 *94 

MMLU 29 30 43 *48 54 53 *48 *48 *65 

ARC-Challenge *42 35 68 74 79 *80 40 *77 *80 

HellaSwag 27 26 51 *58 *80 76 *38 55 62 

GSM8K 5 4 37 43 44 45 *49 *72 *80 

Intrinsic metrics 
Perplexity 17.1 14.7 11.0 10.1 9.1 9.5 *2.9 *2.8 *2.7 

Distinct 2-grams 0.88 0.90 0.92 0.94 0.94 0.94 0.92 0.98 0.94 
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interactive experimentation (Figure 5). The simple 

interface allows a user to provide a prompt, set the 

maximum number of generation iterations, and 

toggle between the two inference methods. A pause 

function is included to visualize the step-by-step 

generation process. 

The advanced interface provides more detailed 

control over the generation process. It allows 

tuning of hyperparameters for the noise schedule 

(initial fraction, decay sharpness), sampling 

strategy (top-k, top-p), and bias towards end-of-

sequence tokens. This interface also enables 

alternative methods such as confidence-guided 

noising, which preferentially re-masks low-

confidence tokens, and semi-autoregressive 

generation, where text is produced in smaller, 

sequential blocks. 

3 Results 

Exact model sizes and training durations for the 

diffusion models are shown in Table 1. The 1B, 3B, 

and 8B models were trained in approximately 3, 8, 

and 16 hours, respectively. 

Figure 3 shows the training loss curves for all 

models. Lower final cross-entropy loss values are 

observed for models with larger parameter sizes 

and higher LoRA ranks.  

The fluency metrics for the LAD-8B-1024r model 

across different numbers of diffusion iterations are 

shown in Figure 4. Perplexity decreases as the 

number of iterations increases, while the distinct 2-

gram fraction remains stable and similar to that of 

the reference text. The figure also includes results 

for the same model run without intermediate re-

noising. In this setting, perplexity remains 

comparable to the model with re-noising for the 

same number of iterations, while the distinct 2-

gram fraction is slightly lower. 

Table 2 presents benchmark scores for all models 

across five datasets, along with perplexity and 

distinct 2-gram fraction. Results are reported for 

diffusion models of varying size and LoRA rank, 

as well as for the original Llama foundation 

models. Across most benchmarks—ARC-Easy, 

MMLU, ARC-Challenge, and HellaSwag—the 

diffusion models perform comparable to the base 

models, also for similar sized smaller models. On 

GSM8K, however, the foundation models show 

clearly higher accuracy. Perplexity values are 

higher for all diffusion models compared to the 

base models, while the distinct 2-gram fractions are 

similar across all models. 

Finally, a short quantitative and qualitative study of 

diffusive generation without renoising can be seen 

in Appendix D and E. 

4 Discussion 

The results demonstrate that LAD effectively 

adapts pretrained autoregressive LLMs into 

diffusion-style models with competitive 

performance and efficient training.  

The LAD models were fine-tuned using only 100k 

iterations, which amounted to  200 million training 

tokens. For comparison, the base model LLaMA 

3.1-8B (Grattafiori et al. 2024) was trained on 15 

trillion tokens, and comparable diffusion models 

such as LlaDa (Nie et al. 2025), used 2.3 trillion 

tokens. This means LAD used just 0.001% and 

0.008% of their respective token counts. 

Model performance scales with both model size 

and LoRA rank, although diminishing returns were 

seen for large LoRA ranks. This was apparent from 

both the training loss curves (Figure 3) as well as 

the benchmark and text fluency results (Table 2). 

Base model size plays a dominant role in 

performance, validating the choice to use pre-

trained frozen autoregressive backbones with 

lightweight bidirectional LoRA adapters. 

Increasing the number of diffusion refinement 

iterations reduced perplexity (Figure 4), meaning 

that increasing ‘test time compute’ increased the 

performance of the model. This behavior could 

enable the user to make choices on whether speed 

or quality is more important, which is a unique 

feature that is not available through autoregressive 

generation. The diminishing returns observed 

beyond a certain number of iterations do suggest 

practical limits for speed-quality trade-off. We also 

showed that the model can be used without 

intermediate re-noising (Figure 6 and Figure 7). 

