o SlackAgents: Scalable Collaboration of AI Agents in Workspaces

Weiran Yao", Zhiwei Liu®, Zuxin Liu, Juntao Tan, Jianguo Zhang, Frank Wang,
Sukhandeep Nahal, Huan Wang, Shelby Heinecke, Silvio Savarese and Caiming Xiong

Salesforce Al Research
*Equal contributions

Abstract

The integration of Al agents into organiza-
tional workflows remains a significant chal-
lenge, limiting their impact on daily business
operations despite the rapid progress in agent
libraries and large language models. We in-
troduce SlackAgents, a scalable multi-agent
framework that natively embeds Al agents into
Slack, the leading enterprise collaboration plat-
form. SlackAgents enables seamless agent-to-
agent and agent-to-human collaboration, lever-
aging Slack’s flexible messaging infrastructure
to orchestrate complex workflows and auto-
mate real-world tasks. Our architecture sup-
ports modular agent types, distributed orches-
tration, and intuitive user interfaces, allowing
organizations to rapidly deploy, customize, and
scale agent teams across diverse use cases. We
present several typical real-world deployment
cases to demonstrate the effectiveness of Slack-
Agents in bridging the last-mile gap for enter-
prise Al adoption, unlocking new opportunities
for intelligent automation in the workplace.

1 Introduction

Al agents (Chase, 2022; Liu, 2022; Wu et al., 2024;
Liu et al., 2024) are autonomous software entities
designed to perform specific tasks, make decisions,
and interact with both humans and other agents.
Leveraging advancements in large language mod-
els (LLMs), these agents can now learn, plan and
reason, enabling them not only to understand and
generate human-like conversations but also to exe-
cute actions on our behalf across both real-world
and digital environments.

Businesses increasingly adopt Al agents to au-
tomate operations, enhance efficiency, and sup-
port decision-making. Existing open-source frame-
works like LangChain (Chase, 2022) and Llamaln-
dex (Liu, 2022) offer flexible and integrative ca-
pabilities but often fail to transition beyond pro-
totypes due to difficulties integrating them into

daily workflows—commonly known as the last-
mile problem (Wikipedia, 2024). As a result, there
is a clear demand for frameworks specifically de-
signed for immediate and practical deployment
within workplace settings.

Additionally, managing and coordinating large-
scale, multi-agent systems remains challenging, as
illustrated by Salesforce’s ambitious goal to deploy
one billion agents by 2025 (Salesforce, 2024). Cur-
rent multi-agent platforms, including AutoGen (Wu
et al., 2024), CAMEL (Li et al., 2023), and Cre-
wAI (Moura, 2024), lack sufficient capabilities for
robust communication and collaboration at scale.

To address these limitations, this paper intro-
duces SLACKAGENTS , a scalable multi-agent li-
brary integrated directly with Slack, the leading
corporate collaboration platform (Slack, 2024). By
leveraging Slack’s extensive messaging infrastruc-
ture, our framework facilitates integrated and scal-
able collaboration, allowing agents to communi-
cate and orchestrate tasks efficiently through Slack
channels and threads. It also enables seamless
workspace automation, empowering agents to di-
rectly utilize Slack’s native features—including
canvases, bookmarks, workflows, and notifica-
tions—to automate and streamline everyday work
tasks. Furthermore, our framework supports imme-
diate deployment and continuous improvement, as
agents integrate natively into existing workflows,
enabling rapid deployment, iterative enhancements
through routine usage, and straightforward distri-
bution across multiple Slack workspaces.

Key features of SLACKAGENTS include:

* Modular and Scalable Architecture: Designed
for flexibility, each agent operates independently
as a Slack application, allowing easy scaling and
customization.

« Efficient Distributed Orchestration: Utilizing
Slack’s messaging system, agents dynamically
manage communications, enabling seamless col-

969

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 969-982
November 4-9, 2025 ©2025 Association for Computational Linguistics

Collaborative Specialist Team Proactive Support Specialist Personal Assistant

Collaboration
Manager Agent
¥

Human s @ L
Employees y !
#brain-storming 0 - -
[]
“ Rl . . LooSh
| Direct . g L}
#project-slack-agents-engineering Message
e £ qt ﬁ
!L‘ a Project Management 8
Psychologist Economist Public Health Agent 1
= y
Agent Agent Agent K <» L a

Domain Knowledge / Actions

Slack Channel Knowledge / Actions

Personalized Knowledge / Actions

Enterprise Knowledge Intelligence: best practices; policies; etc

Figure 1: Integrating Al agents with Slack’s features and visual components unlocks a variety of applications
for workflow automation involving multiple agents: (1) Collaborative specialist team for enhancing business
workflows and foster decision making from diverse perspectives; (2) Proactive support specialist with in-depth
knowledge of specific Slack channels (e.g., a scrum team channel) to assist team members proactively, and (3)
Personal assistant that is deeply familiar with individual users, offering tailored support and solving private tasks

efficiently.

laboration and knowledge sharing across agents.

* User-friendly Interfaces: SlackAgent offers in-
tuitive interactions through Slack chatting inter-
faces, interactive dashboards for monitoring and
configuring agents, and natural language com-
mands for creating and managing agents without
technical expertise.

* Flexible Agent Types: Provides customizable
agent types—Assistant, Workflow, and Proactive
agents—which developers can combine to build
tailored solutions from individual productivity
assistants to complex multi-agent teams.

2 SLACKAGENTS Architecture

SLACKAGENTS is designed to enable seamless
multi-agent collaboration and intelligent automa-
tion within Slack workspaces. The architecture
introduces a unified agent framework, supporting
diverse interaction patterns through modular agent
types and extensible tool integration. This section
details the fundamental agent classes, communica-
tion protocols, and interface components that un-
derpin the system, illustrating how these elements
collectively facilitate robust, scalable teamwork in
enterprise messaging environments.

