
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 851–861
November 4-9, 2025 ©2025 Association for Computational Linguistics

Interactive Training:
Feedback-Driven Neural Network Optimization

Wentao Zhang
University of Waterloo

w564zhan@uwaterloo.ca

Yang Young Lu
University of Wisconsin-Madison

ylu97@wisc.edu

Yuntian Deng
University of Waterloo
yuntian@uwaterloo.ca

Abstract

Traditional neural network training typically
follows fixed, predefined optimization recipes,
lacking the flexibility to dynamically respond
to instabilities or emerging training issues. In
this paper, we introduce Interactive Training,
an open-source framework that enables real-
time, feedback-driven intervention during neu-
ral network training by human experts or auto-
mated AI agents. At its core, Interactive Train-
ing uses a control server to mediate commu-
nication between users or agents and the on-
going training process, allowing users to dy-
namically adjust optimizer hyperparameters,
training data, and model checkpoints. Through
three case studies, we demonstrate that Interac-
tive Training achieves superior training stabil-
ity, reduced sensitivity to initial hyperparame-
ters, and improved adaptability to evolving user
needs, paving the way toward a future training
paradigm where AI agents autonomously mon-
itor training logs, proactively resolve instabili-
ties, and optimize training dynamics.

1 Introduction

Traditional neural network optimization typically
involves setting hyperparameters and defining train-
ing strategies before execution, after which practi-
tioners passively observe the training process until
it completes or fails (Bergstra and Bengio, 2012).
Despite its widespread adoption, this static training
paradigm lacks flexibility and responsiveness once
training begins. In practice, unforeseen challenges
often arise mid-training, such as unstable loss dy-
namics, underperformance on specific tasks, or van-
ishing gradients in certain network components, all
of which necessitate human intervention (Takase
et al., 2023; OLMo et al., 2024). Addressing these
issues typically requires prematurely terminating
the training job, manually adjusting hyperparame-
ters or data configurations, and restarting the pro-
cess (Zhang et al., 2022). On managed clusters,

repeatedly resubmitting jobs exacerbates these in-
efficiencies, leading to wasted computational re-
sources and delays due to job-queue overhead.

In this paper, we introduce Interactive Training,
a framework enabling real-time feedback-driven
optimization of neural networks, addressing the
limitations of static training paradigms. Inspired
by the intuitive act of adjusting a stove based on
immediate sensory feedback during cooking, In-
teractive Training allows human experts or auto-
mated AI agents to dynamically intervene during
training. Unlike traditional monitoring tools that
only visualize training metrics, our approach trans-
forms neural network optimization into an active
and responsive process, enabling practitioners to
continuously observe training progress, immedi-
ately react to emerging issues, and interactively
guide the model toward improved outcomes.

Interactive Training enables users (human ex-
perts or automated AI agents) to dynamically adjust
optimizer parameters, such as modifying learning
rates in response to sudden spikes in loss. It sup-
ports mid-training updates to training data, allow-
ing models to incorporate new data collected from
real-world deployments without restarting train-
ing. Users can perform model-level interventions,
such as reverting to previous checkpoints upon en-
countering unstable loss dynamics, or resetting spe-
cific parameters when invalid values are detected.
The framework also provides gradient-level con-
trol, allowing users to dynamically set gradient clip-
ping thresholds based on observed gradient norms,
rather than relying on heuristic thresholds.

