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Abstract 

BRAT is a widely used web-based text 
annotation tool. However, it lacks robust 
Python support for effective annotation 
management and processing. We present 
Bratly, an open-source extension of BRAT 
that introduces a solid Python backend, 
enabling advanced functionalities such as 
annotation typings, collection typings with 
statistical insights, corpus and annotation 
handling, object modifications, and entity-
level evaluation based on MUC-5 
standards. These enhancements streamline 
annotation workflows, improve usability, 
and facilitate high-quality NLP research. 
This paper outlines the system's 
architecture, functionalities and evaluation, 
positioning it as a valuable BRAT extension 
for its users. The tool is open-source, and 
the NLP community is welcome to suggest 
improvements. 

1 Introduction 

Manual text annotation tools are essential in 
Natural Language Processing (NLP), as they 
provide high-quality reference annotations 
required for training and evaluating models. 
However, selecting the most suitable tool for a 
specific annotation project can be challenging due 
to the large number of available options and the 
lack of an up-to-date comparison of their features, 
advantages, and limitations. 

A recent study (Neves and Ševa 2021) addressed 
this challenge by reviewing 78 text annotation 
tools. To narrow the selection, the authors applied 
five key criteria: the tool had to be available, web-
based, quickly installable (if required), functional 
for their experiments, and configurable for custom 
annotation schemes. Based on these criteria, 15 
tools, including BRAT (Brat Rapid Annotation 
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Tool) released by Stenetorp et al. (2012), were 
chosen for an in-depth evaluation. 

The evaluation process assessed these tools 
against 26 criteria spanning publication history, 
technical specifications, data handling, and 
functionality. Each criterion was rated on a three-
level scale, enabling a systematic comparison and 
scoring system. The results highlighted differences 
in tool maturity and comprehensiveness, with 
scores ranging from 9 to 20. BRAT and WebAnno 
(Yimam et al. 2013) achieved the highest scores, 
and emerged as the most effective web-based 
annotation tools according to the evaluation 
criteria. 

BRAT is designed to enhance the annotation 
workflow with its intuitive interface and robust 
visualization of complex annotations. It supports 
various annotation tasks, including span 
identification, and binary relations, event 
annotation, and attribute tagging. As a local, web-
based tool built on standard technologies, BRAT’s 
installation process is effortless, and the tool can be 
configured for diverse annotation needs. 

Despite its strengths, BRAT lacks built-in 
automatic evaluation against a gold-standard 
dataset (Fort 2016). To address this limitation, we 
introduce Bratly, a Python-based extension that 
makes the process of analyzing BRAT annotations 
automatic, efficient and complete for processing 
large datasets. 

2 Bratly functionalities 

We do not introduce a stand‑alone annotation tool; 
Bratly is a Python extension layer that operates on 
BRAT standoff files. It facilitates programmatic 
work with datasets annotated using BRAT. The 
core functionalities of Bratly include: 
• Annotation typings: A structured schema for 

managing annotations that leverages 
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Pydantic for serialization. BRAT currently 
supports seven types of annotations: Entity, 
Relation, Attribute, Normalization, Note, 
Event, and Equivalence. The Entity type 
encodes entities within the text, while 
Relation encodes binary relationships 
between these entities. The Attribute type 
allows for the addition of attributes to 
annotations, such as assigning the attribute 
"female" to an entity like "wife". 
Normalization is used to link annotations to 
concepts in an existing knowledge base. 
Note enables the creation of comments on 
annotations or on the document itself. Event 
describes events triggered by entities, 
including other involved entities as 
arguments for the event. Finally, 
Equivalence establishes equivalence 
between annotations within the document. 
Bratly's annotation typings fully support all 
seven annotation types, including annotated 
entities that are discontinuous (Figure 1). 

• Collection typings and statistics: Tools for 
managing annotated datasets, computing 
various statistics, and analyzing the 
distribution of annotations. 

• Input-output functions: Methods for 
opening, modifying, and saving annotated 
datasets in the BRAT standoff format.  

• Annotation modification utilities: Functions 
for cleaning and standardizing annotations, 
including duplicate removal, containment 
filtering, annotation renumbering, 
annotation sorting, and selective label 
removal. 

• Entity-level evaluation: A dedicated module 
that implements the MUC-5 standard for 
entity-based performance assessment. 

These features improve the consistency, quality, 
and usability of annotated datasets, enabling 
communities to handle annotations efficiently 
within Python projects. Table 1 summarizes 
Bratly’s added value compared to BRAT. 