2.1 Core Agent Types

The framework defines three primary agent types:
the Assistant Agent, which performs tasks in multi-
turn conversations using tools such as functions,
APIs, external libraries, and code interpreters; the

Workflow Agent, which manages multi-stage work-
flows by maintaining state and guiding sequen-
tial goal completion; and the Proactive Agent,
which maintains persistent awareness of context
and autonomously offers support when needed.
Each agent is deployed as a standalone Slack app,
equipped with listeners and message-sending ca-
pabilities, enabling both user-agent and inter-agent
collaboration through Slack channels and threads
(see Figure 2). The detailed implementation of
agents is in Appendix B.4.

2.2 Scalable Multi-Agent Collaboration

Let us assume that for now we have already
built multiple individual Al agents with SLACK-
AGENTS framework, agent a, b, and c, whatever
an Assistant or Workflow agent. In this section,
we walk you through how users can further enable
multi-agent collaboration between them.

SLACKAGENTS defines the collaboration of
agent a,b and c when initializing each individual
agent as follows:

from slackagents import SlackAssistant

agent_a = SlackAssistant(

name=name_agent_a,

desc=desc_agent_a,

system_prompt=...,

tools=[...1],

slack_bot_token=. ..

colleagues={
id_agent_b: {"name”: name_agent_b, "description”:
id_agent_c: {"name”: name_agent_c, "description”:

} # define the multi-agent collaboration

desc_agent_b},
desc_agent_c},

where the colleagues key argument defines the pos-
sible collaboration to its collaborative agents a and

970

F@ .

X & X v <R
3@ 28 2 v
Human (% @:[LLM+Tool LLM+Tool |:@ S % 9
- B 2 R Q x 2
(V)<)< 0Q
@ e == >
5.
R ;
Agenta ‘g,”) e LLM +Tool § g
. a a
o 5 s
Y
® 1 .
. 0.
- app.run() agent-agent collaboration z 1
o o
Agentb LM+Tool |© @ 3
s &2
[@
® - | >
A 2rr-run() proactive

Agentc
(Proactive)

Figure 2: Illustration of how SLACKAGENTS can program a multi-agent conversation in a scalable, decentralized
way. The traces of the operation of a multi-agent team, step by step. When human sends the first message directly to
agent a, agent a decides to ask the help from agent b and respond back to human, which shows the agent-agent
collaboration via SLACKAGENTS . When human posts a message under the thread without mentioning a specific
agent, a proactive agent 3 listens this message and chimes in to respond back, which illustrates the proactive mode.
Proactive agent 3 may also respond towards the message sending from another agent.

b. It is worth noting that we use the Slack User ID
as the id of each agent, such as id_agent_b.

After we define all agents, SLACKAGENTS runs
each agent as a individual Slack App'. Built upon
the scalable message handling backend of Slack,
SLACKAGENTS provides three types of Slack mes-
sage handlers, which are Direct Message Handler,
Channel Message Handler and Proactive Message
Handler to process different chatting modes.

Direct Message Handler supports sending direct
message to an agent through Slack app direct mes-
sage interface. One could initialize a agent from
SLACKAGENTS and register this agent to listen-
ing direct messages. Channel Message Handler
in SLACKAGENTS supports @ mention in a slack
channel. In this way, all agents and humans are able
to send message to any specific agent, which en-
ables team collaboration. It also enables the agent
to reach out to others for help. Note that we could
include either another agent or another human for
help. Proactive Message Handler provides a proac-
tive way to monitor all messages and step in to
provide help only when needed. We show this pro-
cess as in Figure 2. Once the proactive agent is
activated in the backend, it monitors all messages
within that thread. The agent determines whether
to participate in the discussion based on its capa-

Thttps://api.slack.com/docs/apps

bilities from system prompts and available tools.
When the agent identifies a need or request for sup-
port, it automatically employs its tools and engages
in the conversation. Detailed implementation fo
those message hanlders are in Appendix B.1.

2.3 Collaboration Protocol

The SLACKASSISTANT class represents a conversa-
tional agent designed for multi-agent collaboration
within Slack channel environments. This agent
leverages Slack-specific functionalities, making it
particularly suitable for team-based interactions.

The core of the multi-agent collaboration in
SLACKAGENTS is for the current agent to (1) pro-
duce a message that contains a request for assis-
tance with @ mention of the chosen agents or hu-
man from a pre-defined colleague list, (2) send
the message to the colleague(s) in a dedicated ses-
sion, and (3) listen for colleagues’ responses in the
session. Compared with the “handoff” strategy in
OpenAl swarm (OpenAl, 2024), which hands off
all messages to another agent by swapping system
prompt and tools, our collaboration strategy is de-
centralized, asynchronous, and scalable by leverag-
ing Slack-specific functionalities, and importantly,
same as how human workers collaborate in Slack
channels by looping in colleagues for help.

We use function calling as the standard protocol

971

https://api.slack.com/docs/apps

Current Agent

>
I need to ask {

Q Colleague Agent
«i» (

the |Ogi$tiCS "name" : "send_message”, I need to “name" : "check_order_status",
" ts” - "arguments"” : {
agent to ar'gczrr:‘teerr]ﬂ% : "é’lease check the (2) Send message check the "order_id" : " ORD001",
heck th — status of order ORD001.",) status of T }
C gc © (i) "to_whom" : "Logistic Agent.” in Slack thread with order }
oraer status isti
@Logistic Agent ORDOO1.
for ORDOO1.) BEicrE

(1) Produce Request

Collaboration between Multiple Agents

(3) Listen Request (4) Function Call

Specialized Agent Executes Actions

Figure 3: Multi-agent communication protocol. This example illustrates how two agents can collaborate in a

dedicated collaboration session in Slack thread.

for producing collaboration requests. Three Slack
conversation tools, SEND_MESSAGE, WAIT, and
GET_THREAD_HISTORY are added to each SLACK-
ASSISTANT to facilitate multi-agent collaboration
in a Slack session. As illustrated in Figure 9, when
the current agent in the session decides that the cur-
rent conversation is out of its capabilities but falls
into its team members’ roles and capabilities, it will
execute SEND_MESSAGE functions, which sends a
"<@to_whom>" + content message in the thread,
where the colleague agent consumes this request
through listener and chimes in to help. After send-
ing a request, the agent executes the WAIT function,
ending its tool request loop and awaiting responses
from colleague agents. The proactive agent behav-
ior is mainly achieved through this function. More
details can be found in Sec. B.4.3. All agents are
equipped with GET_THREAD_HISTORY by default
to obtain the past messages in the thread, in case
the request message which has been sent is not in-
formative enough. More detailed implementation
are in Appendix B.2.