We implement Interactive Training as an open-
source library built on Hugging Face Transformers’
widely adopted Trainer class (Wolf et al., 2020). At
the core of our implementation is a control server
acting as an intermediary between human experts
(or AI agents) and the ongoing training process.
This control server continuously listens on a pre-
defined network port for incoming commands is-
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Figure 1: Interactive Training Frontend Dashboard. The left panel provides control tabs organized by Optimizer,
Model, Checkpoint, and Dataset, allowing users to dynamically send intervention commands during training (e.g.,
adjusting the learning rate via the Optimizer panel shown). The right side displays real-time visualizations of
training metrics, such as loss and gradient norm. Unlike traditional monitoring tools, this interface supports active
two-way communication, enabling users to directly intervene and influence ongoing training processes in real-time.

sued by users. Upon receiving commands (e.g.,
“set learning rate to 1e-5”), it translates these in-
structions into corresponding updates to optimizer
parameters, model components, dataloaders, or gra-
dients via callback functions invoked after each
gradient step. The control protocol exposes its API
endpoints through FastAPI. To facilitate ease of
use for human experts, we also developed a React-
based visualization dashboard, conceptually sim-
ilar to Weights & Biases (Biewald, 2020), which
displays real-time training metrics across multiple
plots (Figure 1). Crucially, unlike traditional moni-
toring tools, our frontend supports two-way com-
munication: it not only visualizes training dynam-
ics but also enables users to actively send control
commands directly to the training loop.

We empirically validate Interactive Training
through three case studies. First, we demonstrate
that experienced human developers, leveraging
real-time interactive adjustments, achieve supe-
rior optimization results compared to traditional
static optimization methods on a language model-
ing task. Second, we showcase the potential for

automated interventions by demonstrating that a
general-purpose LLM-based AI agent, prompted
with training logs, can autonomously correct subop-
timal initial hyperparameters. Finally, we illustrate
how our framework enables models to adapt in real-
time to user-generated data collected during actual
deployments (Albalak et al., 2023; Wettig et al.,
2025), using a diffusion-based image generation
application (Ho et al., 2020). These studies col-
lectively show exciting potential for human- and
AI-driven interactive training.

Interactive Training transforms neural network
optimization from a passive, static task into an ac-
tive and responsive process. We envision a future
in which model training is fully interactive, with
hyperparameters, training data, and even loss func-
tions dynamically adjusted based on mid-training
feedback. Such interventions could be performed
by human developers or, with even greater poten-
tial, by specialized automated AI agents designed
explicitly to monitor training dynamics and eval-
uate intermediate model checkpoints. By bridg-
ing mid-training feedback with dynamic interven-
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Figure 2: System Architecture. Users interact through a React-based Frontend Dashboard, which visualizes training
metrics and sends control commands via REST API. The FastAPI-based Control Server mediates communication
by forwarding user commands through command queues to the Interactive Trainer, implemented on top of Hugging
Face’s Trainer class. The trainer applies received commands via callback functions and sends real-time training
updates back to the Control Server, which then broadcasts them to the Frontend Dashboard through WebSockets.

tions, Interactive Training represents a paradigm
shift toward continually improving neural net-
work training workflows. To facilitate this vision,
we have made our implementation openly avail-
able at https://github.com/yuntian-group/
interactive-training, with an online demo ac-
cessible at https://interactivetraining.ai.

2 Interactive Training Framework

Figure 2 provides an overview of our system archi-
tecture. At a high level, Interactive Training con-
sists of three main components: a Control Server,
which mediates communication between the trainer
and users, managing commands, state updates, and
training metrics; an Interactive Trainer, which per-
forms model training and responds dynamically to
intervention commands; and a Frontend Dashboard,
which provides visualizations of training progress
and enables users to issue real-time interventions.

2.1 Control Server
The Control Server acts as the central communica-
tion hub in Interactive Training, mediating interac-
tions between the frontend dashboard and the inter-
active trainer. It serves two primary roles: receiving
and dispatching user intervention commands, and
broadcasting training updates back to clients.

Implemented using FastAPI, the Control Server
exposes a set of APIs, allowing clients such as the
frontend dashboard or automated AI agents to send
intervention commands. Each command is repre-
sented as a JSON message specifying the action
type (e.g., adjusting learning rates, checkpoint man-
agement) and its parameters (e.g., desired learning
rate value). Upon receiving a command, the server
enqueues it into command queues categorized by
command type for asynchronous processing.