This strategy ensures no intermediate information 

generated by the model is lost, as the model has 

access to all information generated in the previous 

iteration. 

Benchmark (Table 2) results further showed that 

LAD models achieve comparable accuracy to base 

autoregressive models on most datasets despite 

their non-autoregressive nature, although 

performance lags on complex reasoning tasks like 

GSM8K. 

Finally, the interactive user interfaces (Figure 5) 

concretely demonstrate the flexibility enabled by 

LAD’s diffusion framework. By exposing control 

over generation iterations, noise scheduling, 
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sampling strategies, and novel techniques like 

confidence-guided noising and semi-

autoregressive generation, users can tailor compute 

and output quality trade-offs in real time.  

5 Conclusion 

LAD provides an efficient and flexible framework 

to adapt pretrained autoregressive models for 

diffusion-based generation, demonstrating for the 

first time that LoRA finetuning alone can enable 

this transformation. Our unique structured noising 

strategy makes diffusion without denoising 

possible, though it does not yet outperform 

diffusion with renoising. While LAD matches base 

models on some tasks, complex reasoning 

challenges like GSM8K remain areas for 

improvement. Overall, LAD lays a foundation for 

scalable, controllable diffusion models, with 

further evaluation needed on diffusion without 

renoising. 

 

Figure 5: Interfaces of the LAD model used for inference. Top shows the 

interface of the simple demo and decide the inference method. Bottom shows the 

extended demo which includes a larger number of customization options  
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Limitations 

Our work shares part of its motivation with (von 

Rütte et al. 2025) who enabled sequence-level 

correction in diffusion models by augmenting 

masking with discrete uniform noise (random 

token replacement). They noted this method, while 

promising, often degraded benchmark 

performance. They attributed this to the increased 

task complexity requiring larger models. We 

observed similar performance drops using our 

models, reinforcing the idea that larger models 

might be necessary to achieve similar results as 

autoregressive models. However, using the LAD 

training paradigm might provide a solution to this 

problem.   

Firstly, by applying LoRA to large, pre-existing 

models, we enable the use of larger networks with 

only a fraction of the compute required for training 

from scratch. This parameter-efficient approach 

training approach could thus offer a viable 

approach to further test the scalability hypothesis 

posed by von Rütte et al. Second, we see that fewer 

iterations are necessary to achieve similar results 

when using larger models. This could offset the 

increased compute cost of using the larger models. 

 

Comprehensive evaluation of large language 

models requires substantial effort, as there are 

many dimensions to consider—ranging from 

reasoning ability and factual accuracy to 

multilingual performance and robustness. While 

we have attempted to test key aspects of the LAD 

framework, a full exploration of all capabilities was 

beyond the scope and length constraints of this 

study. Nonetheless, the following limitations 

highlight important areas for future research. 

Firstly, diffusion models uniquely enable 

bidirectional attention and editing, which we did 

not explicitly study here. Measuring bidirectional 

reasoning behavior is non-trivial and should be 

included when validating these models further, as 

it is a desirable feature of diffusion models.  

We were also not able to compare perplexity scores 

between LAD and other diffusion-based text 

models. This was primarily due to mismatched 

generation settings: most diffusion models in prior 

work are evaluated under unconditional 

generation, while LAD was trained for instruction-

following. Direct comparison would thus be 

misleading, as conditional perplexity is typically 

lower. 

Furthermore, evaluation was limited to five 

benchmarks and two intrinsic metrics (perplexity 

and distinct-2). While these provide a useful first 

indication of model quality, future work should 

expand to a broader range of tasks, particularly 

ones that stress reasoning, factuality, or 

multilingual capabilities. This will help to better 

judge the strengths and limitations of diffusion-

based text generation.  

Likewise, we have so far tested LAD on models up 

to 8B parameters. While this is already on par with 

the largest open-source diffusion LLMs to date 

(Nie et al. 2024, 2025), scaling further should be 

possible using LoRA finetuning. However, one of 

our goals was to show that AR models could be 

adapted for diffusive generation using minimal 

resources. Even with our parameter-efficeint 

finetuning methods, models larger than 8B will 

require access to GPUs with more than 40GB 

VRAM or multi-GPU setups. 