2.4 User Interface

2.4.1 Command Line Interface (CLI)

The SlackAgents Command-Line Interface (CLI)
provides a comprehensive set of commands for
managing Al agents within Slack workspaces. This
specification details the command structure, avail-
able operations, and implementation guidelines.

$ slackagents
Usage: slackagents [OPTIONS] COMMAND [ARGSI...

Slackagents CLI
Your Slack AL Agent Management Tool

Figure 4: SLACKAGENTS Command Line Interface.

Command Structure The CLI follows a stan-
dardized command pattern:

slackagents [COMMAND] [OPTIONS]

Core Commands
create Interactive wizard for new agent creation

add [FOLDER_PATH] Register existing agent from
specified directory

list Display agents with APP_ID, name, status,
and type (-verbose for details)

start [APP_ID] Launch specified agent
stop [APP_ID] Terminate specified agent

delete [APP_ID] Remove agent and associated
resources

To effectively use the CLI, begin operations with
slackagents list to view available agents. Ac-
cess detailed documentation for any command us-
ing —help. Keep track of APP_ID records for agent
management operations, noting that all commands
are case-sensitive and perform input validation be-
fore execution.

2.4.2 Admin Dashboard

The admin dashboard serves as a central hub for
managing Al agents, tools, and workflows. It pro-
vides real-time visibility into agent performance,
task execution, and system status. Key features
include user management, tool configuration, and
detailed analytics on agent interactions. Admins
can monitor agent activity, adjust tool settings, and
troubleshoot issues directly from the dashboard.

972

O Oneniew dgens o Stings oo g O Loge) st
Key Metrics Activity Logs

(a) Al management dashboard {b) Activity logs for human supervision

Workflow Agent

Assistant Agent

{€) Runtime configuration for assistant and workflow agent

Figure 5: AI Mangement Dashboard.

Configuration of Al agents at runtime lets the
admin to modify a Slack agent’s behaviors from the
Admin Dashboard Ul, without needing to restart
the application.

3 Applications of SLACKAGENTS

In this section, we present a comprehensive explo-
ration of native applications enabled by SLACKA-
GENTS to automate our daily work and improve
decision-making processes, which aligns the video
demoing proactive agent, code interpreter agent,
and multi-agent customer service team.

3.1 Proactive Assistant - AgentPro

AgentPro is an intelligent and context-aware Slack
assistant designed to enhance workplace collab-
oration. Unlike traditional chatbots, AgentPro
seamlessly integrates into team discussions, par-
ticipating only when necessary to provide valuable
insights or assistance. It continuously monitors
conversations, identifying key topics or moments
where its expertise can contribute, and steps in ei-
ther when directly mentioned or when it recognizes
an opportunity to add meaningful value. An illustra-
tion of how proactive agent monitors the message
in slack channel is in Figure 6.

A key strength of AgentPro is its ability to en-
gage proactively without being disruptive. It avoids
unnecessary interruptions during casual exchanges,
choosing instead to focus on moments where its in-
put is most valuable. This thoughtful engagement
helps maintain the flow of natural conversations
while ensuring critical questions are addressed.

By transforming the traditional chatbot paradigm
into a more natural and dynamic collaborator,

AgentPro enhances workplace interactions. Its abil-
ity to intelligently balance when to engage and
when to stay silent makes it an invaluable tool for
streamlining workflows, fostering effective com-
munication, and improving team productivity.

3.2 Code Interpreter Agent

The Code Interpreter Agent is deployed as a
Slack direct-message (DM) application that cou-
ples LLM dialogue with a Python sandbox run-
time. The runtime exposes the essential scientific-
Python stack—numpy, pandas, scikit-learn,
matplotlib, and seaborn behind a restricted
I/0 boundary. Whenever a user submits a re-
quest—e.g., “Please explore the IRIS dataset and
visualise the class separability”—the agent enters
a five-stage loop: plan, generate code, confirm,
execute, and recap. It first decomposes the goal
into minimal steps and presents this plan for ap-
proval. Only after the user signs off does the
agent emit Markdown-formatted Python code, run
it inside a containerized kernel, and surface the
results—figures, tables, or metrics—before advanc-
ing to the next step. This human-in-the-loop proto-
col yields an auditable trail of intentions, code, and
outputs while preventing unintended or malicious
execution.

3.3 Autonomous Customer Service Team

To optimize customer support operations for an e-
commerce company, we developed a multi-agent
system with SLACKAGENTS comprising three spe-
cialized agents: the Customer Service Agent, the
Sales Agent, and the Logistics Agent. Each agent
plays a distinct role within the system, designed to
address specific aspects of customer requests while
seamlessly collaborate to provide service.

The Customer Service Agent acts as the primary
interface with customers, handling inquiries related
to order status, cancellations, modifications, and
product recommendations, as shown in Figure 7.
This agent ensures that every customer message is
acknowledged and processed promptly. For order-
related tasks, the agent collaborates with either the
Logistics Agent or the Sales Agent, depending on
the nature of the request. For example, when a cus-
tomer inquires about an order status, the Customer
Service Agent collects the order ID and queries the
Logistics Agent to check the order status. Similarly,
product requests are relayed to the Sales Agent.

The Logistics Agent oversees order status and
shipping logistics. It provides detailed updates on

973

[Slack Channel Discussion]

@ @Human_B, | think we could write a survey about the
m | reasoning of LLM. Recently, it is very popular.

Human_A

(@Human_A, that is a very interesting idea! But | current
don’t have much newest knowledge about this topic. Can
anyone in this channel help with it?

)
BN

Human_B |

(@Human_B, | can help with the recent knowledge about
LLM reasoning. Here are some recent papers and news:

T

[Proactive Agent Monitoringé

- | This is a regular conversation between
™ N | humans. | need to keep silent.