To enable real-time training updates, through-
out training, the Interactive Trainer reports metrics
such as loss values, gradient norms, and training
status updates back to the server via event queues.
The Control Server then broadcasts these updates to
all subscribed clients, allowing users or automated
agents to make timely intervention decisions.

Additionally, the server maintains state informa-
tion such as training checkpoints, command history,
and branched training logs. This state management
not only supports reproducibility by logging each
intervention but also enables interactive experimen-
tation, such as reverting training to previous check-
points or branching training trajectories.

The Control Server’s modular design supports
straightforward extensibility. We detail the cur-
rently supported intervention commands and dis-
cuss extensibility considerations in Appendix A.

2.2 Interactive Trainer

The Interactive Trainer performs the actual model
training, dynamically responding to intervention
commands relayed from the Control Server. It ex-
tends Hugging Face’s widely used Trainer class,
augmenting it with callback functions that enable
real-time interactivity without requiring significant
changes to existing training scripts.

At its core, Interactive Trainer is implemented
using custom callback functions passed to Trainer:

• InteractiveCallback: Adjusts hyperparameters.

• CheckpointCallback: Saves/loads checkpoints.

• LoggingCallback: Captures training metrics.

• RunPauseCallback: Pauses/resumes training.
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1 from transformers import Trainer
2 from interactive_training import make_interactive # (1) Import helper
3

4 # (2) Wrap the standard Trainer class
5 InteractiveTrainer = make_interactive(Trainer)
6

7 # (3) Use them exactly as you would the original Trainer
8 trainer = InteractiveTrainer (...)
9

10 trainer.train() # Training is now fully interactive!

Figure 3: Code changes required to enable Interactive Training.

These callbacks communicate directly with the
Control Server via dedicated command and event
queues. Upon receiving commands from the Con-
trol Server (e.g., “set learning rate to 1e-5”),
the respective callback updates the trainer’s internal
state at the next available gradient step, ensuring
minimal disruption to the ongoing training loop.

In addition to callbacks for trainer control and
metric logging, our framework also supports dy-
namic training data updates. We provide a function
make_interactive_dataset, which can wrap Py-
Torch’s Dataset and IterableDataset classes to
make them controllable through user instructions.

Furthermore, the Interactive Trainer supports
branching training trajectories. When reverting
to earlier checkpoints, it can automatically create
new branches of the training state, allowing multi-
ple parallel or sequential training experiments to be
compared. Each branch maintains its own isolated
training history and checkpoints, providing a clear
and reproducible record of experimentation paths.

2.3 Frontend Dashboard

The Frontend Dashboard (Figure 1) provides a user-
friendly interface that enables users to visually
monitor training progress and intervene in real-
time. Built using React and TypeScript, the dash-
board displays visualizations of key training met-
rics updated continuously via WebSocket connec-
tions established with the Control Server.

Unlike traditional monitoring dashboards that
offer only passive visualizations, our frontend sup-
ports two-way communication. Users can dynami-
cally issue intervention commands using intuitive
control panels organized by intervention type (Op-
timizer, Model, Checkpoint, Dataset). Upon is-
suing a command, the frontend sends structured
requests through RESTful API calls to the Control
Server, which then communicates with the Interac-
tive Trainer to apply the interventions at runtime.

Furthermore, the dashboard supports branched
training trajectories, visualizing multiple experi-
ment paths originating from a common checkpoint,
allowing users to compare results from different
settings.

Additionally, the dashboard includes a log con-
sole at the bottom, which displays logs of each com-
mand issued, confirmation responses from the train-
ing process, as well as warnings and critical train-
ing events (e.g., “Gradient overflow detected”).

2.4 Usage Example

To illustrate the simplicity of integrating Interactive
Training into existing workflows, we highlight the
minimal required modifications to a typical training
script in Figure 3. With minor adjustments, users
immediately gain interactive control over training.

