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Abstract

Pre-hospital Emergency Care (PEC) systems
are critical for managing life-threatening emer-
gencies where rapid intervention can signif-
icantly impact patient outcomes. The rising
global demand for PEC services, coupled with
increased emergency calls and strained emer-
gency departments, necessitates efficient re-
source utilization through Telephone Triage
(TT) systems. However, existing TT processes
face challenges such as incomplete data col-
lection, communication barriers, and manual
errors, leading to high over-triage and under-
triage rates. This study proposes InTriage, an
AI-driven multilingual TT system to provide
decision support for triage. InTriage enhances
accuracy by transcribing emergency calls, ex-
tracting critical patient information, prompting
supplementary, and providing real-time triage
decisions support. We conducted an evalua-
tion on a real-world corpus of approximately
40 hours of telephone data, achieving a word
error rate of 14.57% for speech recognition
and an F1 score of 73.34% for key informa-
tion extraction. By improving communication
efficiency and reducing triage errors, InTriage
offers a scalable solution to potentially help
address the growing demands on PEC systems
globally1.

1 Introduction

Pre-hospital Emergency Care (PEC) refers to med-
ical assistance provided to patients outside hos-
pital settings, typically followed by their transfer
to the nearest medical facility (Mohammadi et al.,
2022). PEC plays a vital role in managing life-
threatening emergencies where every second is cru-
cial, as delays can determine the outcome between
survival, permanent disability, or death. Rapid pa-
tient assessment and timely intervention by PEC

1The introduction video is at https://www.youtube.
com/watch?v=a-XnPJ4dlyw, and the demonstration video at
https://www.youtube.com/watch?v=dVYonyK5-cY. The
symbol (*) denotes co-corresponding authors.

Figure 1: Yearly data growth of emergency calls from
2000 to 2023 in Singapore. The data illustrates a quick
upward trend with peaks in 2021 and 2022, reflecting
significant need for more efficient triage systems.

personnel are therefore indispensable. Globally,
the demand for PEC services has been rising, as
evidenced by increasing emergency calls, longer
ambulance response times, and overcrowded Emer-
gency Departments (EDs) (Brady, 2020; Inokuchi
et al., 2022; Singapore Civil Defence Force, 2023).
These trends highlight the strain on PEC systems
and underscore the need for innovative strategies
to maintain their efficiency and effectiveness.

Telephone Triage (TT) is a crucial process in
PEC systems, enabling call-takers to systemati-
cally gather patient information and assess clini-
cal severity through structured questioning. This
process, which begins when an emergency call is
answered and concludes with determining dispatch
priority or redirecting low-acuity cases to alterna-
tive care pathways (ACPs), plays a pivotal role
in optimizing PEC resource utilization. In Singa-
pore, the number of emergency calls has grown by
400% over the past two decades, with a marked
acceleration during the COVID-19 pandemic (see
Figure 1). This rapid growth has posed substantial
challenges to existing TT systems, which heavily
rely on manual processes and call-taker expertise.

Under such conditions, a robust TT system is
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essential for prioritizing high-acuity, time-sensitive
cases while redirecting low-acuity cases to ap-
propriate healthcare services. This reduces the
burden on EDs and ensures that critically ill pa-
tients receive prompt and focused care (Vicente
et al., 2013). However, TT performance has been
shown to be suboptimal in many countries. A study
found an over-triage rate of 26.0% and an under-
triage rate of 4.9% in Thailand, suggesting a higher
prevalence of over-triage compared to under-triage
(Huabbangyang et al., 2023). Another study found
that over-triage rates ranged from 9.9% to 87.4%,
while under-triage rates varied from 1.6% to 72.0%
in North America, depending on the population and
methodology (Lupton et al., 2023). In Singapore,
our investigation indicates that over/under-triage
rates are approximately 45% and 5%, underscoring
the urgent need for improvements.