7
AY

Human_B wants to know newest
knowledge about LLM reasoning. | should
chime in to help.

L J

Search recent papers and news about
LLM reasoning ...

Figure 6: Proactive channel assistant monitors the messages in slack channel and decide to keep silent or chime in
to help. Its decision making is conditioned on the compound of tools, prompts and messages.

order.

Logistics
Agent
x

Customer

! Hi, I want to . The Air Max 90 in
modify my Service {R Size 9 is currently
shipped Agent Y 4 not in stock. Would

you like some item
recommendations?

Figure 7: A customer service team for E-commerce. Customer Service Agent coordinates logistics agent and sales
agent. Human customer can also directly send message to each agent.

shipping statuses, estimated delivery times, and any
potential delays. The Sales Agent specializes in
managing product-related interactions, particularly
for recommendation. This agent is responsible
for inventory checks, product recommendations,
and order creation or modification. The strength
lies in its collaboration. SLACKAGENTS advances
multi-agent application development in its flexible
collaboration work styles. Human customer could
ask customer service agent to relay the information
to other agents. Or a human customer could ask
directly to any specific agent for help.

Additional applications are also avaiable in our
source code and appendix C.

4 Conclusion

In this paper, we introduced SlackAgents, a robust
framework for scalable deployment and collabora-
tion of Al agents within enterprise workspaces. By

tightly integrating with Slack, SlackAgents enables
seamless orchestration, communication, and au-
tomation, which significantly advances in realizing
the vision of intelligent, collaborative, and adaptive
workplace automation. Our modular architecture
supports a variety of agent types and interaction
modes, facilitating flexible deployment and effi-
cient teamwork across diverse business scenarios.
Through real-world applications such as proactive
assistance, code interpretation, and multi-agent cus-
tomer service, we demonstrate the practical value
and transformative potential of Al-powered collab-
oration in modern organizations.

974

Limitations

While SLACKAGENTS provides significant advan-
tages for workplace Al agent deployment, several
limitations should be acknowledged:

* Platform dependency on Slack infrastructure

* Scalability constraints inherent to the underly-
ing platform

* Learning curve for organizations new to multi-
agent systems

* Integration complexity with highly special-
ized enterprise systems

These limitations represent areas for future im-
provement and development of the framework.

Acknowledgments

We thank the Salesforce Al Research team for their
support and collaboration in developing this frame-
work. We also acknowledge the valuable feedback
from early adopters and beta testers who helped re-
fine the platform’s capabilities and user experience.

References
Harrison Chase. 2022. LangChain.

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii
Khizbullin, and Bernard Ghanem. 2023. Camel:
Communicative agents for" mind" exploration of
large language model society. Advances in Neural
Information Processing Systems, 36:51991-52008.

Jerry Liu. 2022. Llamalndex.

Zhiwei Liu, Weiran Yao, Jianguo Zhang, Liangwei
Yang, Zuxin Liu, Juntao Tan, Prafulla K Choubey,
Tian Lan, Jason Wu, Huan Wang, and 1 others. 2024.
Agentlite: A lightweight library for building and
advancing task-oriented llm agent system. arXiv
preprint arXiv:2402.15538.

Joao Moura. 2024. CrewAl
OpenAl. 2024. Swarm: An educational framework
exploring ergonomic, lightweight multi-agent orches-

tration.

Salesforce. 2024. Salesforce unveils agentforce—what
ai was meant to be. Accessed on Oct 10, 2024.

Slack. 2024. Announcing agents and ai innovations in
slack.

Wikipedia. 2024. Last mile (transportation).

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu,
Beibin Li, Eric Zhu, Li Jiang, Shaokun Zhang, Xi-
aoyun Zhang, Jiale Liu, Ahmed Hassan Awadallah,
Ryen W White, Doug Burger, and Chi Wang. 2024.
AutoGen: Enabling Next-Gen LLM Applications via
Multi-Agent Conversation Framework.

A Recommended Guidelines for Using
SlackAgents Library

Here we introduce the basic on-boarding steps of
SlackAgents. Firstly, you should create a Slack
APP and configure the agent with tokens from an
APP. After that, you run an agent with SlackA-
gentsand interact with it through Slack direct mes-
sage. The SlackAgents framework streamlines the
process of integrating Al agents into Slack. This
section details the steps required to create and con-
figure a Slack app, enabling seamless interaction
between the app and your agent.

A.1 Step 1: Create Your Slack App

You have two options to create your Slack app:
using the Slack Manifest and slack_sdk API (rec-
ommended) or manually creating the app.

Option 1: Using the Slack Manifest and
slack_sdk API We recommend setting up
your Slack app via the Slack Manifest for
its simplicity and automation. An exam-
ple manifest JSON file is provided in the
app/your_first_slack_assistant folder. Start
by obtaining your App Configuration Access Token
and exporting it as an environment variable:

export SLACK_APP_CONFIG_TOKEN=xoxe.xoxp.. .

Next, navigate to the
app/your_first_slack_assistant folder
or copy it and rename it. Update the

agent_config.json file with your agent’s
name and description. These values will populate
fields in the example_manifest. json file. Use
the create_slack_app.py script to create the app
by running:

cd app/your_first_slack_assistant
python create_slack_app.py \
--manifest example_manifest.json

The created app will appear in the Slack App
Dashboard. The script also saves the App ID in the
slack_bolt_id. json file, which will need to be
updated with corresponding tokens.