3 Case Studies

3.1 Human-in-the-Loop Intervention

We first demonstrate the benefits of human-in-the-
loop interactive training by finetuning GPT-2 (Rad-
ford et al., 2019) on Wikitext-2 (Merity et al., 2017).
Our goal is to evaluate whether human interven-
tions could yield improved optimization results.

Baseline For the baseline, we trained the model
using a fixed learning rate schedule, starting with
an initial learning rate of 1× 10−5 and linearly an-
nealing it to zero over the entire training duration.

Human Intervention The interactive training
setup mirrored the baseline, except that a human
expert dynamically adjusted the learning rate based
on training dynamics visualized in the dashboard.

Results Figure 4a compares the results of both
approaches. The interactive method achieves lower
validation losses than the static baseline. By in-
specting the learning rate schedules (Figure 4b), we
find that the human expert effectively responded to
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(a) Validation loss curves (b) Learning rate schedules

Figure 4: Comparison of human-in-the-loop interactive training versus traditional static training for finetuning
GPT-2 on Wikitext-2. (a) Validation losses. Dynamic human interventions lead to improved optimization compared
to the static baseline, which uses a fixed learning rate schedule. (b) Actual learning rates used over steps.

the model’s real-time behavior. For instance, upon
observing training loss oscillation resulting from
an initially high learning rate, the expert reduced
the learning rate, improving convergence.

3.2 LLM-in-the-Loop Intervention

Next, we investigate the feasibility of automating
training interventions by leveraging an AI agent.
Specifically, we evaluate whether an LLM, pro-
vided with training logs, can correct training insta-
bilities caused by suboptimal hyperparameters.

Setup We follow the same setup as in the previ-
ous study but deliberately introduce instability by
initializing the training with an excessively large
learning rate (5× 10−3) and disabling the learning
rate scheduler. This excessively high learning rate
causes poor convergence of the training.

Instead of human interventions, we introduce
an automated LLM-based agent, using OpenAI’s
o4-mini model (OpenAI, 2025). At every step,
the LLM agent receives a textual summary of re-
cent training logs—including current and historical
training losses, validation losses, learning rates,
and step counts—and is prompted to determine the
next action regarding the learning rate (doubling,
halving, or keeping it unchanged). The detailed
prompt template is provided in Appendix B.

Results The results of this automated interven-
tion approach are in Figure 5. LLM-in-the-loop
training recovers from the initial suboptimal learn-
ing rate by recommending timely reductions. This
study demonstrates the potential of using AI agents
to automate interactive training interventions.

3.3 Real-time Training Data Updates
Finally, we demonstrate how Interactive Training
enables continuous model improvement through
dynamic updates to training data collected from
real-world deployments. We apply our frame-
work to NeuralOS (Rivard et al., 2025), which
uses a diffusion model to simulate a real operat-
ing system by predicting the next screen frame
given user mouse and keyboard inputs. After
deploying the initial NeuralOS model online at
https://neural-os.com, we continuously col-
lected real user interactions.

Setup Initially, the NeuralOS model was trained
for two months on a large synthetic dataset gener-
ated from scripted interactions. After deployment,
we gathered 746 demonstration sequences (88K
frame transitions) from real user interactions over
a period of 14 days. Using the Interactive Train-
ing framework, we dynamically updated the train-
ing data of a continuously running finetuning pro-
cess, incorporating newly collected data on-the-fly.
Additionally, model checkpoints during finetuning
were continuously uploaded, updating the deployed
model to reflect improvements in real-time.

Results After dynamically finetuning NeuralOS,
we observed substantial improvements, especially
for tasks frequently performed by actual users, such
as interacting with the Firefox browser and creat-
ing new folders. Representative examples illus-
trating the significant improvement achieved by
incorporating real user data are shown in Figure 7
(Appendix C). This case study demonstrates that
Interactive Training effectively enables deployed
models to adapt to real-world usage patterns.
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(a) Validation loss curves (b) Learning rate schedules

Figure 5: Comparison of LLM-in-the-loop automated intervention versus static training with a fixed, excessively
large learning rate. (a) Validation losses. LLM-based intervention effectively stabilizes optimization. (b) Learning
rate trajectory. Initially high learning rate is reduced by the LLM agent in response to observed loss instabilities.