Three primary challenges contribute to these
inefficiencies. First, emergency call-takers often
struggle to gather essential information and assess
case acuity, even with established protocols. Key
data, such as medical history, clinical risk factors,
and previous call records, are frequently underuti-
lized (Wu et al., 2024; He et al., 2019). Second,
communication barriers between callers and call-
takers delay responses and may lead to adverse
outcomes. For example, obtaining accurate loca-
tion information in a multilingual country like Sin-
gapore is challenging due to diverse accents and
variations names. Third, manual data entry during
the triage is time-consuming and prone to human
error, reducing both efficiency and accuracy.

To address these issues, we propose an artifi-
cial intelligence-based system InTriage, as shown
in Figure 2, which aims to assist call-takers and
improve TT performance. InTriage leverages a
multilingual Automatic Speech Recognition (ASR)
agent capable of transcribing emergency calls in
English, Chinese, and Malay simultaneously. Us-
ing Hotword boosting technology (Yang et al.,
2024), the ASR enhances the recognition of lo-
cation names. The transcriptions from the ASR
agent enable a Natural Language Understanding
(NLU) agent to extract critical patient informa-
tion, primary complaints, and assess the caller’s
stress levels. The system also highlights pertinent
medical history and recommends subsequent ques-
tions, ensuring a streamlined and accurate triage
process. A Dialogue Management (DM) agent con-
tinuously calculates a confidence score, and once
a predefined threshold is met, a Natural Language

Generation (NLG) agent delivers the final triage
recommendations and emergency instructions.

By automating several aspects of the triage pro-
cess, InTriage enhances decision-making accuracy,
reduces over-triage and under-triage rates, and
ensures efficient use of PEC resources. Further-
more, its integration of advanced AI capabilities,
addresses the critical need for precise and timely
triage in high-pressure emergency settings.

To the best of our knowledge, our study presents
the first intelligent multimodal TT system, which
designed to meet the demands of PEC in a multi-
lingual context. InTriage has been tested by the
Singapore Civil Defence Force2 (SCDF), achiev-
ing satisfactory results and offering a scalable so-
lution for wider adoption. This work pioneers a
intelligent TT systems in the following aspects.

• InTriage introduces a multimodal AI pipeline
that seamlessly integrates five different agents.
InTriage enables precise and real-time pro-
cessing of emergency calls, reducing the call-
taker’s burden under high-pressure PEC con-
ditions.

• InTriage is specifically designed to operate in
multilingual environments, utilizing advanced
Hotword boosting to address one of the most
critical and challenging issues.

• InTriage integrates stress-level analysis, med-
ical history retrieval, and emergent instruc-
tions generation, providing more comprehen-
sive information to avoid potential risks.

2 Related Work

Different Goals and Scopes. Many previous stud-
ies on triage systems are designed for mass casu-
alty incidents (MCIs), which are involving various
approaches, including wearable technologies, elec-
tronic tagging, and telemedicine solutions. For
instance, Adler et al. (2011), Greiner-Mai and
Donner (2010), and Park (2021) introduced IT-
supported and IoT-based e-triage systems that mon-
itor vital signs and provide real-time updates. Be-
sides, some triage systems are designed for disease-
specific scenarios to improve diagnosis and care
during outbreaks. For respiratory infections like
COVID-19, Villafuerte et al. (2023) developed a

2The Singapore Civil Defence Force (SCDF) is a uni-
formed government organization under the Ministry of Home
Affairs. It provides essential national services such as fire-
fighting, rescue operations, and emergency medical services.
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Figure 2: The architecture of InTriage, enhancing efficiency and ensuring accurate triage. We illustrate the functions
of InTriage from three different perspectives, including the caller, InTriage, and call-taker.

telemedicine virtual assistant to diagnose condi-
tions based on real-time vital signs and symptom
evaluations. Khanna et al. (2023) and Soltan et al.
(2021) employed ML models to predict COVID-19
severity using clinical biomarkers and structured
data for identifying critical patients. These sys-
tems have different goals and scopes compared
with broad-spectrum emergency triage InTriage,
which is designed to serve general city residents
in PEC, addressing diverse emergency scenarios
without additional hardware dependencies.

