
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 943–949
November 4-9, 2025 ©2025 Association for Computational Linguistics

Abstract

BRAT is a widely used web-based text
annotation tool. However, it lacks robust
Python support for effective annotation
management and processing. We present
Bratly, an open-source extension of BRAT
that introduces a solid Python backend,
enabling advanced functionalities such as
annotation typings, collection typings with
statistical insights, corpus and annotation
handling, object modifications, and entity-
level evaluation based on MUC-5
standards. These enhancements streamline
annotation workflows, improve usability,
and facilitate high-quality NLP research.
This paper outlines the system's
architecture, functionalities and evaluation,
positioning it as a valuable BRAT extension
for its users. The tool is open-source, and
the NLP community is welcome to suggest
improvements.

1 Introduction

Manual text annotation tools are essential in
Natural Language Processing (NLP), as they
provide high-quality reference annotations
required for training and evaluating models.
However, selecting the most suitable tool for a
specific annotation project can be challenging due
to the large number of available options and the
lack of an up-to-date comparison of their features,
advantages, and limitations.

A recent study (Neves and Ševa 2021) addressed
this challenge by reviewing 78 text annotation
tools. To narrow the selection, the authors applied
five key criteria: the tool had to be available, web-
based, quickly installable (if required), functional
for their experiments, and configurable for custom
annotation schemes. Based on these criteria, 15
tools, including BRAT (Brat Rapid Annotation

* Equal contribution

Tool) released by Stenetorp et al. (2012), were
chosen for an in-depth evaluation.

The evaluation process assessed these tools
against 26 criteria spanning publication history,
technical specifications, data handling, and
functionality. Each criterion was rated on a three-
level scale, enabling a systematic comparison and
scoring system. The results highlighted differences
in tool maturity and comprehensiveness, with
scores ranging from 9 to 20. BRAT and WebAnno
(Yimam et al. 2013) achieved the highest scores,
and emerged as the most effective web-based
annotation tools according to the evaluation
criteria.

BRAT is designed to enhance the annotation
workflow with its intuitive interface and robust
visualization of complex annotations. It supports
various annotation tasks, including span
identification, and binary relations, event
annotation, and attribute tagging. As a local, web-
based tool built on standard technologies, BRAT’s
installation process is effortless, and the tool can be
configured for diverse annotation needs.

Despite its strengths, BRAT lacks built-in
automatic evaluation against a gold-standard
dataset (Fort 2016). To address this limitation, we
introduce Bratly, a Python-based extension that
makes the process of analyzing BRAT annotations
automatic, efficient and complete for processing
large datasets.

2 Bratly functionalities

We do not introduce a stand‑alone annotation tool;
Bratly is a Python extension layer that operates on
BRAT standoff files. It facilitates programmatic
work with datasets annotated using BRAT. The
core functionalities of Bratly include:
• Annotation typings: A structured schema for

managing annotations that leverages

Bratly: A Python Extension for BRAT Functionalities

Jamil Zaghir*¹², Jean-Philippe Goldman*¹², Nikola Bjelogrlic*¹²,

Mina Bjelogrlic¹², Christian Lovis¹²

¹ Division of Medical Information Sciences, Geneva University Hospitals, Switzerland

² Department of Radiology and Medical Informatics, University of Geneva, Switzerland

jamil.zaghir@unige.ch

943

Pydantic for serialization. BRAT currently
supports seven types of annotations: Entity,
Relation, Attribute, Normalization, Note,
Event, and Equivalence. The Entity type
encodes entities within the text, while
Relation encodes binary relationships
between these entities. The Attribute type
allows for the addition of attributes to
annotations, such as assigning the attribute
"female" to an entity like "wife".
Normalization is used to link annotations to
concepts in an existing knowledge base.
Note enables the creation of comments on
annotations or on the document itself. Event
describes events triggered by entities,
including other involved entities as
arguments for the event. Finally,
Equivalence establishes equivalence
between annotations within the document.
Bratly's annotation typings fully support all
seven annotation types, including annotated
entities that are discontinuous (Figure 1).

• Collection typings and statistics: Tools for
managing annotated datasets, computing
various statistics, and analyzing the
distribution of annotations.

• Input-output functions: Methods for
opening, modifying, and saving annotated
datasets in the BRAT standoff format.