4 Limitations

Reproducibility Different experts or AI agents
training the same model might perform different
interventions, leading to different outcomes. While
we acknowledge this inherent variability, it is worth
noting that large-scale neural network training to-
day already involves substantial expert intervention.
For instance, Meta’s OPT language model required
at least 35 manual restarts due to hardware failures
and involved manually selecting checkpoints to re-
cover from loss divergences (Zhang et al., 2022).
To mitigate reproducibility concerns, our imple-
mentation logs all interventions, enabling replay.

Expertise Requirement Interactive training re-
quires human experts or automated agents to pos-
sess expertise to identify appropriate intervention
points and apply effective corrective actions. AI
agents may lack adequate demonstrations in their
training data to reliably intervene, due to the nov-
elty of this optimization paradigm. However, we
view this limitation as an opportunity, motivating
future research into specialized intervention agents.

5 Future Work

Feedback-Driven Data Adjustment Real-time
interventions could enable new optimization strate-
gies. Users or AI agents could periodically evaluate
intermediate checkpoints to identify model weak-
nesses and then dynamically adjust training data
accordingly, either by injecting targeted synthetic
examples, or by adjusting data mixture weights to
emphasize relevant existing examples.

Training Health Diagnostic Metrics Just as pe-
riodic checkups help humans address potential
health issues, model training could benefit from
analogous health monitoring metrics. One promis-
ing direction is to develop “health indicators” such
as the standard deviation of hidden states across
training examples to detect “dead” neurons (Ioffe
and Szegedy, 2015). More sophisticated analy-
ses (Hu et al., 2023) could also provide signals
prompting human or AI interventions.

AI Agents for Training Intervention Finally,
we envision a future where AI agents autonomously
monitor health indicators and proactively intervene
to improve training stability and efficiency. While
this paper demonstrates simple log-based prompts
to a general-purpose LLM, specialized intervention
agents explicitly trained to detect anomalies and
guide training represent a promising direction.

6 Related Work

Human-in-the-Loop Machine Learning A rich
body of work has explored human interventions
during model training. In active learning, the
learning algorithm remains in control but queries
human annotators for labels on selected exam-
ples (Mosqueira-Rey et al., 2023). Interactive ma-
chine learning goes further by allowing human
feedback beyond just labeling, such as by cor-
recting predictions or adjusting inputs (Fails and
Olsen Jr, 2003). Another paradigm, machine teach-
ing, gives human domain experts explicit control
over the training process, such as by designing the
sequence or structure of tasks to transfer knowl-
edge to the model (Simard et al., 2017). These
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approaches demonstrate the value of human insight
during training; however, they often rely on pre-
defined schedules or specific forms of input rather
than truly real-time, open-ended intervention. Our
Interactive Training framework aims to allow hu-
mans (or AI agents) to intervene training at any
moment, which extends human-in-the-loop learn-
ing from static plans to live control.

Automated ML and Adaptive Optimization
Orthogonal to human guidance, AutoML research
has developed methods to automate hyperparam-
eter tuning and training optimization. Traditional
approaches include Bayesian optimization and ban-
dit strategies that adaptively select hyperparameter
configurations across trial runs (Li et al., 2018).
More recent techniques seek to adapt within a
single run: learning rate scheduling is routinely
used to vary the step size during training, and re-
searchers have even applied reinforcement learning
to discover optimized scheduling policies automat-
ically (Subramanian et al., 2023; Xu et al., 2019).
Also related to our work, Population-Based Train-
ing (PBT) (Jaderberg et al., 2017) learns an auto-
matic dynamic schedule of hyperparameters. Inter-
active Training complements AutoML by enabling
both automated agents and human experts to adjust
training trajectories in real time. Instead of treating
training as a black-box process to tune from the out-
side, our framework opens the loop, so scheduling
decisions and hyperparameter tweaks can occur on
the fly, guided by live signals or human judgment.