Different Technologies. There are many dif-
ferent technologies are involved (He et al., 2025;
Lin et al., 2025). In CV-based approaches, Lu
et al. (2023) introduced an unmanned aerial vehicle
(UAV) triage system using OpenPose and YOLO,
highlighting the role of visual recognition. In ML-
based solutions, Elhaj et al. (2023) conducted a
comprehensive comparison of nine supervised al-
gorithms to predict EDs outcomes, with Random
Forest achieving the highest performance in ICU
admission predictions, while Chen et al. (2023b)
employed eXtreme Gradient Boosting (XGB) for
dynamic risk stratification using ECG and chest
X-ray data. In DL domain, Xiao et al. (2023)
proposed TransNet and TextRNN models that in-
tegrate structured and unstructured medical data
using attention mechanisms, whereas Chen et al.
(2023a) developed a BiLSTM-based system that
leverages clinical narratives to predict critical out-

comes in EDs. In contrast, our InTriage system
utilizes LLMs to dynamically process multimodal
inputs, including real-time text, speech, and medi-
cal data, enabling more precise triage results and
offering auxiliary functions like sentiment analy-
sis and medical information retrieval to enhance
decision-making in diverse emergency scenarios.

3 Preliminary Data

In TT systems, call-taker performance can vary sig-
nificantly based on experience and training, lead-
ing to inconsistent triage results and potentially
adverse outcomes. To address this challenge, In-
Triage utilizes the Patient Acuity Category Scale
(PACS) protocol standardize the assessment pro-
cess, which was introduced by Singapore’s Min-
istry of Health (Fong et al., 2018). As shown in
Table 1, PACS categorizes patients into one of five
urgency levels, from P1+ (the most critical) to P4
(non-urgent). This structured approach minimizes
variability in call-takers’ decisions.

Under the PACS protocol, call-takers first con-
duct a preliminary assessment by asking general
questions about the patient’s information and symp-
toms. Based on this initial information, the case
is classified into one of 30 Chief Incident Types
(CITs), such as BLEEDING/LACERATION, IN-
HALATION, or CHEST PAIN. After identifying
the appropriate CIT, call-takers proceed to ask CIT-
specific questions to gather more detailed informa-
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PACS Definition Response Example

P1+ Life-threatening
emergencies

Highest priority, fastest response
(extra resources deployed)

Cardiac arrest

P1 Highest priority, fastest response Head injury
P2 Emergencies High priority, fast response Abdominal pain
P3 Minor Emergencies Lower priority, slower response Persistent Diarrhea
P4 Non-emergencies No response Cough

Table 1: Definitions of Patient Acuity Category Scale (PACS).

Figure 3: An example of BLEEDING/LACERATION
incident type using PACS to guide call-takers for an
emergency calls. The numbers in the PACS column in-
dicate when it should be reassigned to another incident
type, while P1+, P1, P2, and P3 represent triage levels.

tion and assign the case to the appropriate PACS
category for dispatch purposes. For example, in the
case of BLEEDING/LACERATION, the call-taker
would ask pre-defined questions such as, "Where is
the bleeding from?" or "Has the bleeding stopped?"
Figure 3 illustrates a sample decision tree for this
specific CIT. Based on the caller’s responses, the
call-taker assigns the patient to a PACS category.

For assigning triage categories, call-takers must
deliver CIT-specific instructions to callers to en-
sure the patient’s safety while waiting for medical
assistance. These instructions are tailored to each
incident type, aiming to prevent deterioration and
stabilize the patient. Figure 4 shows an example of
instructions for BLEEDING/LACERATION, such
as advising the caller to keep the patient still and

Figure 4: An example of BLEEDING/LACERATION
incident type to guide call takers give necessary emer-
gency instructions.

elevate the injured area to reduce bleeding.

4 Different Perspectives from Caller,
Call-taker, and InTriage

Caller Perspective – System Significance. For
callers, they will no realize that any AI system is
in place. As in Figure 2 (a), when they contact
the emergency hotline, they are greeted by a hu-
man call-taker who responds professionally and
promptly. They can also get emergency instruc-
tions, and obtain emotional comfort.