• Annotation modification utilities: Functions
for cleaning and standardizing annotations,
including duplicate removal, containment
filtering, annotation renumbering,
annotation sorting, and selective label
removal.

• Entity-level evaluation: A dedicated module
that implements the MUC-5 standard for
entity-based performance assessment.

These features improve the consistency, quality,
and usability of annotated datasets, enabling
communities to handle annotations efficiently
within Python projects. Table 1 summarizes
Bratly’s added value compared to BRAT.

3 Repository architecture

The system consists of three primary modules – the
last two being installable extras:

• bratly: Implements annotation and
collection typings, providing the backbone
for annotation management. Its Unified

Modeling Language (UML) diagrams are
depicted in Figure 1 and Figure 2.

• bratly_io_fs: Handles corpus reading,
writing, allowing seamless interaction with
annotation files in BRAT standoff format.

• bratly_eval: Implements entity-level
evaluation techniques, enabling robust
performance analysis against a gold-
standard dataset.

The modular design ensures flexibility and ease of
use, allowing users to integrate Bratly into their
workflows without having to install unnecessary
functionalities – with bratly and bratly_io_fs not
having any external package dependency.
Furthermore, this design allows for the
implementation of future modules depending on
the needs of the NLP community.

Functionality BRAT Bratly

Span/Entity annotation Yes (Web) Yes (API)
Relation/Event annotation Yes (Web) Yes (API)
Attribute Tagging Yes (Web) Yes (API)
Visualization Interface Yes No

Mention search bar Yes No

Side-by-side display mode Yes No

Syntax checking Limited
(manually,
file by file)

Yes

Python annotation typings No Yes

Python I/O file-level No Yes

Python I/O collection No Yes

Annotation type statistics No Yes

Annotation label statistics No Yes

Entity-level evaluation No Yes

Table 1: Comparison of functionalities available on
BRAT and Bratly.

4 Implementation Details

Bratly is developed entirely in Python 3.12, with an
emphasis on type safety, modularity, and usability.
Several implementation choices have been made.

We include Pydantic: all classes benefit from the
Pydantic BaseModel functionalities, meaning they
inherit Pydantic’s data validation and serialization
features.

Docker is used to provide a containerized
environment for the annotation processing
modules. While there is no prebuilt image, the
Docker files will be released to the public.

Finally, we use uv as the tool for Python package
management. This choice is mainly done as it is
written in Rust: its performance speed is 31 times
faster than pdm, and 16 times faster than poetry.

944

Figure 1: UML Diagram of annotation typings. The abstract class Annotation specializes into seven distinct types.

EntityAnnotation represents entities and can contain one or multiple Fragment instances, accommodating

discontinuous entities. RelationAnnotation encapsulates binary relationships between entities, requiring links to

two existing EntityAnnotation instances. Both Annotation and Fragment inherit from Pydantic’s BaseModel.

Figure 2: UML Diagram of collection typings. Each Annotation instance represents a single line of annotation.

The BRAT annotation file (with an .ann extension) is structured as an AnnotationCollection, containing a list of

Annotation instances. A Document includes the path to a textual file (typically a .txt file) and is linked to one or

multiple AnnotationCollection instances. This design ensures that a single text file can be annotated by multiple

annotation files, facilitating collaborative annotation or encoding different categories of entities separately.

DocumentCollection contains a list of Document instances, representing a dataset of annotated files. All four

classes inherit from Pydantic’s BaseModel.

945

5 Entity-Level Evaluation

First, Bratly provides entity-level evaluation for
Named Entity Recognition (NER). To assess the
model’s performance fairly, various entity-level
metrics exist, such as MUC-5 (Machine
Understanding Conference) from Chinchor and
Sundheim (1993), ACE (Automatic Content
Extraction) from Doddington et al. (2004), and
CoNLL (Computational Natural Language
Learning) from Tjong Kim Sang and De Meulder
(2003). In this project, we choose to implement
MUC-5, but the other metrics can be added in the
future. The MUC-5 metric comprises:

• CORRECT: Entities accurately identified
with matching indices.

• PARTIAL: Partial matches.
• MISSING: Instances where the system fails

to identify expected entities.
• SPURIOUS: Predictions not found in the

gold standard.
Additionally, Bratly computes entity-level
Precision, Recall, and F1-Score, including a
Relaxed variant that treats PARTIALs as true
predictions alongside CORRECTs (opposed to
Strict). A preliminary comparison against token-
level NER evaluation shows a notable disparity in
model effectiveness when transitioning from token
to entity-level metrics, highlighting the importance
of entity-level evaluation in NER pipelines (Zaghir
et al. 2024).