Finally, while our structural noising strategy was 

designed to simulate typical generation errors, it 

remains hand-engineered and not learned. This 

meant that the training samples do not necessarily 

reflect the intermediate samples generated during 

inference.  

Finally, we provide interactive interfaces for tuning 

inference hyperparameters, which enables users to 

intuitively find settings that work best for them. 

However, a deeper exploration of optimal settings 

(e.g. for top-k, sharpness, or re-noising schedule) 

was outside the scope of this paper. These choices 

may have a strong effect on output quality, and 

merit further systematic study. 
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A Model hyperparameters 

All models were trained using the same 

training framework. The foundation models 

used were the Llama 3.2 1B- and 3B-Instruct 

and Llama 3.1 8B-Instruct models. For 

computational efficiency, all training was 

performed using 16-bit floating-point 

precision. The AdamW optimizer was used 

with a cosine learning rate scheduler, 

starting with a learning rate of 1e-5 after 100 

warmup steps. We used a weight decay of 

0.01 and a maximum gradient norm of 0.5. 

The models were trained for a single epoch 

with a per-device batch size of 8. All input 

sequences were tokenized and then padded 

or truncated to a fixed length of 256 tokens. 

To analyze the impact of parameter-efficient 

fine-tuning, we evaluated several model 

variants by applying Low-Rank Adaptation 

(LoRA) to the base model. As summarized 

in the main text, we varied the LoRA rank 

(r) across values of 128, 512, 1024 and 

2048, also depending on the model size. For 

all LoRA configurations, the scaling 

parameter lora_alpha was set equal to the 

rank, and LoRA was applied to the query 

(q_proj) and value (v_proj) matrices of the 

attention mechanism. No dropout was used 

in the LoRA layers. This approach allowed 

us to create a range of models with varying 

parameter counts while keeping the core 

architecture and training hyperparameters 

consistent. 

B Training noising schedule 

Our approach is motivated by the empirical 

observation that when applying diffusion-style 

models to text, intermediate outputs often contain 

relevant lexical content but exhibit structural 

issues, such as repeated words, incorrect word 

order, or sentence fragments. To train a model 

capable of correcting such errors, we introduce a 

hybrid corruption process that combines token 

masking with structured, non-local perturbations.  

Let ! ' %/&0 /+0 1 1 1 0 /,& represent a clean sequence 

of tokens from the data distribution 2data%!&. Our 

corruption process, 3%!&, is a stochastic function 

that produces a corrupted sequence !4. This process 

is a composition of two distinct noising strategies: 

• Token masking ( 3mask ): We employ a 

masking operator that replaces a fraction of 

tokens with a special [MASK] token. This is 

analogous to the forward process in Masked 

Diffusion Models (MDMs). Let 5 6 7,0*8, 

be a binary mask vector sampled from a 

uniform random distribution, where 9$ ' * 

indicates masking. The masking process can be 

defined as:  

3mask%!05&$ ' :[MASK] if 9$ ' */$ if 9$ ' , 

• Structural perturbation (3struct): We apply a 

set of non-invertible, structure-altering 

Algorithm 1: Masked and Structured Noising for Denoising Training 

Require: token sequence x = [x₁, ..., xₙ], masking token MASK, noise probability p ∈ [0, 0.5], RNG 
 
1: With 50% probability:                                                                                    # Masking 

2:  Sample mask fraction f ∼ Uniform(0, 1) 
3:  Let m ← floor(f × n) 

4:  Randomly select m indices I_mask ⊆ {1, ..., n} without replacement 

5:  For each i ∈ I_mask, set xᵢ ← MASK 

6: For each position i ∈ {1, ..., n−1}:                                                         # Swapping 
7:  With probability p/4, swap x̂ᵢ and x̂_{i+1} 

8: For each position i ∈ {1, ..., n}:                                                             # Duplication 
9:  With probability p/4, do: 

10:    Sample direction d ∈ {−1, +1} 

11:    If i + d ∈ [1, n], set x̂ᵢ ← x̂_{i+d} 
12: With probability p/4:                                                                                     # Span shift 

13:  Sample span length s ∈ {1, 2, 3} 

14:  Sample shift distance δ ∈ {1, ..., 4} and direction d ∈ {−1, +1} 

15:  Let start ∈ {1, ..., n − s + 1} 
16:  Let span ← x_{start : start + s − 1} 
17:  Let target ← clamp(start + d × δ, 1, n − s + 1) 
18:  Overwrite x_{target : target + s − 1} ← span 

19: Return x 
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transformations, including local token swaps, 

duplications, and random shifts of token spans. 