Call-taker Perspective – System Functions.
For call-takers, our system provides an intelligent
assistant that eliminates the need for additional
manual operations to structure the content of cur-
rent call. Besides, triage requires call-takers to
follow strict guidelines, but the variety of emer-
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gencies and question sets can overwhelm new staff
and cause errors, even among experienced opera-
tors. To mitigate this issue, InTriage automatically
recognizes the type of emergency and prompts the
call-taker with the appropriate questions to ask.
Additionally, our system can provide extra med-
ical history to ensure call-takers do not overlook
potential risks. Finally, InTriage recommends nec-
essary emergency instructions and triage results
with supporting evidence. This feature reduces the
call-takers’ workload and helps correct inappropri-
ate triage decisions, ensuring better outcomes and
increased efficiency in handling emergency calls.

InTriage Perspective – System Implementa-
tion. As shown in Figure 2 (b), InTriage consists
of five agents of ASR, NLU, DM, KB, and NLG.

ASR Agent. Our ASR agent employs WeNet
(Yao et al., 2021) as the backbone. We collect extra
training data from audiobooks, podcasts, YouTube,
and SCDF to further fine-tune WeNet, as shown in
Appendix Table 3. One principle of data selection
is that we have chosen audio that fits the specific ac-
cents of Singapore, including Singaporean-English,
Mandarin-English, and Malay-English. At present,
InTriage is multilingual, which can support En-
glish, Chinese, and Malay simultaneously.

NLU Agent. Our NLU agent utilizes Llama-3.2-
1B. We manually annotate 2008 real cases from
SCDF for training extracting key information from
emergency calls. The annotated data are formatted
as a QA task. For example, when an emergency
call is going, the NLU agent will keep raising ques-
tion like “What is the gender of the patient/caller?”,
“Where is the patient/caller?”, or “How is the pa-
tient’s mood? Describe the patient’s mood and rate
it on a scale of 1 to 10”, NLU agent will answer
the questions to automatically fill the slots.

DM Agent. Our DM agent performs three core
functions. First, based on the incident type identi-
fied by the NLU agent, the DM agent provides real-
time prompts to call-takers, guiding them on which
questions to ask in accordance with SCDF’s estab-
lished protocols (see Figure 3). These prompts
adjust dynamically as the NLU agent continuously
refines its assessment of the incident type. Second,
the DM agent retrieves data from the EHR sys-
tem to obtain the caller’s relevant medical history
by matching extracted identity information. NLU
agent further processes this data to extract key de-
tails for display. Finally, DM agent continuously
calculates a confidence score. Each caller response
that matches a predefined question from SCDF’s

Languages Kaldi Whisper Ours RTF

Singaporean-
English

MSF Call Center 18.25 22.13 26.12 0.48
MSF-DHL 26.53 24.12 20.94 0.42

NTU Inhouse (1) 17.09 19.40 10.31 0.40
NTU Inhouse (2) 31.60 25.85 17.68 0.48
SCDF testset (1) 14.40 17.44 10.60 0.39
SCDF testset (2) 28.25 24.98 14.76 0.46
IMDA testset (1) 10.54 13.41 8.60 0.38
IMDA testset (2) 21.95 17.43 7.12 0.34
IMDA testset (2)

Hotword Boosting
- - 4.56 0.38

SCDF-Mandarin 23.47 19.89 15.29 0.37
Malay-
English

SCDF-Malay 24.16 22.65 14.25 0.34

- 21.62 20.73 14.57 0.40

Table 2: The table compares word error rates across
models. Kaldi (Povey et al., 2011) and Whisper (Rad-
ford et al., 2022) serve as baseline models. RTF (Real-
Time Factor) is reported to assess our system’s real-time
performance on an RTX 4090 GPU.

protocols contributes to an incremental score.
KB Agent. KB Agent consists of an EHR

database and predefined emergency instructions,
which can be used for retrieval.

NLG Agent. When the score calculated by the
DM agent exceeds the predefined threshold, the
NLG agent generates the final triage decision and
provides corresponding instructions. The NLG
agent shares a common LLM with the NLU agent.