975

https://github.com/langchain-ai/langchain
https://doi.org/10.5281/zenodo.1234
https://github.com/crewAIInc/crewAI/blob/main/pyproject.toml
https://github.com/openai/swarm
https://github.com/openai/swarm
https://github.com/openai/swarm
https://investor.salesforce.com/press-releases/press-release-details/2024/Salesforce-Unveils-AgentforceWhat-AI-Was-Meant-to-Be/default.aspx
https://investor.salesforce.com/press-releases/press-release-details/2024/Salesforce-Unveils-AgentforceWhat-AI-Was-Meant-to-Be/default.aspx
https://slack.com/blog/news/ai-innovations-in-slack
https://slack.com/blog/news/ai-innovations-in-slack
https://en.wikipedia.org/wiki/Last_mile_(transportation)
https://aka.ms/autogen-pdf
https://aka.ms/autogen-pdf

To configure tokens, refer to Steps 1-6 of To-
kens and Installing Apps”. Set up App-level tokens
with connections:write scope and Bot tokens in
the OAuth & Permissions section. Ensure the Al-
low users to send Slash commands and messages
from the messages tab option is enabled in the App
Home section. Reinstall the app to your workspace.
No additional scope modifications are needed when
using the example manifest.

After completing these steps, you should have
the following credentials:

* App ID: Found in the Basic Information section.

e SLACK_BOT_TOKEN: Found in the OAuth &
Permissions section (e.g., xoxb-. . .).

e SLACK_APP_TOKEN: Found in the OAuth &
Permissions section (e.g., xapp-. . .).

Option 2: Manually Create the App Follow
the Slack Bolt Python Getting Started Guide to
manually set up your app. Complete the steps for
Create an App, Tokens and Installing Apps, and
Setting Up Events. Ensure the following settings:

e Allow users to send Slash commands and mes-
sages from the messages tab

* Always Show My Bot as Online (in the App Home
section).

After setup, obtain the App
1D, SLACK_BOT_TOKEN, and
SLACK_APP_TOKEN from the respective sec-
tions of the app’s dashboard. Ensure your app has
scopes such as groups: read, channels:history,
channels:read, im:history, chat:write,
users:read, im: read, and app_mentions:read.

A.2 Step 2: Configure Your Slack Bolt ID and
Enable Direct Messaging

Update the slack_bolt_id.json file with
your App ID, SLACK_BOT_TOKEN, and
SLACK_APP_TOKEN. To enable direct messag-
ing, navigate to the Slack App Dashboard, select
the App Home tab, and enable the Allow users
to send Slash commands and messages from the
messages tab option. Reinstall the app via the
OAuth & Permissions section and refresh or restart
your Slack client.

Note: If the message window does not appear
immediately, try restarting Slack after a few min-
utes.

2https://tools.slack.dev/bolt—python/
getting-started/#tokens-and-installing-apps

A.3 Step 3: Start Your Agent

To launch your direct message agent, execute the
following command:

python my_agent.py -type dm
—agent-config agent_config.json
-bolt-config slack_bolt_id. json

You can choose from type dm for direct mes-
saging or assistant for channel-based interaction
where the agent responds to @ mentions. Refer to
the tutorial for additional details.

A.4 Step 4: Interact with Your Agent in Slack

Once your agent is running, search for it under
Apps or the General Search Window Bar in Slack.
Send messages to your app, and your agent will
respond accordingly.

DigtaHQ~ = @ EUZEIY

Figure 8: The direct message interface when chatting
with SlackAgentsin Slack.

B Implementation Details

B.1 Message Handlers: Consume messages
from subscribed sessions

After we define all agents, SLACKAGENTS runs
each agent as a individual Slack App’. Built upon
the scalable message handling backend of Slack,
SLACKAGENTS provides three types of Slack mes-
sage listeners for humans and all agents to work in
a workspace.

Direct Message Handler. SLACKAGENTS sup-
ports sending direct message to an agent through
Slack app direct message interface. A sample serv-
ing code for handling direct message is as follows:

from slack_bolt_id import BOLT_CONFIG
from slackagents import SlackDMHandler
from slackagents import SlackDMAgent

if __name__ == "__main__"
agent = SlackDMAgent(name=name,desc=desc)
handler = SlackDMHandler(BOLT_CONFIG, agent)

handler.run()

3https://api.slack.com/docs/apps

976

https://tools.slack.dev/bolt-python/getting-started/#tokens-and-installing-apps
https://tools.slack.dev/bolt-python/getting-started/#tokens-and-installing-apps
https://api.slack.com/docs/apps

One could initialize a SlackDMAgent from SLACK-
AGENTS and register this agent to SlackDMHan-
dler to listening direct messages.

Channel Message Handler. Besides sending di-
rect messages to those agents, SLACKAGENTS also
supports @ mention in a slack channel. In this way,
all agents and humans are able to send message to
any specific agent, which enables team collabora-
tion. A sample serving code is as follows:

from slack_bolt_id import BOLT_CONFIG
from slackagents import SlackChannelHandler
from slackagents import SlackAssistant

if __name__ == "__main__":
agent = SlackAssistant(name=name, desc=desc, colleagues=colleagues)
handler = SlackChannelHandler (BOLT_CONFIG, agent)
handler.run()

where one could define an agent with SlackAssis-
tant API from SLACKAGENTS and register it into
SlackChannelHandler. The colleagues are the key
argument for this agent to collarabote with. It en-
ables the agent to reach out to others for help. The
colleagues could include either another agent or
another human for help.

Proactive Message Handler Instead of assign-
ing a message to a agent, SLACKAGENTS also
provides a proactive agent to monitor all messages
and step in to provide help only when needed. We
show this process as in Figure 2 and a sample code
is provided as follows:

from slack_bolt_id import BOLT_CONFIG
from slackagents import SlackProactiveHandler
from slackagents import SlackAssistant

if __name__ == "__main__":
agent = SlackAssistant(name=name, desc=desc)
handler = SlackProactiveHandler(BOLT_CONFIG, agent)

handler.run()

Once the proactive agent is activated in the back-
end, users can @ mention it in any Slack thread, en-
abling it to monitor all messages within that thread.
The agent determines whether to participate in the
discussion based on its capabilities, including sys-
tem prompts and available tools. When the agent
identifies a need for support, it automatically em-
ploys its tools and engages in the conversation.

B.1.1 Conversation Tools: Produce
Collaboration Request

B.2 Conversation Tools: Produce
Collaboration Request

The SLACKASSISTANT class represents a conversa-
tional agent designed for multi-agent collaboration
within Slack channel environments. This agent
leverages Slack-specific functionalities, making it

particularly suitable for team-based interactions.
The agent maintains awareness of human and agent
team members through a colleague system. This
feature allows the agent to understand team com-
position and maintain appropriate context about
different team members’ roles and capabilities.