3 Repository architecture 

The system consists of three primary modules – the 
last two being installable extras: 

• bratly: Implements annotation and 
collection typings, providing the backbone 
for annotation management. Its Unified 

Modeling Language (UML) diagrams are 
depicted in Figure 1 and Figure 2. 

• bratly_io_fs: Handles corpus reading, 
writing, allowing seamless interaction with 
annotation files in BRAT standoff format. 

• bratly_eval: Implements entity-level 
evaluation techniques, enabling robust 
performance analysis against a gold-
standard dataset. 

The modular design ensures flexibility and ease of 
use, allowing users to integrate Bratly into their 
workflows without having to install unnecessary 
functionalities – with bratly and bratly_io_fs not 
having any external package dependency. 
Furthermore, this design allows for the 
implementation of future modules depending on 
the needs of the NLP community. 
 

Functionality BRAT Bratly 

Span/Entity annotation Yes (Web) Yes (API) 
Relation/Event annotation Yes (Web) Yes (API) 
Attribute Tagging Yes (Web) Yes (API) 
Visualization Interface Yes No 

Mention search bar Yes No 

Side-by-side display mode Yes No 

Syntax checking Limited 
(manually, 
file by file) 

Yes 

Python annotation typings No Yes 

Python I/O file-level No Yes 

Python I/O collection No Yes 

Annotation type statistics No Yes 

Annotation label statistics No Yes 

Entity-level evaluation No Yes 

Table 1: Comparison of functionalities available on 
BRAT and Bratly. 

4 Implementation Details 

Bratly is developed entirely in Python 3.12, with an 
emphasis on type safety, modularity, and usability. 
Several implementation choices have been made. 

We include Pydantic: all classes benefit from the 
Pydantic BaseModel functionalities, meaning they 
inherit Pydantic’s data validation and serialization 
features.  

Docker is used to provide a containerized 
environment for the annotation processing 
modules. While there is no prebuilt image, the 
Docker files will be released to the public. 

Finally, we use uv as the tool for Python package 
management. This choice is mainly done as it is 
written in Rust: its performance speed is 31 times 
faster than pdm, and 16 times faster than poetry. 
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Figure 1:  UML Diagram of annotation typings. The abstract class Annotation specializes into seven distinct types. 

EntityAnnotation represents entities and can contain one or multiple Fragment instances, accommodating 

discontinuous entities. RelationAnnotation encapsulates binary relationships between entities, requiring links to 

two existing EntityAnnotation instances. Both Annotation and Fragment inherit from Pydantic’s BaseModel. 

 
 

Figure 2: UML Diagram of collection typings. Each Annotation instance represents a single line of annotation. 

The BRAT annotation file (with an .ann extension) is structured as an AnnotationCollection, containing a list of 

Annotation instances. A Document includes the path to a textual file (typically a .txt file) and is linked to one or 

multiple AnnotationCollection instances. This design ensures that a single text file can be annotated by multiple 

annotation files, facilitating collaborative annotation or encoding different categories of entities separately. 

DocumentCollection contains a list of Document instances, representing a dataset of annotated files. All four 

classes inherit from Pydantic’s BaseModel.
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5 Entity-Level Evaluation 

First, Bratly provides entity-level evaluation for 
Named Entity Recognition (NER). To assess the 
model’s performance fairly, various entity-level 
metrics exist, such as MUC-5 (Machine 
Understanding Conference) from Chinchor and 
Sundheim (1993), ACE (Automatic Content 
Extraction) from Doddington et al. (2004), and 
CoNLL (Computational Natural Language 
Learning) from Tjong Kim Sang and De Meulder 
(2003). In this project, we choose to implement 
MUC-5, but the other metrics can be added in the 
future. The MUC-5 metric comprises: 

• CORRECT: Entities accurately identified 
with matching indices. 

• PARTIAL: Partial matches. 
• MISSING: Instances where the system fails 

to identify expected entities. 
• SPURIOUS: Predictions not found in the 

gold standard. 
Additionally, Bratly computes entity-level 
Precision, Recall, and F1-Score, including a 
Relaxed variant that treats PARTIALs as true 
predictions alongside CORRECTs (opposed to 
Strict). A preliminary comparison against token-
level NER evaluation shows a notable disparity in 
model effectiveness when transitioning from token 
to entity-level metrics, highlighting the importance 
of entity-level evaluation in NER pipelines (Zaghir 
et al. 2024). 