5 Evaluation and Showcases

To quantitatively evaluate the performance of the
proposed InTriage, we conducted evaluations of
both the ASR agent and NLU agent. Table 2 com-
pares Kaldi, Whisper (small version, with larger
size than ours) and our ASR agent across various
cases, for Singaporean-English, Mandarin-English,
and Malay-English speech recognition. All data
are sampled from real-world data in Singapore.
Our ASR agent outperforms baselines, showing
significant improvements in word error rate, espe-
cially in Singaporean-English. Notably, the pro-
posed model achieves a 7.12 error rate on the
Imda (2) compared to Kaldi’s 21.95 and further
improves to 4.56 with Hotword Boosting. This re-
sult highlights the inherent challenge of accurately
identifying locations in speech recognition. The
model also performs better on SCDF-Mandarin
and SCDF-Malay, highlighting its effectiveness in
multilingual scenarios.

In Figure 6, we compare the accuracy of dif-
ferent caller’s attributes between TANL (Paolini
et al., 2021), LIama-3.1 8B, and our NLU agent.
Overall, our method outperforms TANL across all
attributes, with the most significant improvement
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Figure 5: Screenshot of InTriage for an emergency case with P1 level. More show cases with different triage levels
are in Appendix. All show cases in the paper use simulated conversations to ensure privacy.

Figure 6: Breakdown analysis of key information ex-
traction from emergency calls.

observed in the Gender attribute. The Address
attribute shows the lowest performance for both
methods, although our model achieves a notable
improvement from 49.63% to 62.63%. Due to
we take the extract matching as evaluation strat-
egy, this performance for location recognition is
satisfied. The average accuracy of our method
reaches 73.34%, significantly surpassing TANL’s
64.50%. This demonstrates the effectiveness of
our approach across various attribute types, par-
ticularly in challenging tasks such as Incidence
and Address prediction. LIama-3.1 8B performs
slightly better than our NLU agent overall, but our
NLU agent is only 1B in size and runs relatively
faster. Considering real-time ability, our agent is
more suitable when taking all factors into account.
Figure 7 presents a comparison of triage perfor-

Figure 7: The triage performance comparison between
InTriage with human call-taker. O-tri and U-tri indicate
Over-triage and Under-triage. More detail breakdown
results can be seen in appendix.

mance between InTriage and human call-takers.
The results show that InTriage achieves 19.25%,
22.11%, and 15.96% higher Precision, Recall, and
F1-score, respectively, compared to human call-
takers. Meanwhile, the rates of Over-triage and
Under-triage are reduced by 9.79% and 3.97%, re-
spectively. Figure 5 is a showcase with a P1 triage
level of InTriage. More results, case studies, analy-
sis and discussions can be seen in appendix.

6 Conclusion

This study presents InTriage, an AI-driven multi-
lingual TT system for alleviating ineffectiveness in
PEC triage. By automating call transcription, ex-
tracting information, and providing real-time triage
decision support, InTriage improves accuracy, and
enhances resource allocation in emergency settings.
InTriage offers a scalable solution for modernizing
TT, ensuring timely care for high-acuity cases and
alleviating the burden on call-takers.
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7 Ethics and Broader Impact Statement

This study was conducted in compliance with eth-
ical guidelines to ensure the protection of partic-
ipants’ rights, privacy, and well-being. The re-
search involved the collection, analysis, and use of
anonymized data to improve triage protocols and
enhance emergency response systems.

The data used in this study were fully
anonymized before analysis to protect the privacy
of individuals. No personally identifiable infor-
mation was accessed or stored during the research
process. Anonymization techniques ensured that
participants could not be identified directly or indi-
rectly from the data. Measures were taken to pre-
vent potential biases in the data and to ensure that
the AI system’s recommendations adhered to the
protocols established by the Singapore Civil De-
fence Force (SCDF). Regular monitoring and au-
dits were implemented to assess the accuracy and
fairness of the AI outputs. The study adhered to
ethical standards regarding the use of AI technolo-
gies in healthcare. The AI system was designed to
assist and augment human decision-making rather
than replace it. Ethical safeguards were put in place
to prevent harm and ensure the system’s use aligns
with SCDF’s protocols.

Beyond ensuring privacy and data anonymiza-
tion, we foresee two additional ethical risks that
must be managed as InTriage scales: (1) over-
reliance on automated recommendations and (2)
inadvertent propagation of bias.