Collaboration Strategy The core of the multi-
agent collaboration in SLACKAGENTS is for the
current agent to (1) produce a message that con-
tains a request for assistance with @ mention of
the chosen agents or human from a pre-defined col-
league list, (2) send the message to the colleague(s)
in a dedicated session, and (3) listen for colleagues’
responses in the session. Compared with the “hand-
off” strategy in OpenAl swarm (OpenAl, 2024),
which hands off all messages to another agent by
swapping system prompt and tools, our collabora-
tion strategy is decentralized, asynchronous, and
scalable by leveraging Slack-specific functionali-
ties, and importantly, same as how human workers
collaborate in Slack channels by looping in col-
leagues for help in threads.

Collaboration Protocol We use function call-
ing as the standard protocol for producing
collaboration requests. Three Slack con-
versation tools, SEND_MESSAGE, WAIT, and
GET_THREAD_HISTORY are added to each SLACK-
ASSISTANT to facilitate multi-agent collaboration
in a Slack session.

SEND_MESSAGE. As illustrated in Figure 9,
when the current agent in the session decides that
the current conversation is out of its capabilities but
falls into its team members’ roles and capabilities,
it will execute SEND_MESSAGE functions, which
sends a "<@to_whom>" + content message in the
thread, where the colleague agent consumes this
request through listener and chimes in to help.

{

"type"”: "function”,

"function”: {
"name"”: "send_message"”,
"description”: "Send a message

to one of your colleagues or to the
message sender.”,
"parameters”: {
"type": "object"”,
"properties”: {
"content”: {
"type": "string",
"description”: "The
content of the message to be sent.”
}!
"to_whom"”: {

"type": "String",

977

Current Agent

v
I need to ask {

"name" : "send_message",

Q Colleague Agent
<1 {

I need to "name" : "check_order_status",

the logistics " ts" : "arguments" : {
agent o T G ppocnre | @Sendmessage check the
heck th — status of order ORDO001.",) status of T }
C §C N et) "to_whom" : "Logistic Agent.” in Slack thread with order }
oraer status icti
@Logistic Agent
for ORDOO1. ! grrcne ORDOOL.

(1) Produce Request

Collaboration between Multiple Agents

(3) Listen Request (4) Function Call

Specialized Agent Executes Actions

Figure 9: Multi-agent communication protocol. This example illustrates how two agents can collaborate in a

dedicated collaboration session in Slack thread.

"description”: "The
name of the recipient.”
}
1,
"required”:
to_whom"],
"additionalProperties”:

["content"”,

false

}
3

WAIT. After sending a request, the agent exe-
cutes the WAIT function, ending its tool request
loop and awaiting responses from colleague agents.
The proactive agent behavior is mainly achieved
through this function. More details can be found in
Sec. B.4.3.

"type"”: "function”,
"function": {
"name"”: "wait",
"description”:
next message.",
"parameters": {
"type": "object”,
"properties": {
"reason”: {
n type":
"description”:
reason for waiting."”

3

"Wait for the

"string",
"The

},

"required”: ["reason”],

"additionalProperties”:
false

}
3

All agents are equipped with
GET_THREAD_HISTORY by default to ob-
tain the past messages in the thread, in case
the request message which has been sent is not
informative enough.

B.3 Collaboration Protocol

We use function calling as the standard protocol
for producing collaboration requests. Three Slack
conversation tools, SEND_MESSAGE, WAIT, and
GET_THREAD_HISTORY are added to each SLACK-
ASSISTANT to facilitate multi-agent collaboration
in a Slack session. As illustrated in Figure 9, when
the current agent in the session decides that the
current conversation is out of its capabilities but
falls into its team members’ roles and capabilities,
it will execute SEND_MESSAGE functions, which
sends a "<@to_whom>" + content message in the
thread, where the colleague agent consumes this
request through listener and chimes in to help.
{
"type": "function”,
"function”: {
"name"”: "send_message"”,
"description”: "Send a message
to one of your colleagues or to the
message sender."”,
"parameters": {
"type": "object" ,
"properties”": {
"content": {

"type": "string",
"description”: "The
content of the message to be sent.”
3,
"to_whom”: {
"type": "string",
"description”: "The
name of the recipient.”
3
},
"required”: ["content”, "
to_whom"],
"additionalProperties”:
false
}
3

WAIT. After sending a request, the agent exe-
cutes the WAIT function, ending its tool request
loop and awaiting responses from colleague agents.

978

The proactive agent behavior is mainly achieved
through this function. More details can be found in
Sec. B.4.3.

{
"type"”: "function”,
"function”: {
"name"”: "wait"”,
"description”:
next message.",
"parameters": {
"type": "object”,
"properties": {
"reason”: {
"type":
"description”:
reason for waiting."

3

"Wait for the

"string",
"The

}!

"required”: ["reason"],

"additionalProperties”:
false

All agents are equipped with
GET_THREAD_HISTORY by default to ob-
tain the past messages in the thread, in case
the request message which has been sent is not
informative enough.

B.4 Agent Classes

With communication and collaboration among mul-
tiple agents enabled by SLACKAGENTS , the li-
brary further provides two key classes for creating
custom individual Al agents: Agent and Work-
flow. These two classes help define not just the
basic behaviors of individual agents but also how
an agent act in a cohesive manner to accomplish
sequential goals in a principled way.

For tools, SLACKAGENTS supports 4 types of
methods to create agent tools, for corresponding
use cases. Furthermore, users can also directly
load tools from other popular libraries, such as
LANGCHAIN, LLAMAINDEX, CREWALI, etc. to
develop Slack agents.

B.4.1 Assistant

The SLACKAGENTS library provides a standard
way of designing individual agents that can inte-
grate with Slack to perform specific tasks, using
various tools and language models. You will need
to configure the agent’s core attributes, including
its name, description, language model, tools, and
system prompt. Each of these plays a critical role
in defining the agent’s behavior.