AI Agents for Training Control and Debugging
Researchers have started to consider AI agents as
participants in the training loop. For example, Ep-
person et al. (2025) developed an interactive de-
bugger for multi-agent AI workflows that allows
a user to reset agents to earlier states and alter
their messages mid-execution. Modern visualiza-
tion platforms are beginning to integrate automated
agents to monitor experiment runs, detect anoma-
lies, and even suggest hyperparameter adjustments
based on the accumulated training data (Relevance
AI, 2025). However, such agents typically remain
advisory tools; they do not directly plug into the
training loop to enact immediate interventions. Our
Interactive Training framework builds on this idea
by permitting both humans and AI agents to not
only analyze but also modify a running training job.
This bridges a gap between AI-driven monitoring
and actual training control, turning insights into
on-the-fly actions.

7 Conclusion

We presented Interactive Training, a framework
that reimagines neural network training as an in-
teractive, feedback-driven process, with either hu-
mans or AI agents dynamically controlling training
strategies mid-training. Through real-time interven-
tions, Interactive Training enables adjusting opti-
mization parameters, training data, and model com-
ponents on-the-fly based on insights gained during
training. Case studies show advantages over tradi-
tional static training paradigms: improved accuracy,
reduced sensitivity to initial hyperparameters, and
real-time adaptation to evolving application needs.

Interactive Training introduces a new dimension
to training workflows: responsiveness. Just as mod-
ern software development evolved from rigid re-
lease cycles toward agile and continuous integra-
tion practices, we advocate for a parallel shift in
neural network optimization. The training process
need not remain a static black box where practi-
tioners must passively await results. Instead, it can
become an interactive process, allowing continu-
ous monitoring and intervention based on emerging
information and feedback. We have open-sourced
our framework, inviting the community to provide
feedback and contribute to further development.
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A Supported Interactive Commands

Interactive Training supports real-time intervention
through structured commands. We first describe
the general command message format, followed by
details of supported commands grouped by cate-
gory.

A.1 Command Message Format

All commands follow a uniform JSON message
structure:

{
"command": "[command_name]",
"args": "[command_arguments_as_json]",
"time": [unix_timestamp],
"uuid": "[unique_identifier]",
"status": "[status]"

}

• command: Type of command (as listed below).

• args: JSON-formatted arguments specific to the
command.

• time: UNIX timestamp indicating when the com-
mand was issued.

• uuid: Unique identifier for tracking command
status.

• status: Current execution state, which can be
one of: "requested", "pending", "running",
"completed", "success", or "failed".

A.2 Supported Commands

Interactive Training currently supports the follow-
ing real-time intervention commands, organized by
their intended use:

Optimizer Adjustment

• update_optimizer: Adjust optimizer hyperpa-
rameters (e.g., learning rates, momentum, weight
decay) during training.

Example:

{
"command": "update_optimizer",
"args": "{\"lr\": {\"value\": 1e-5}}"

}

Checkpoint Management

• save_checkpoint: Save the current model state
as a checkpoint.

• load_checkpoint: Load a previously saved
checkpoint and optionally branch training from
that point.

Example:
{
"command": "load_checkpoint",
"args": "{\"uuid\": \"[uuid]\"}"

}

Training Control

• pause_training: Pause the training loop.

• resume_training: Resume training after being
paused.

• stop_training: Terminate the training process
immediately.

Model Interventions

• model_layer_operation: Run a method of a
layer such as resetting or reinitializing specified
model parameters (e.g., upon detecting NaN val-
ues or activation collapse).

• model_layer_parameter_update: Update
layer hyper-parameter, e.g. dropout value of a
dropout layer.