(1) Although our platform is designed to support,
rather than replace human call-takers, the conve-
nience brought by automation may gradually lead
to over-reliance, potentially weakening call-takers’
independent judgment and critical thinking. This
risk is especially pronounced in emergency-care
contexts when the system provide incorrect result.
In our application scenarios, callers often speak
incoherently under emotional distress and in noisy
environments—conditions that may degrade ASR
performance and further affect the system’s overall
reliability. Without appropriate safeguards, such
over-reliance in high-stakes, unpredictable scenar-
ios may compromise the accuracy and timeliness
of medical responses, the very outcomes the sys-
tem is intended to improve.

To curb over-reliance, we plan to clearly label
all InTriage outputs as advisory only, reinforc-
ing that the system is meant to support, not re-
place—human decision-making. Final clinical and

dispatch decisions will remain the responsibility
of trained call-takers. Furthermore, we aim to im-
plement regular refresher training programs that
help call-takers interpret model confidence scores,
recognize edge cases where automation may be un-
reliable, and apply override rules when necessary.
These training sessions will include scenario-based
simulations that expose call-takers to challenging
cases where the system might fail or produce un-
certain outputs, thereby cultivating vigilance and
situational awareness. Additionally, we intend to
integrate real-time uncertainty indicators into the
interface, such as low-confidence alerts, flagging
ambiguous inputs, or highlighting cases with de-
graded ASR quality. These indicators will help
users critically assess system recommendations
rather than accept them at face value. Over time,
we will also explore adaptive user interfaces that
modulate the level of automation based on con-
textual reliability, for instance, reducing system
assertiveness when acoustic conditions are poor or
when user hesitation is detected. Ultimately, pro-
moting a culture of active human oversight, where
AI is seen as a collaborative tool rather than an
infallible authority.

To counter potential biases from imbalanced
training data, such as under-representation of non-
standard accents or minority medical histories, we
intend to conduct quarterly fairness audits across
demographic subgroups and incident types. When
disparities exceed predefined thresholds, we will
apply targeted data augmentation or model fine-
tuning. An internal ethics board comprising clin-
icians, technologists, and community representa-
tives will review each audit and approve any al-
gorithmic updates before deployment, ensuring
continuous human oversight and accountability
throughout the system’s life cycle.
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A Appendix

A.1 Integration Challenges

Although InTriage convincingly demonstrates
strong technical merit, navigating the complexi-
ties of deployment within a tightly regulated emer-
gency care ecosystem remains a significant chal-
lenge. The most significant friction point is likely
to come from government policy governing call
monitoring and data sovereignty: transcribed audio
and extracted medical data must comply with gov-
ernment policies. These rules impose strict limits

on where audio can be stored, how long record-
ings may be retained, and which agencies may ac-
cess them. These constraints could delay real-time
hand-offs between InTriage, national EHR repos-
itories, and ambulance-dispatch consoles. Also,
call-takers may resist automation that appears to
“shadow” or audit their work, especially if they
fear increased scrutiny or deskilling. Overcoming
these hurdles will require early engagement with
regulators to codify permissible data flows, the in-
troduction of opt-in call-monitoring policies that
clarify accountability, and change-management
programmes that position InTriage as a decision-
support ally rather than a replacement. Without
such policy alignment and workforce buy-in, even
a well-validated AI pipeline risks limited uptake or
protracted pilot phases within emergency services.

A.2 Training data

Table 3 provides a comprehensive summary of the
training data used to develop the ASR agent of In-
Triage. The dataset is sourced from four primary
audio types: Audiobooks, Podcasts, YouTube, and
SCDF. Each source is characterized by varying
acoustic conditions to ensure robustness across dif-
ferent environments and speaker profiles.