6 Use case 

Processing BRAT-annotated datasets often requires 
exploring the dataset’s statistics, filtering relevant 
entity annotations, cleaning the data, and preparing 
it for further analysis.  

In this section, we present a use case to filter a 
dataset to retain only entities labeled as 
“Organization” and save the refined dataset, 
enabling one to train a NER model for detecting 
organizations using this dataset. 
As illustrated in Figure 3, the workflow begins by 
reading a BRAT-annotated dataset into a 
DocumentCollection, which contains multiple 
documents with annotated entities and relations. 

Then, annotation statistics are computed to 
analyze the distribution of annotations, helping to 
understand the dataset’s composition. Bratly 
proposes three levels of statistical analyses: (1) 
distribution of annotation types, (2) distribution of 
annotation labels given a particular annotation 

type, and (3) distribution of textual contents given 
a particular EntityAnnotation label. In this use 
case, we used the first two as they are the most 
relevant for this task. 

 

Figure 3: Illustration of a use case using Bratly. 1: Read 

a BRAT-annotated dataset as a DocumentCollection. 

2: Get statistics about annotation types and 

EntityAnnotation instances in the dataset. 3: Filter in 

EntityAnnotation instances whose label is 

Organization. 4: Renumerate annotations. 5: Write the 

new .ann files in a folder. 

A filtering step is then applied to keep only the 
entity annotations labeled as “Organization”, 
ensuring that other entity types are removed. Once 
filtered, the annotations are renumbered to 
maintain a coherent sequence before the processed 
dataset is exported as .ann files in an output folder 
whose path is specified as the argument. 

The commands in steps 3 and 4 of Figure 3 only 
modify the first annotation file, demonstrating 
Bratly’s flexibility. This design allows users to 
selectively edit specific .ann files without affecting 
others in the dataset. At the same time, applying 
changes across the entire dataset remains 
straightforward through looping. 

This approach considerably improves dataset 
management, simplifying the handling of large-
scale annotated corpora while ensuring consistency 
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through various refinement processes. These 
include annotation renumbering to maintain a 
coherent sequence, duplicate removal to eliminate 
redundant entries, and the removal of orphan 
annotations – such as relations linked to non-
existent entities – to preserve the dataset’s 
structural integrity. By facilitating these essential 
cleaning steps, this method ensures that the data 
remains well-organized and reliable, making it 
better suited for downstream applications such as 
machine learning, linguistic analysis, and other 
automated annotation processing tasks. 

7 Input-output Performance Speed 

To evaluate the input-output performance of Bratly, 
we selected four large datasets annotated with 
BRAT that are publicly available. 

First, CANTEMIST (Miranda-Escalada et al. 

2020) is a dataset of Spanish synthetic clinical 
notes, annotated with tumor morphology entities. 
Second, Mars (Wagstaff et al. 2018) consists of 
English abstracts from the Lunar and Planetary 
Science Conference, covering four Mars missions, 
with annotations for Minerals, Elements, 
Properties, and Targets. Third, LSD600 (Nourani et 
al. 2025) includes English abstracts annotated with 
diseases and lifestyle factors, and relations between 
them. Finally, FRASIMED (Zaghir et al. 2024) 
contains French synthetic clinical cases, annotated 
with diseases and tumor morphologies. 

 CANT
EMIST 

Mars LSD FRASIMED 

Entity 16030 94095 13459 24034 

Relation 0 10573 2127 0 

Equiv. 0 0 274 0 

Notes 16030 0 77 36561 

Total 32060 104668 15937 60595 

NbDocs 1301 1635 600 2051 

Read (s) 4.659 17.596 3.426 11.807 

Write (s) 0.997 1.539 0.322 1.409 

Table 2: Statistics of dataset annotations, including the 

number of entities, relations, notes, equivalences, and 

total annotations. NbDocs represents the number of 

annotated documents. Finally, input-output 

performance is provided in seconds. 

The results are summarized in Table 2. Mars has 
the highest number of entities (94,095) and 
relations (10,573), resulting in the largest total 
annotation count (104,668) and the slowest read 
time (17.596 seconds). While dataset size and 

annotation density affect IO performance, writing 
operations remain consistently fast across all 
datasets (under 2 seconds). Overall, the processing 
times remain manageable, demonstrating the 
efficiency of our package. 

