The iRead4Skills Intelligent Complexity Analyzer

Wafa Aissa, Raquel Amaro, David Antunes, Thibault Bañeras-Roux, Jorge Baptista, Alejandro Catala, Luís Correia, Thomas François, Marcos Garcia, Mario Izquierdo-Álvarez, Nuno Mamede, Vasco Martins, Miguel Neves, Eugénio Ribeiro, Sandra Rodriguez Rey, Elodie Vanzeveren


Abstract
We present the iRead4Skills Intelligent Complexity Analyzer, an open-access platform specifically designed to assist educators and content developers in addressing the needs of low-literacy adults by analyzing and diagnosing text complexity. This multilingual system integrates a range of Natural Language Processing (NLP) components to assess input texts along multiple levels of granularity and linguistic dimensions in Portuguese, Spanish, and French. It assigns four tailored difficulty levels using state-of-the-art models, and introduces four diagnostic yardsticks—textual structure, lexicon, syntax, and semantics—offering users actionable feedback on specific dimensions of textual complexity. Each component of the system is supported by experiments comparing alternative models on manually annotated data.
Anthology ID:
2025.emnlp-demos.6
Volume:
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: System Demonstrations
Month:
November
Year:
2025
Address:
Suzhou, China
Editors:
Ivan Habernal, Peter Schulam, Jörg Tiedemann
Venue:
EMNLP
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
73–84
Language:
URL:
https://preview.aclanthology.org/ingest-emnlp/2025.emnlp-demos.6/
DOI:
Bibkey:
Cite (ACL):
Wafa Aissa, Raquel Amaro, David Antunes, Thibault Bañeras-Roux, Jorge Baptista, Alejandro Catala, Luís Correia, Thomas François, Marcos Garcia, Mario Izquierdo-Álvarez, Nuno Mamede, Vasco Martins, Miguel Neves, Eugénio Ribeiro, Sandra Rodriguez Rey, and Elodie Vanzeveren. 2025. The iRead4Skills Intelligent Complexity Analyzer. In Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 73–84, Suzhou, China. Association for Computational Linguistics.
Cite (Informal):
The iRead4Skills Intelligent Complexity Analyzer (Aissa et al., EMNLP 2025)
Copy Citation:
PDF:
https://preview.aclanthology.org/ingest-emnlp/2025.emnlp-demos.6.pdf