The Audiobook dataset comprises 2,655 tran-
scribed hours and a total of 11,982 hours, capturing
a wide range of reading voices across various ages
and accents. Podcasts contribute 3,498 transcribed
hours and a total of 9,254 hours, reflecting diverse
conditions, including clean audio, background mu-
sic, indoor and near-field recordings, and spon-
taneous speech. The YouTube dataset provides
3,845 transcribed hours and a total of 11,768 hours,
covering both clean and noisy environments, with
indoor, outdoor, near-field, and far-field recordings,
as well as reading and spontaneous speech. Lastly,
SCDF data includes 500 transcribed hours, com-
prising three years of real emergency call data from
over 360,000 cases, providing real-world emer-
gency scenarios. This diverse collection of audio
data, with various acoustic conditions and speaker
demographics, was essential in creating a robust
ASR system capable of handling a wide range of
real-world emergency call situations. At present,
only transcribed data is used as train data. We will
further enhance the ASR agent by employing more
data in the future.
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Audio
Source

Transcribed
Hours

Total
Hours

Acoustic Condition

Audiobook 2,655 11,982 Reading, Various ages and accents
Podcast 3,498 9,254 Clean or background music, Indoor, Near-field, Spontaneous, Var-

ious ages and accents
YouTube 3,845 11,768 Clean and noisy, Indoor and outdoor, Near- and far-field, Reading

and spontaneous, Various ages and accents
SCDF 500 - 3-years of real data from SCDF, more than 360,000 cases.

Table 3: Summary of used training data for ASR agent of InTriage.

Label Precision (%) Recall (%) F1 (%) Over-triage Rate (%) Under-triage Rate (%)
P1 18.82 / 28.27 65.31 / 77.14 29.22 / 41.38 0.00 / 0.00 34.69 / 22.86

P2 80.81 / 85.90 54.79 / 59.45 65.31 / 70.27 44.52 / 39.94 0.68 / 0.61

P3 50.00 / 83.33 6.45 / 31.25 11.43 / 45.45 93.55 / 68.75 0.00 / 0.00

Macro-Average 49.88 / 65.84 33.52 / 55.63 32.77 / 52.03 – –

Micro-Average 52.15 / 60.23 45.01 / 60.09 45.32 / 60.16 – –

Avg. 46.02 / 36.23 11.79 / 7.82

Table 4: Triage performance breakdown. Black text indicates human performance, while red text represents the
performance of our InTriage system.

A.3 Evaluation data

Table 6 presents the various s used to evalu-
ate the performance of the ASR system across
different language varieties, primarily focusing
on Singaporean-English, Mandarin-English, and
Malay-English. The s were carefully selected to
cover a range of real-world scenarios to ensure ro-
bustness in different emergency communication
contexts.

For Singaporean-English, multiple s were em-
ployed, including data from the Ministry of So-
cial and Family Development, Singapore (MSF),
MSF-DHL Express, Singapore (DHL), and NTU
Inhouse recordings. Additionally, s from the Sin-
gapore Civil Defence Force (SCDF) were used,
comprising two distinct s (SCDF testset (1) and
SCDF testset (2)), reflecting emergency call scenar-
ios. The Infocomm Media Development Authority,
Singapore (IMDA) testsets (1 and 2) were also
included to assess performance in broader com-
munication contexts. Notably, IMDA testset (2)
Hotword Boosting was used to evaluate the ASR
system’s ability to recognize critical keywords and
phrases in emergency situations.

For Mandarin-English and Malay-English, the
s were sourced from SCDF, labeled as SCDF-
Mandarin and SCDF-Malay respectively. These
two datasets support language-mixing between
Mandarin, Malay, and English languages. Under
such conditions, it ensures that the ASR system is

evaluated across a multilingual context with differ-
ent accent, reflecting the linguistic diversity of Sin-
gapore’s population and the need for multilingual
support in emergency response systems. The com-
prehensive inclusion of these s highlights the ASR
system’s capacity to handle various accented En-
glish varieties and language-switched speech, en-
suring reliable performance in multilingual, spon-
taneous, and formal communication settings.

Table 4 provides a detailed performance com-
parison between human call-takers and our pro-
posed InTriage system across various triage cat-
egories. Overall, InTriage demonstrates substan-
tial improvements in critical performance metrics.
For instance, in category P1, our system notably
increases precision from 18.82% to 28.27% and
recall from 65.31% to 77.14%, resulting in an im-
provement in the F1 score from 29.22% to 41.38%.
Even more pronounced improvements are observed
in category P3, with precision significantly rising
from 50.00% to 83.33%, recall increasing from
6.45% to 31.25%, and consequently, the F1 score
markedly improving from 11.43% to 45.45%.