6 Use case

Processing BRAT-annotated datasets often requires
exploring the dataset’s statistics, filtering relevant
entity annotations, cleaning the data, and preparing
it for further analysis.

In this section, we present a use case to filter a
dataset to retain only entities labeled as
“Organization” and save the refined dataset,
enabling one to train a NER model for detecting
organizations using this dataset.
As illustrated in Figure 3, the workflow begins by
reading a BRAT-annotated dataset into a
DocumentCollection, which contains multiple
documents with annotated entities and relations.

Then, annotation statistics are computed to
analyze the distribution of annotations, helping to
understand the dataset’s composition. Bratly
proposes three levels of statistical analyses: (1)
distribution of annotation types, (2) distribution of
annotation labels given a particular annotation

type, and (3) distribution of textual contents given
a particular EntityAnnotation label. In this use
case, we used the first two as they are the most
relevant for this task.

Figure 3: Illustration of a use case using Bratly. 1: Read

a BRAT-annotated dataset as a DocumentCollection.

2: Get statistics about annotation types and

EntityAnnotation instances in the dataset. 3: Filter in

EntityAnnotation instances whose label is

Organization. 4: Renumerate annotations. 5: Write the

new .ann files in a folder.

A filtering step is then applied to keep only the
entity annotations labeled as “Organization”,
ensuring that other entity types are removed. Once
filtered, the annotations are renumbered to
maintain a coherent sequence before the processed
dataset is exported as .ann files in an output folder
whose path is specified as the argument.

The commands in steps 3 and 4 of Figure 3 only
modify the first annotation file, demonstrating
Bratly’s flexibility. This design allows users to
selectively edit specific .ann files without affecting
others in the dataset. At the same time, applying
changes across the entire dataset remains
straightforward through looping.

This approach considerably improves dataset
management, simplifying the handling of large-
scale annotated corpora while ensuring consistency

946

through various refinement processes. These
include annotation renumbering to maintain a
coherent sequence, duplicate removal to eliminate
redundant entries, and the removal of orphan
annotations – such as relations linked to non-
existent entities – to preserve the dataset’s
structural integrity. By facilitating these essential
cleaning steps, this method ensures that the data
remains well-organized and reliable, making it
better suited for downstream applications such as
machine learning, linguistic analysis, and other
automated annotation processing tasks.

7 Input-output Performance Speed

To evaluate the input-output performance of Bratly,
we selected four large datasets annotated with
BRAT that are publicly available.

First, CANTEMIST (Miranda-Escalada et al.

2020) is a dataset of Spanish synthetic clinical
notes, annotated with tumor morphology entities.
Second, Mars (Wagstaff et al. 2018) consists of
English abstracts from the Lunar and Planetary
Science Conference, covering four Mars missions,
with annotations for Minerals, Elements,
Properties, and Targets. Third, LSD600 (Nourani et
al. 2025) includes English abstracts annotated with
diseases and lifestyle factors, and relations between
them. Finally, FRASIMED (Zaghir et al. 2024)
contains French synthetic clinical cases, annotated
with diseases and tumor morphologies.

 CANT
EMIST

Mars LSD FRASIMED

Entity 16030 94095 13459 24034

Relation 0 10573 2127 0

Equiv. 0 0 274 0

Notes 16030 0 77 36561

Total 32060 104668 15937 60595

NbDocs 1301 1635 600 2051

Read (s) 4.659 17.596 3.426 11.807

Write (s) 0.997 1.539 0.322 1.409

Table 2: Statistics of dataset annotations, including the

number of entities, relations, notes, equivalences, and

total annotations. NbDocs represents the number of

annotated documents. Finally, input-output

performance is provided in seconds.

The results are summarized in Table 2. Mars has
the highest number of entities (94,095) and
relations (10,573), resulting in the largest total
annotation count (104,668) and the slowest read
time (17.596 seconds). While dataset size and

annotation density affect IO performance, writing
operations remain consistently fast across all
datasets (under 2 seconds). Overall, the processing
times remain manageable, demonstrating the
efficiency of our package.