* NAME: A human-readable name for the agent
that will be displayed in Slack.

* DESC: A short description explaining the agent’s
purpose and functionality.

e LLM: The language model the agent will use for
processing natural language input.

* TOOLS: A list of tools that the agent can use to
complete tasks with details in Appendix B.4.4.

* SYSTEM PROMPT: The system instruction that
sets the context and domain policy for the agent’s
behavior and interactions with the user.

Here is an example for how an Al agent for brain-
storming research ideas and writing paper abstracts
is instantiated on Slack. The agent can search on
ArXiv for generating new research ideas on a given
topic, and writing paper abstract for that idea.

from slackagents import AssistantAgent

paper_abstract_agent = AssistantAgent(
name="Paper Guru",
desc="Brainstorm abstracts for a given topic”,
11m=OpenAILLM(BaselLLMConfig(model="gpt-40")),
tools=[arxiv_tool, abstract_writer_tool],
system_prompt="You are an AI assistant that can help brainstorm\
an abstract for a given topic.”

B.4.2 Workflow

A workflow is created by organizing individual
agents into a structured directed graph, where each
agent plays a role in moving toward a common goal.
Despite involving multiple agents, the workflow
operates as a single, unified Slack agent. This
design allows users to interact directly with the
workflow, which manages the coordination of all
agents behind the scenes. From the user’s perspec-
tive, the workflow appears as a single agent, or in
other words, a workflow agent that follows a clear,
step-by-step process, offering a smooth and reliable
experience.

Graph A graph defines the sequence of execu-
tion, detailing the interactions and transitions be-
tween different agents. Each node in the graph
represents an agent, and the edges represent the
transitions that dictate when and how agents pass
information or trigger each other’s actions.

Here’s an example where several agents work
together for a quarterly check-in process on Slack:

Step 1. Define individual agents.

from slackagents import AssistantAgent

data_agent = AssistantAgent(
name="Data Agent”,
desc="""AI agent designed to generate a report for the quarterly
check-in meeting with Jira record.”"",
tools = [
FunctionTool. from_function(load_jira_record_tool),
FunctionTool.from_function(write_tool),

1,

979

system_prompt=system_prompt,
verbose=True

)

calendar_agent = AssistantAgent(

name="Calendar Agent”,

desc="AI agent designed to load an employee's calendar and\

send the calendar invites”,

tools=[
FunctionTool. from_function(load_employee_calendar_tool),
FunctionTool. from_function(send_calendar_invite_tool)

1,

system_prompt=system_prompt,

verbose=True

)

email_agent = AssistantAgent(
name="Email Agent”,
desc="AI agent designed to send emails to employees”
tools=[FunctionTool.from_function(send_email_tool)],
system_prompt=system_prompt,
verbose=True

Step 2. Build the execution graph that defines
the workflow.

from slackagents import ExecutionGraph, ExecutionTransition

graph = ExecutionGraph()
graph.add_agent(data_agent)
graph.add_agent(calendar_agent)
graph.add_agent(email_agent)

Step 3. Define transitions between agents.

graph.add_transition(
ExecutionTransition(
source_module=graph.get_module("Data Agent"),
target_module=graph.get_module("”Calendar Agent"),

desc="After the report is written to the employee's local directory”

)

graph.add_transition(

ExecutionTransition(
source_module=graph.get_module("Data Agent"),
target_module=graph.get_module("Email Agent”),
desc="After the meeting is scheduled.”

Step 4. Set the initial agent in the workflow.

graph.set_initial_module(graph.get_module("Data Agent”))

Workflow The workflow is a higher-level con-
struct that ties everything together. It encapsulates
the agents and the execution graph into a single,
reusable, and scalable process. Once the workflow
is defined, it can be triggered in Slack to automate
a series of tasks.

from slackagents import WorkflowAgent
quaterlycheckin_agent = WorkflowAgent(
name="Quarterly Check-in Workflow",
desc="Workflow to automate quarterly check-in process”,
graph=graph

This workflow agent ensures that the check-in pro-
cess is automated on Slack, starting with generat-
ing the report from Jira data dump, scheduling the
meeting, and finally sending email notifications, all
without human intervention.

B.4.3 Proactive Behavior

Proactive behavior refers to the agent’s ability to
monitor conversations and provide timely assis-
tance without being intrusive. This behavior is
primarily achieved through the WAIT function, as
described in Sec. B.2. It enables the proactive mes-
sage handler to continuously monitor all incom-
ing messages in threads where the agent is active.
Based on the context and its capabilities, the agent
determines whether to engage in the discussion or
continue waiting for additional input.

This process is guided by a structured system
prompt, which defines interaction rules, response
guidelines, and criteria for silence or engagement.
These directives ensure the agent maintains a bal-
ance between helpfulness and unobtrusiveness,
leveraging the WAIT function to respond appro-
priately and effectively.

B.4.4 Tools

Tools represent the lowest-level actions that Al
agents can perform. Coupled with function calling,
tools enable Al models to automatically interface
with and control external systems and applications.
SLACKAGENTS supports 4 types of methods to de-
fine agent tools, for corresponding use cases. Fur-
thermore, users can also directly use tools in other
popular libraries, such as LANGCHAIN, LLAMAIN-
DEX, CREWAI, and COMPOSIO, etc. to develop
Slack agents.