The results further indicate that while both hu-
man call-takers and InTriage exhibit relatively low
under-triage rates, over-triage remains a notable
challenge. This primarily stems from the conser-
vative, safety-first approach generally adopted by
human call-takers, as evidenced by the particularly
high over-triage rates observed in categories P2 and
P3. Even in cases not clearly urgent, human call-
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Case 1

ASR
(part results)

...
Operator: oh did she happen to choke on anything
Caller: oh, no i am not sure
Operator: uh if she speaks to you is it in full sentence or word by word
Caller: half half yup correct
Operator: can I say word by word
Caller: ya just word by word
...

NLU
Name Gender Age Location Incidence

[mask] female 66 [mask] breathing
problem

Triage P1+ SA neural

Evidence breathing problem → when s/he speaks, is it in full sentence or only one word at a time ? : one/few words

Details

is s/he choking now? : no (unknown)

can s/he respond in the usual way when you call /tap (alert)? : not given

when s/he speaks, is it in full sentence or only one word at a time (long/short cry)? : One/few words

is s/he coughing blood? : not given

does s/he have asthma or any lung disease? : not given

Case 2

ASR
(part results)

...
Operator: is there any blood
Caller: no (oh), on my head, i feel very painful
Operator: if anyone trapped in the car
Caller: no no one trapped in the car
...

NLU
Name Gender Age Location Incidence

[mask] - - [mask] motor
vehicle
accident

Triage P3 (P2) SA anxious

Evidence motor vehicle accident-> is there any blood? : no

Details

what vehicle(s)is/are involved? : vehicle

is anyone trapped (pinned) in/under the vehicle ? : no

was anyone thrown (flung) from the vehicle?: not given

is everyone involved in the accident able to walk (alert)?: not given

are there any obvious injuries? : not given

is there any blood? : no (yes)

Table 5: Case study of two flawed examples. Erroneous elements are highlighted in red, and corrections are
provided within brown parentheses.

takers tend to dispatch ambulances as a precaution,
leading to an extremely high over-triage rate of up
to 93.55% in category P3. In contrast, InTriage,
trained using hospital-derived goal triage labels,
is less influenced by subjective biases. We antici-
pate that InTriage will provide additional objective
guidance to assist human call-takers in reducing
over-triage rates, thereby optimizing ambulance

resource utilization.

A.4 Cases studies
Table 5 presents two representative error cases that
illustrate the different ways in which component-
level failures occur.

In Case 1, the ASR module accurately tran-
scribes all salient utterances, allowing the evidence
extractor to trigger on the critical “breathing prob-
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Figure 8: Screenshot of InTriage for an emergency case with P1+ level.

Figure 9: Screenshot of InTriage for an emergency case with P2 level.

lem” pattern. However, the NLU agent misiden-
tifies ”no i am not sure" as “no" (highlighted in
red; correct value shown in brown parentheses).
Because the caller’s description is somewhat am-
biguous and includes the literal expression “no,”
the error is understandable. Nevertheless, it did
not affect the accuracy of the final triage outcome.
This example highlights the system’s robustness to
NLU errors in non-critical fields when key clinical
triggers are correctly identified.

In Case 2, the caller confirms the presence of
bleeding after a motor-vehicle collision, but ASR
mistranscribes the response as “no” instead of “oh”.
This may be due to the similar pronunciation of the
two words in a noisy background. Consequently,
NLU extracts the feature no bleeding, and the in-
ference module downgrades the incident from the

correct P2 (potentially life-threatening) to P3 (less
urgent). This error highlights how a single misrec-
ognized word can sometimes lead to an incorrect
final triage outcome. As such, there is still signif-
icant room for further research in this area. This
also underscores why we position our system as
decision support rather than decision making.

A.5 More show cases
Figure 8, 9, 10 provide three examples with correct
results for P2, P3, and P4 triage levels. Based
on the different triage levels, the call-taker will
make the final decision on whether to dispatch an
ambulance and determine the appropriate type of
ambulance to be dispatched.
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Figure 10: Screenshot of InTriage for an emergency case with P3 level.
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