8 Discussion

Bratly aims to help advance the field of text
annotation tools, particularly for data scientists and
researchers in NLP. By extending the widely used
BRAT tool through the introduction of a robust
Python backend, Bratly addresses several key
limitations and enhances the overall functionality,
usability, and efficiency of the annotation process.
This section discusses the implications of Bratly's
features, its potential impact, and future directions
for development.

Improved Annotation Management. One of
the primary contributions of Bratly is its
introduction of structured annotation and collection
typings. This structure allows for better
organization and management of annotation data.
By providing a clear and consistent schema for
managing annotations, Bratly helps to maintain
high-quality datasets, which is essential for training
and evaluating NLP models. The ability to
programmatically read, write, and modify
annotations further streamlines the annotation
workflow, reducing the time and effort required for
data preparation. Furthermore, the use of Pydantic
for data validation and serialization ensures that
Bratly class instances can be easily integrated into
larger data pipelines, as Pydantic natively supports
JSON handling. The ability to load annotated
datasets and compute various statistics provides
users with the possibility of exploring their BRAT-
annotated datasets, enabling more informed
decision-making during the annotation process. As
shown in the use case section, Bratly's annotation
modification utilities are another key feature that
enhances annotation quality. These utilities enable
automated cleaning and standardization of
annotations, ensuring consistency across the
dataset. By automating these processes, Bratly
helps maintain a high level of annotation quality
and reliability, which should aid in the success of
NLP models.

Entity-Level Evaluation Features. Bratly’s
entity-level evaluation module, based on the MUC-
5 criterion, provides a standardized framework for
assessing annotation quality. Unlike many existing
tools, it includes built-in evaluation features,

947

enabling the comparison of annotations against a
gold-standard dataset using established NLP
metrics. This facilitates automatic validation of
model-generated annotations, ensuring greater
reliability in annotation workflows.

Usability, Accessibility and Expandability.
Bratly's input-output functions simplify corpus and
annotation handling, making the tool more user-
friendly and accessible. The simplified Python API
is particularly beneficial for users who may not
have extensive programming experience. By
lowering the barrier to entry, Bratly enables a
broader range of users to leverage its advanced
functionalities, thereby promoting wider adoption
and utilization of the tool. Furthermore, for
advanced researchers interested in improving the
package – either privately for their own purposes
or publicly by making a pull request through
Bratly’s Git repository – the modular design of the
package offers the required flexibility. Not only
does this modularity allow users to integrate Bratly
into their existing workflows without disrupting
established processes, but it also enables the
package to be extended. For example, the
annotation class hierarchy (Figure 1) uses the
Open-Closed Principle – one of the five SOLID
principles in Object-Oriented Programming –
allowing for the simple and quick addition of new
annotation types in case BRAT releases a new
category of annotations.

Future Directions for Bratly. The current state
of the package is not meant to be exhaustive, but
the required core functionalities are available.
There are possible areas for future development
and improvement. One possible direction is the
expansion of evaluation metrics to include
additional standards and criteria. This would
provide users with more options for evaluating
their annotations. While Bratly has input-output
features with the file system through bratly_io_fs,
its functionalities could be extended to databases –
for example, with an additional module that could
be named bratly_io_sql.

9 Python package installation and

GitHub repository

The GitHub repository is available at the following
link: https://github.com/SimedDataTeam/bratly/.

As mentioned in Section 3, Bratly is modular
and can be installed with extras through PyPi:

• pip install bratly: bratly package alone.

• pip install bratly[io]: bratly and
bratly_io_fs packages.

• pip install bratly[eval]: bratly,
bratly_io_fs, and bratly_eval packages.

10 Conclusion

In conclusion, Bratly is a Python-backed extension
of the Brat tool, addressing several key limitations
and enhancing the overall functionality, usability,
and efficiency of the annotation process. By
introducing structured annotation typings and
advanced evaluation features, Bratly aims to enable
BRAT users to conduct more efficient and scalable
annotation tasks, thereby improving the quality and
reliability of annotated datasets. We hope the
potential impact of Bratly will be significant, as it
provides the required tools to manage and evaluate
BRAT annotations effectively. Its open-source
nature welcomes any future contributions from the
NLP community.

References
Chinchor, Nancy, and Beth Sundheim. 1993.

“MUC-5 Evaluation Metrics.” In Fifth

Message Understanding Conference (MUC-5):

Proceedings of a Conference Held in

Baltimore, Maryland, August 25-27.

https://doi.org/10.3115/1072017.1072026.