These operators are designed to mimic the 

specific structural artifacts we observe during 

iterative generation. 

 

The full corruption !4 ' 3%!&  is a probabilistic 

application of these operators. This hybrid 

approach enables us to create a distribution of 

corrupted samples that trains the model to correct 

both content-level (via masking) and structure-

level errors. 

Our methodology departs from the usual formal 

probabilistic framework of Masked Diffusion 

Models (MDMs) as presented by, among others, 

(Shi et al. 2024; Ou et al. 2024; Nie et al. 2025; 

Sahoo et al. 2024). A typical MDM defines a time-

indexed forward process ;%!-<!"& that gradually 

masks tokens, where = 6 >,0*? represents the noise 

level, and each token is independently masked with 

probability =. This process allows for the derivation 

of a reverse process 2.%!-%&<!-& and an objective 

function @%A&  that serves as a variational upper 

bound on the negative log-likelihood of the data: )B/01data
>CDE2.%!&? F @%A& 

This provides a principled, likelihood-based 

training framework. In contrast, our corruption 

process G%!&  is not defined as a time-indexed, 

reversible Markov chain. The structural 

perturbations in 3struct are deterministic operations 

applied stochastically which are not directly 

invertible. Consequently, we cannot define a 

corresponding probabilistic forward model or 

derive a tractable variational bound on the data 

likelihood. 

Given the nature of our corruption process, we 

frame the training as a direct denoising auto-

encoding task rather than likelihood maximization. 

The model parameterized by A , is trained to 

reconstruct the original sequence !  from its 

corrupted version !4. The objective is to minimize 

the standard cross-entropy loss between the 

model's output distribution and the original clean 

sequence: 

@CE%A& ' B/01data2/304!/#
H)ICDE,

$5&

2.%/$<!4&J 
While this prevents tractable likelihood evaluation, 

it allows the model to learn a practical denoising 

function. The masking component serves two 

critical roles within this framework. First, a fully 

masked input (!4 generated with a 100% mask rate) 

provides a well-defined starting point for 

generation from pure noise, analogous to !&  in 

formal diffusion. Second, partial masking provides 

stochasticity during the inference process that 

enables more diverse and natural responses, which 

complements the convergence to grammatically 

sound sentences offered by the structured 

corruptions. This combined approach trains a 

single model capable of both iterative refinement 

of flawed text and conditional generation from a 

corrupted prompt.  

To simulate intermediate inference steps, we apply 

a structured noising function to each sequence of 

tokens. For each sequence, a noise probability 

p6[0.0,0.5] is sampled uniformly and used to 

parameterize three types of corruption. First, with 

50% probability, a random fraction (between 0% 

and 100%) of the tokens is replaced with a special 

MASK token. Second, adjacent tokens are randomly 

swapped with probability p/4. Third, tokens are 

duplicated either from the previous or next 

position, also with probability p/4. Finally, with 

probability p/4, a short span of 1 to 3 tokens is 

copied and shifted to a new location within the 

sequence, moved by 1 to 4 positions in either 

direction. These noising operations are applied 

during preprocessing via a batched mapping 

function and are only performed on sequences of at 

least two tokens. The resulting corrupted input 

serves as the model input, while the original 

sequence is used as the target for supervised 

training. An algorithmic notation of the noising 

process is shown in Algorithm 1. 

 

Figure 6: Perplexity and distinct 2-gram 

fraction for multiple LAD models without 

intermediate re-noising. Each star represents a 

model’s performance at its average convergence 

iteration, shown on the x-axis. 
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C Evaluation details 

We evaluated model performance on five standard 

benchmarks: ARC-Easy, MMLU, ARC-Challenge, 

HellaSwag, and GSM8K. For each benchmark, we 

sampled 100 representative examples per model. 