Function Tool Users can define an arbi-
trary function and then use FUNCTION-
TOOL.FROM_FUNCTION to generate a tool
that agents can use automatically. Note that
users are highly recommended to use type hints,
together with standard Python docstrings, to
provide information about the function’s input and
output. We currently support parsing of ReST,
Google, Numpydoc-style and Epydoc docstrings.
Automatic error handling is added for all functions
wrapped inside FUNCTIONTOOL.

from slackagents.tools. function_tool import FunctionTool
def calculate_area(length: float, width: float) -> float
Calculate the area of a rectangle.
:param length: The length of the rectangle.
:param width: The width of the rectangle.
:return: The area of the rectangle.

return length * width

tool = FunctionTool.from_function(calculate_area)

Model Tool Besides putting everything inside the
function docstrings, one can also explicitly define

980

an agent tool from a Pydantic data model. Pydantic
is a data validation library that uses Python type
annotations for data validation and settings man-
agement. We can a Pydantic model for our func-
tion, specifying its input and output types. This
approach offers several benefits:

* Ensures strictly that the tool JSON file sent to
LLMs matches our expectations
* Provides better visualization of the tool definition

* Enables automatic input validation

from slackagents.tools.function_tool import FunctionTool
from pydantic import BaseModel, Field

class CalculateArea(BaseModel):
length: float = Field(..., description="Length of the rectangle”)
width: float = Field(..., description="Width of the rectangle”)

@classmethod
def execute(cls, length: float, width: float):
return length * width

tool = FunctionTool. from_pydantic(
model=CalculateArea,
name="calculate_area”,
description="Calculate the area of a rectangle”

By using a Pydantic model, we can create a strict
and type-safe function tool compared to the pre-
vious approach of wrapping a Python function di-
rectly.

RESTful API Tool Al agents can also use Ope-
nAPI JSON files to define RESTful API tools.
Most digital tools today are available as REST-
ful APIs with standard request formats like GET
or POST. While functions or Pydantic classes can
be written for these requests, leveraging OpenAPI
JSON files is more efficient for defining tools di-
rectly. This allows an agent to access a batch of
tools simply by referencing a folder of JSON files.
The tools also support various types of API autho-
rization, including API keys (in headers or parame-
ters), bearer tokens, and basic authentication with
username and password, ensuring secure creden-
tials handling.

from slackagents.tools. function_tool import FunctionTool
tool_schema = ... # load a openapi json file

tool = OpenAPITool(
name="api_name",
openapi_spec=tool_schema,
auth_type=AuthType.NO_AUTH
)

External Tool The community has developed an
extensive number of Al agent tools. For instance,
Composio.ai* has aggregated thousands of tools
from over 150 popular systems, including GitHub,

4https://composio.dev/

Twitter, etc. Likewise, Llamalndex’s ~ curates tools
from open-source communities. As a result, the
quickest way to jumpstart agent development is by
using these ready-made tools. SLACKAGENTS sup-
ports this with wrappers that directly enable usage
of tools from external libraries like, LLamaHub,
LangChain®, CrewAl’ and Composio.

For rapid development, users can simply im-
port the appropriate external tools from the pool of
1,000+ public, open-source tools. Detailed exam-
ples are given in the examples notebooks.

C Additional Applications

C.1 Workflow Agent on Slack

g =
7
>
FAEE Dofa Agent fgmd“' Email Agent
' % % %

Figure 10: Quarterly check-in workflow. Employee
initiates the check-in workflow with data agent, then
schedule the check-in time slots with calendar agent,
and finally send out the notification through email agent.

Autonomous Quarterly Check-In. The Quar-
terly Check-In Workflow demonstrates the effec-
tiveness of SLACKAGENTS in automating struc-
tured organizational tasks, specifically the quar-
terly check-in process of employees. Designed as
a Slack-integrated system, the workflow leverages
a collaborative network of agents to perform tasks
such as generating performance reports, scheduling
meetings, and sending notifications. By modulariz-
ing the workflow into specialized agents—namely,
the Data Agent, Calendar Agent, and Email Agent,
this approach showcases the benefits of task dele-
gation and automated coordination in multi-agent
systems.

At the core of the workflow is the Data Agent,
which initiates the process by synthesizing data
from Jira records to create a detailed report on
employee progress and challenges. This report is
further enriched through direct interactions with
employees, ensuring the inclusion of qualitative
insights alongside quantitative metrics. The agent
generates a markdown file summarizing key per-
formance indicators, areas for improvement, and

5https://llamahub.ai/

6https://python.langchain.com/docs/
integrations/tools/

7https://github.com/crewAIInc/crewAIftools

981

https://composio.dev/
https://llamahub.ai/
https://python.langchain.com/docs/integrations/tools/
https://python.langchain.com/docs/integrations/tools/
https://github.com/crewAIInc/crewAI-tools

future goals, enabling employees and their man-
agers to prepare effectively for the check-in dis-
cussion. Once the report is finalized, the workflow
seamlessly transitions to the Calendar Agent.

The Calendar Agent exemplifies the integra-
tion of intelligent scheduling with decision-making
heuristics. By analyzing multiple employee cal-
endars, it identifies optimal meeting slots based
on criteria such as business hours, workload dis-
tribution, and personal preferences. This agent
minimizes conflicts while prioritizing convenience,
offering flexible time slots for employees to choose
from when necessary. Once the scheduling task is
complete, the workflow moves to the Email Agent,
which ensures timely communication of the check-
in details.

The Email Agent serves as the final component
of the workflow, responsible for sending person-
alized notifications to employees. These emails
summarize the scheduled meeting information and
provide access to the prepared performance reports.
The agent’s role highlights how multi-agent sys-
tems can enhance the human-centric aspects of
organizational processes by ensuring clarity, time-
liness, and personalization.

C.2 Multi-Agent Reasoning on Slack

Figure 11: Trustworthy verification of Slack Agent. Lo-
gistics Agent asks an verifier for approval before actu-
ally executing a tool call.

Trustworthy Verifier. We design a human-in-
the-loop slack agent to enhance the trustworthy
when agent is going to use a tool, which is illus-
trated in Figure 11. In this application, we design a
logistics agent for checking or modifying the status
of an order. Besides tool call generation and exe-
cution, the agent execution involves another inner
loop for tool call verification. A verifier, which
can either be a human or another agent, approves
or rejects with a reason a tool call request from
the logistics agent. After receiving the approval or
rejection response, logistics agent executes the tool-
call or generates a new message, respectively. This
trustworthy verification application demonstrates
the extendability of SLACKAGENTS framework.

Developers could easily integrate another agent or
human into the agent execution loop such that the
actions of an agent are monitored and verified.

D External Dependencies

The library is extremely lightweight, which only
requires the following Python packages:

* docstring-parser
* openai

* networkx

* matplotlib

* slack-sdk

e slack-bolt

982