Doddington, George R., Alexis Mitchell, Mark A.

Przybocki, Lance A. Ramshaw, Stephanie M.

Strassel, and Ralph M. Weischedel. 2004. “The

Automatic Content Extraction (ACE) Program

Tasks, Data, and Evaluation.” In LREC, 2:837–
40. Lisbon.

http://lrec.elra.info/proceedings/lrec2004/pdf/5

.pdf.

Fort, Karën. 2016. Collaborative Annotation for

Reliable Natural Language Processing:

Technical and Sociological Aspects. John

Wiley & Sons.

Miranda-Escalada, Antonio, Eulàlia Farré, and

Martin Krallinger. 2020. “Named Entity
Recognition, Concept Normalization and

Clinical Coding: Overview of the Cantemist

Track for Cancer Text Mining in Spanish,

Corpus, Guidelines, Methods and Results.”
IberLEF@ SEPLN, 303–23.

Neves, Mariana, and Jurica Ševa. 2021. “An
Extensive Review of Tools for Manual

Annotation of Documents.” Briefings in

Bioinformatics 22 (1): 146–63.

https://doi.org/10/ggqtkq.

948

https://github.com/SimedDataTeam/bratly/

Nourani, Esmaeil, Evangelia-Mantelena Makri,

Xiqing Mao, Sampo Pyysalo, Søren Brunak,

Katerina Nastou, and Lars Juhl Jensen. 2025.

“LSD600: The First Corpus of Biomedical
Abstracts Annotated with Lifestyle–Disease

Relations.” Database 2025 (January):baae129.

https://doi.org/10.1093/database/baae129.

Stenetorp, Pontus, Sampo Pyysalo, Goran Topić,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi
Tsujii. 2012. “BRAT: A Web-Based Tool for

NLP-Assisted Text Annotation.” In
Proceedings of the Demonstrations at the 13th

Conference of the European Chapter of the

Association for Computational Linguistics,

102–7.

Tjong Kim Sang, Erik F., and Fien De Meulder.

2003. “Introduction to the CoNLL-2003

Shared Task: Language-Independent Named

Entity Recognition.” In Proceedings of the

Seventh Conference on Natural Language

Learning at HLT-NAACL 2003, 142–47.

https://aclanthology.org/W03-0419.

Wagstaff, Kiri, Raymond Francis, Thamme

Gowda, You Lu, Ellen Riloff, Karanjeet Singh,

and Nina Lanza. 2018. “Mars Target
Encyclopedia: Rock and Soil Composition

Extracted From the Literature.” Proceedings of

the AAAI Conference on Artificial Intelligence

32 (1).

https://doi.org/10.1609/aaai.v32i1.11412.

Yimam, Seid Muhie, Iryna Gurevych, Richard

Eckart de Castilho, and Chris Biemann. 2013.

“WebAnno: A Flexible, Web-Based and

Visually Supported System for Distributed

Annotations.” In Proceedings of the 51st

Annual Meeting of the Association for

Computational Linguistics: System

Demonstrations, edited by Miriam Butt and

Sarmad Hussain, 1–6. Sofia, Bulgaria:

Association for Computational Linguistics.

https://aclanthology.org/P13-4001/.

Zaghir, Jamil, Mina Bjelogrlic, Jean-Philippe

Goldman, Soukaïna Aananou, Christophe

Gaudet-Blavignac, and Christian Lovis. 2024.

“FRASIMED: A Clinical French Annotated
Resource Produced through Crosslingual

BERT-Based Annotation Projection.” In
Proceedings of the 2024 Joint International

Conference on Computational Linguistics,

Language Resources and Evaluation (LREC-

COLING 2024), edited by Nicoletta Calzolari,

Min-Yen Kan, Veronique Hoste, Alessandro

Lenci, Sakriani Sakti, and Nianwen Xue, 7450–
60. Torino, Italia: ELRA and ICCL.

https://aclanthology.org/2024.lrec-main.657/.

Zaghir, Jamil, Mina Bjelogrlic, Jean-Philippe

Goldman, Adel Bensahla, Yuanyuan Zheng,

and Christian Lovis. 2024. “Beyond Tokens:
Fair Evaluation of French Large Language

Models for Clinical Named Entity

Recognition.” Studies in Health Technology

and Informatics 316 (August):666–70.

https://doi.org/10.3233/SHTI240502.

949