Answers were generated using a custom diffusion-

based decoding process, with settings tailored to 

each benchmark. 

For ARC-Easy, MMLU, ARC-Challenge, and 

HellaSwag, model responses were generated using 

16 diffusion steps, with a noise schedule starting at 

1.0, a maximum generation length of 256 tokens, 

top-k sampling set to 1, and top-p sampling set to 

0.1. These settings encourage the model to refine 

highly noised inputs into coherent answers over a 

fixed number of iterations. 

For GSM8K, which involves multi-step 

mathematical reasoning, we used a different 

configuration: the generation process was allowed 

up to 256 diffusion steps, with no initial noise (i.e., 

noise start = 0.0), a maximum generation length of 

256 tokens, top-k set to 1, and top-p set to 1.0. In 

addition, we used semi-autoregressive generation, 

allowing the model to generate and refine 4 tokens 

at a time. A noising sharpness value of 1.0 was used 

to guide the refinement process. We followed the 

semi-autoregressive implementation described by 

(Nie et al. 2025).  

Answer correctness was evaluated using GPT-4o, 

prompted in a zero-shot setting to determine 

whether each model’s response correctly answered 

the original question. All diffusion-based models 

were capped at a maximum of 256 generated 

tokens. In addition to the six diffusion-tuned 

models, we also evaluated three autoregressive 

base models under identical constraints. 

To assess fluency, we calculated perplexity using 

the Phi-4 14B model (Abdin et al., 2024), a large 

autoregressive language model trained for strong 

generalization and language modeling quality. We 

selected Phi-4 for this purpose under the 

assumption that stronger models produce more 

reliable and meaningful evaluations of fluency. 

Evaluating weaker or mid-sized models with a 

more capable evaluator helps prevent 

underestimation of fluency due to evaluator 

limitations. 

To measure lexical diversity, we computed the 

distinct 2-gram fraction for each model output. 

This metric represents the proportion of unique 

consecutive word pairs (bigrams) in the generated 

 

Figure 7: Examples of model output with and without renoising after various iterations. Left: Denoising with 

renoising after each step. Tokens are renoising with decreasing frequency to allow iterative correction. Right: 

Denoising without renoising. Tokens are refined only once, reducing flexibility but speeding up inference. For 

both versions, token shading reflects model confidence, ranging from red (low certainty) to green (high certainty). 

"MASK" refers to a masking token. 
 

After masking Model output

MASKMASKMASKMASKMASKMASKMASKMASKMAS

KMASKMASKMASKMASKMASKMASKMASKMASKMA

SKMASKMASKMASKMASKMASKMASKMASKMASKM

ASKMASKMASKMASKMASKMASKMASKMASKMASK

Amsterdam is largest city city of, in the the in of

famous.., the most of. famous isth known park, the,
History the a9 famous., old

Iteration 0

Amsterdam is aMASK in theMASKMASKMASKMASKMASK

history attractions, cultureMASKMASKMASK It

ItMASKMASKMASK,, parkMASKMASK architecture
architecture and allMASKMASKMASKMASK ItMASK the as

for worldMASK It beautiful city, withMASK house Anne
FrankMASKMASK andMASK of asMASKMASK..MASK

Amsterdam is a historic in the Netherlands of known for
history history,, culture, and architecture. It is its,, park,,

vibrant architecture, and all in. activities It's known the world
world for its's city city, with the house of Anna Frank
museum many its of as a as and.

Iteration 4

Amsterdam is a city in the Netherlands, known for its

architecture, history, and cultural heritage. It features

stunning architecture, beautiful water canals, andMASK
delicious cuisine. It is also one of the popular cities for its

nightlife scene, with the famous Red Light District Quarter,

and its famous LGBTQ+ liberation movement.

Amsterdam is a city in the Netherlands, known for its

architecture, history, and cultural heritage. It features

stunning architecture, beautiful water canals, and hearty
delicious cuisine. It is also one of the popular cities for its

nightlife scene, with the famous Red Light District Quarter,

and its famous LGBTQ+ liberation movement.