8 Discussion 

Bratly aims to help advance the field of text 
annotation tools, particularly for data scientists and 
researchers in NLP. By extending the widely used 
BRAT tool through the introduction of a robust 
Python backend, Bratly addresses several key 
limitations and enhances the overall functionality, 
usability, and efficiency of the annotation process. 
This section discusses the implications of Bratly's 
features, its potential impact, and future directions 
for development. 

Improved Annotation Management. One of 
the primary contributions of Bratly is its 
introduction of structured annotation and collection 
typings. This structure allows for better 
organization and management of annotation data. 
By providing a clear and consistent schema for 
managing annotations, Bratly helps to maintain 
high-quality datasets, which is essential for training 
and evaluating NLP models. The ability to 
programmatically read, write, and modify 
annotations further streamlines the annotation 
workflow, reducing the time and effort required for 
data preparation. Furthermore, the use of Pydantic 
for data validation and serialization ensures that 
Bratly class instances can be easily integrated into 
larger data pipelines, as Pydantic natively supports 
JSON handling. The ability to load annotated 
datasets and compute various statistics provides 
users with the possibility of exploring their BRAT-
annotated datasets, enabling more informed 
decision-making during the annotation process. As 
shown in the use case section, Bratly's annotation 
modification utilities are another key feature that 
enhances annotation quality. These utilities enable 
automated cleaning and standardization of 
annotations, ensuring consistency across the 
dataset. By automating these processes, Bratly 
helps maintain a high level of annotation quality 
and reliability, which should aid in the success of 
NLP models. 

Entity-Level Evaluation Features. Bratly’s 
entity-level evaluation module, based on the MUC-
5 criterion, provides a standardized framework for 
assessing annotation quality. Unlike many existing 
tools, it includes built-in evaluation features, 
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enabling the comparison of annotations against a 
gold-standard dataset using established NLP 
metrics. This facilitates automatic validation of 
model-generated annotations, ensuring greater 
reliability in annotation workflows. 

Usability, Accessibility and Expandability. 
Bratly's input-output functions simplify corpus and 
annotation handling, making the tool more user-
friendly and accessible. The simplified Python API 
is particularly beneficial for users who may not 
have extensive programming experience. By 
lowering the barrier to entry, Bratly enables a 
broader range of users to leverage its advanced 
functionalities, thereby promoting wider adoption 
and utilization of the tool. Furthermore, for 
advanced researchers interested in improving the 
package – either privately for their own purposes 
or publicly by making a pull request through 
Bratly’s Git repository – the modular design of the 
package offers the required flexibility. Not only 
does this modularity allow users to integrate Bratly 
into their existing workflows without disrupting 
established processes, but it also enables the 
package to be extended. For example, the 
annotation class hierarchy (Figure 1) uses the 
Open-Closed Principle – one of the five SOLID 
principles in Object-Oriented Programming – 
allowing for the simple and quick addition of new 
annotation types in case BRAT releases a new 
category of annotations. 

Future Directions for Bratly. The current state 
of the package is not meant to be exhaustive, but 
the required core functionalities are available. 
There are possible areas for future development 
and improvement. One possible direction is the 
expansion of evaluation metrics to include 
additional standards and criteria. This would 
provide users with more options for evaluating 
their annotations. While Bratly has input-output 
features with the file system through bratly_io_fs, 
its functionalities could be extended to databases – 
for example, with an additional module that could 
be named bratly_io_sql. 

9 Python package installation and 

GitHub repository 

The GitHub repository is available at the following 
link: https://github.com/SimedDataTeam/bratly/. 

As mentioned in Section 3, Bratly is modular 
and can be installed with extras through PyPi: 

• pip install bratly: bratly package alone. 

• pip install bratly[io]: bratly and 
bratly_io_fs packages. 

• pip install bratly[eval]: bratly, 
bratly_io_fs, and bratly_eval packages. 

10 Conclusion 

In conclusion, Bratly is a Python-backed extension 
of the Brat tool, addressing several key limitations 
and enhancing the overall functionality, usability, 
and efficiency of the annotation process. By 
introducing structured annotation typings and 
advanced evaluation features, Bratly aims to enable 
BRAT users to conduct more efficient and scalable 
annotation tasks, thereby improving the quality and 
reliability of annotated datasets. We hope the 
potential impact of Bratly will be significant, as it 
provides the required tools to manage and evaluate 
BRAT annotations effectively. Its open-source 
nature welcomes any future contributions from the 
NLP community. 
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