Dataset Management

• update_dataset: Update training data mid-
training, e.g., to incorporate newly collected user
data.

• update_dataset_runtime_hyperparameters:
Update dataset run time hyper-parameters, e.g.
the mixing ratio of different part or subset of
datasets.

Evaluation and Monitoring

• do_evaluate: Trigger a model evaluation step
on the validation dataset.

A.3 Extensibility
Our framework is designed for easy extensibility.
New commands and interactions can be added by
defining new command types, registering handlers,
and extending the control server and trainer call-
backs. We encourage community contributions of
new intervention commands and interaction pat-
terns via our open-source repository.
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You are an expert in language model tuning. You are going to adjust the learning rate of fine-tuning a GPT-2 model using the
WikiText-2 train data with a constant learning rate scheduler. Your goal is to minimize the final validation loss.

# Log History

current step: {{current_step}}

current learning rate:

{{current_lr}}

learning rate history:

{{lr_history}}

train loss history:

{{train_loss_history}}

validation loss history:

{{valid_loss_history}}

# Instruction

- Based on the log history, decide how to change the learning rate. The log history includes metrics like validation loss,
training loss, and epoch count.

- You MUST output choose between following three actions:
1. "Double", double the learning rate
2. "Half", reduce the learning rate to 50% of the learning rate.
3. "Same", make no change.

- Respond in JSON format with an explanation within 100 words:

{
"explanation": "<Explanation in 100 words>",
"action": "<'Double', 'Half', or 'Same'>"

}

# Response

Figure 6: Prompt used for the LLM-based automated learning rate adjustment.

B Detailed LLM Prompt

The exact textual prompt provided to the
LLM-based intervention agent for automated
learning rate adjustments is shown in Fig-
ure 6. At each intervention point, the place-
holders such as current_step, current_lr,
lr_history, train_loss_history, and
valid_loss_history are dynamically re-
placed with the most recent training data and
metrics before the prompt is sent to the LLM
agent. The agent is explicitly instructed to respond
with a clear JSON-formatted decision—choosing
either to double, halve, or keep the learning rate
unchanged—accompanied by a brief explanation
within 100 words.

C Results for NeuralOS Case Study

Figure 7 shows representative qualitative com-
parisons illustrating the improvements obtained
by finetuning the NeuralOS model with real-time
training data updates from actual user interac-
tions collected through an online demo at https:

//neural-os.com. The figure consists of four
rows: the top two rows depict model behavior when
interacting with the Firefox browser, comparing
performance before (first row) and after (second
row) interactive finetuning. Before finetuning, at-
tempts to open Firefox usually failed, leaving the
screen on the desktop. This is because opening
Firefox is challenging to predict, as the browser
takes a longer time to launch compared to other
applications (often more than 40 frames after click-
ing). After finetuning, however, opening Firefox is
typically successful, due to frequent occurrences of
Firefox interactions in the collected real user data.
Similarly, the bottom two rows demonstrate the
model’s improved capability in creating new fold-
ers, comparing behavior before (third row, unsuc-
cessful) and after (fourth row, successful) incorpo-
rating real user data. These examples highlight how
Interactive Training effectively enables the model
to naturally adapt to tasks frequently attempted by
real users.
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Pred. Frame (early) · · · Pred. Frame · · · Pred. Frame · · · Pred. Frame (late)

Firefox Interaction (Before Real-Time Training Data Updates, Unsuccessful)

Firefox Interaction (After Real-Time Training Data Updates, Successful)

Folder Creation (Before Real-Time Training Data Updates, Unsuccessful)

Folder Creation (After Real-Time Training Data Updates, Successful)

Figure 7: Qualitative comparison illustrating improvements in the NeuralOS model’s behavior before and after
real-time training data updates using data collected from real users. The first two rows demonstrate model predictions
when launching the Firefox browser, while the last two rows demonstrate creating a new folder. For each task, the
top row is before finetuning and the bottom row after finetuning.
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