Iteration 32

Amsterdam isMASK city in the Netherlands, knownMASK its

bikesMASK beautiful cultureMASK and architecture. It

hasMASKals,MASKs and andMASK, and rich cuisine.MASK
is considered one of world world forMASK its cityscape,

including the Van of FrankMASKMASK and and
attractionsMASK artMASK..

Amsterdam is a city in the Netherlands, known for its

beautiful, beautiful culture, and architecture. It has canals,

canss and museums, and rich cuisine. Amsterdam is
considered one of the world cities for its cityscape, including

the Van Van Franklin Museum and numerous attractions
and in art.

Iteration 8

Amsterdam is aMASK in the Netherlands, known for its art,

literature, culture and culture. ItMASK stunning architecture,

canMASKMASK museums, and a diverse cuisine.
Amsterdam isMASK one of theMASK cities for its

nightlifeMASK, including the famous area areaMASKij, and

famous for itsMASK history.

Amsterdam is a city in the Netherlands, known for its art,

literature, and and culture. It has stunning architecture,

canals can museums, and a diverse cuisine. Amsterdam is
also one of the popular cities for its nightlife scene, including

the famous Red area Redij, and famous for its liberation

history.

Iteration 16

Final answer: 90 output tokens in 32 iterations

Amsterdam is largest city in Netherlands Netherlands

country in capital,s the to, features of famous is. capital
known stunning R is7 the, the architecture iconic the in

famous countryt is

Amsterdamis the largest city in the NetherlandsNetherlandsa

country amongNetherlandsss or capital capital and most most
famous the the Rijple Street and its architecturearchitecture.
The TheAmsterdamcanal is Amsterdamis and nightlifeand as

as its the art art. Additionally, remains a home home of of
museumsmuseumsandmanyof beautifulhousesof historical.

Amsterdam is the largest city in the Netherlands, a country

known among the popular capitals. It is also famous for the

Rijks Square Square and its historic architecture. The city is
also famous for its shopping, nightlife well as the art scene.

Additionally, it remains a home for many artists, and is home
of significant significant historical significance.

Amsterdam is the largest city in the Netherlands, a country

known among the popular capitals. It is also famous for the

Rijksm Museum and its historic architecture. The city is also
famous for its shopping, as well as the art scene.

Additionally, it remains a home for many artists, and is home

to sites of historical significance.

Final answer: 87 output tokens in 16 iterations

Denoising with remasking Denoising without remasking

Model output
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text, offering a simple yet informative measure of 

repetition and variation. A higher distinct-2 score 

indicates more varied, less repetitive output. 

Perplexity and distinct-2 scores were computed for 

each model using 64 diffusion iterations. In 

addition, we performed an ablation study on the 

LAD-8B-1024r model to examine the effect of 

varying the number of diffusion steps. This model 

was tested at 8, 16, 32, 64, 128, 256 and 512 

iterations. We also evaluated model performance 

without re-noising, allowing the model to 

iteratively refine its output until convergence or a 

hard limit of 256 iterations. All tests were 

conducted with a maximum context window of 256 

tokens. 

D Diffusion without renoising 

The results in Figure 6 indicate that increasing 

model size leads to lower perplexity when 

performing diffusion without intermediate 

renoising, reflecting improved fluency, particularly 

when scaling from 1B to 3B parameters. Further 

scaling to 8B not only reduces perplexity but also 

decreases the average number of iterations required 

for convergence, suggesting faster refinement. A 

similar trend is observed with higher LoRA ranks, 

which contribute to both improved perplexity and 

efficiency. Across all models, distinct 2-gram 

fractions remain consistently high between 0.8 and 

0.9, indicating relatively stable lexical diversity 

regardless of model size or LoRA rank. 

E Inference Examples 

Figure 6 illustrates a side-by-side comparison of an 

answer to a single prompt, denoised using LAD 

with and without intermediate renoising. Diffusion 

with renoising allows for flexible sequence-level 

corrections over time, often leading to more 

coherent and confident completions. In contrast, 

the right panel shows inference without renoising, 

where each token is refined only once. While this 

approach is faster, it limits the model's ability to 

revisit and revise earlier decisions, resulting in less 

polished outputs in some cases. 
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