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Abstract

We present LangVAE, a novel framework for
modular construction of variational autoen-
coders (VAEs) on top of pre-trained large lan-
guage models (LLMs). Such language model
VAEs can encode the knowledge of their pre-
trained components into more compact and se-
mantically disentangled representations. The
representations obtained in this way can be
analysed with the LangVAE companion frame-
work: LangSpace, which implements a collec-
tion of probing methods, such as vector traver-
sal and interpolation, disentanglement mea-
sures, and cluster visualisations. LangVAE and
LangSpace offer a flexible, efficient and scal-
able way of building and analysing textual rep-
resentations, with simple integration for models
available on the HuggingFace Hub. Addition-
ally, we conducted a set of experiments with
different encoder and decoder combinations, as
well as annotated inputs, revealing a wide range
of interactions across architectural families and
sizes w.r.t. generalisation and disentanglement.
Our findings demonstrate a promising frame-
work for systematising the experimentation and
understanding of textual representations.

1 Motivation and Purpose

Variational Autoencoders (VAEs) (Kingma et al.,
2013) are of considerable importance in machine
learning due to their capacity to integrate prior
knowledge, quantify uncertainty, enhance gener-
alisation, and deliver interpretability. First, the
integration of prior distribution serves as an induc-
tive bias, enabling the model to leverage existing
knowledge and providing a principled way to in-
corporate domain expertise. In the computational
linguistics domain, for example, the hierarchical
syntax information can be well encoded via hyper-
bolic prior (Davidson et al., 2018; Cho et al., 2023).
Second, their probabilistic formulation allows for
explicit uncertainty quantification, providing not
only point estimates but also confidence intervals

over latent variables and reconstructions, which is
significant in the Safety and Trustworthy AI do-
main, such as hallucinations of LLMs (Ji et al.,
2023). Third, by enforcing a smooth and contin-
uous latent space, VAEs promote better composi-
tion and generalisation, as they capture the under-
lying generative factors of the input distribution
(Bonnet and Macfarlane, 2024). Fourth, the latent
space can compress the knowledge into abstract-
level concepts, which is similar to how humans
understand the world (Barrault et al., 2024). Con-
currently, the rapid pace of development of LLMs
has led to substantial gains in a wide variety of
NLP tasks, demonstrating remarkable knowledge
representation capabilities (Kauf et al., 2023; Selby
et al., 2025), but present critical challenges in in-
terpretability and fine-grained control (Kunz and
Kuhlmann, 2022; Friedman et al., 2024).

To leverage the strengths of both LMs and VAEs,
Language model-based VAEs (LM-VAEs) (Bow-
man et al., 2015) have been proposed and widely
deployed in the controlled text generation domain,
such as style transfer tasks: modifying sentences
with regard to markers of sentiment, formality, affir-
mation/negation (Bao et al., 2019; Vasilakes et al.,
2022; Gu et al., 2022; Liu et al., 2023; Gu et al.,
2023; Liu et al., 2024) and textual, syntactic, se-
mantic representation learning domain (Mercatali
and Freitas, 2021; Carvalho et al., 2023; Zhang
et al., 2024b,c). However, despite their strategic
positioning in delivering more controlled latent rep-
resentations, there has been limited software infras-
tructure support to facilitate experimentation with
LM-VAEs and in particular, scaling-up to Large
Language Model configurations (LLM-VAEs).

In this work we address these issues by present-
ing a novel framework for modular construction of
LM-VAEs on top of pre-trained LMs of different
scales, called LangVAE, and its companion frame-
work LangSpace, dedicated to latent space probing
and evaluation. LangVAE introduces a novel ap-
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Latent Interpolation:
source: humans require freshwater for survival

1. humans require water for survival
2. nonhumans require water for survival
3. animals require water and food
4. animals require water to survive
5. animals require water to live
6. animals require food for survival
7. animals require food for survival
8. animals require food for survival
9. animals require food for survival
10. animals require food to survive

Target: animals require food to survive

Latent Traversal:
an animal requires energy to move
an animal requires shelter

humans usually use gasoline
humans use coal to make food
humans depend on pollinators for survival

wheels are a part of a car
lenses are a part of eyeglasses
copper and zinc are two metals

summit mean the top of the mountain
colder mean a decrease in heat energy
friction mean the product of a physical change

Latent Arithmetic(top: +, bottom: -):
s1: animals require food for survival
s2: animals require warmth for survival

animals produce milk
animals usually eat plants
animals eat berries ; plants

s1: water vapor is invisible
s2: the water is warm

quartz is usually very small in size
quartz is formed by magma cooling
quartz is made of iron and zinc
silica is made of argon and argon

Figure 1: LangVAE is a flexible framework designed to support arbitrary combinations of pretrained encoders and
decoders for learning latent representations under either a categorical semantic prior or a Gaussian prior. LangSpace
facilitates comprehensive analysis of the learned latent space through automated evaluation of key properties such
as disentanglement and visualization (top) and enables controlled generation by leveraging these latent properties,
such as latent traversal, interpolation, and arithmetic operations (bottom).

proach for latent vector unpooling to autoregressive
LMs that sharply reduces the computational and
memory requirements, while incorporating com-
patibility to contemporary LLMs and hardware op-
timisations.

Finally, we conducted a set of experiments as
a case study to demonstrate the frameworks’ se-
mantic representation capabilities and highlight the
effects of different combinations of encoder and
decoder models, in terms of generalisation and la-
tent space disentanglement, evidencing the impact
of facilitating a systematic analysis across differ-
ent encoder-bottleneck-decoder combinations and
parametrisations.

Both frameworks are available as python li-
braries in the PyPI package repository and on pub-
lic source code repositories1 2. A demonstration
video is available at: youtu.be/DVcrdIX9CfI.

2 Language Model VAEs

A language model VAE (LM-VAE) is a variational
autoencoder where both the encoder and decoder
components are LMs (Bowman et al., 2015; Li
et al., 2020; Tu et al., 2022; Zhang et al., 2023).

1https://github.com/neuro-symbolic-ai/LangVAE
2https://github.com/neuro-symbolic-ai/LangSpace

It can encode the knowledge of their pre-trained
components into compact latent vectors and en-
ables guided language generation from an abstract
level using said vectors. The benefits of such mod-
els also extend to interpretability (due to their bet-
ter disentanglement properties), as the VAE archi-
tectural bottleneck provides a singular point for
probing a model’s latent space structure and its
syntactic/semantic representation (Li et al., 2020;
Mercatali and Freitas, 2021; Carvalho et al., 2023;
Zhang et al., 2024b,c) and inferential properties
(Bonnet and Macfarlane, 2024). The creation
of continuous latent representation spaces, with
better disentanglement and separability of syntac-
tic/semantic properties offers a key mechanism
for supporting generative control both at the level
of sentences (Bao et al., 2019; Felhi et al., 2022;
Zhang et al., 2024c) and natural language infer-
ences (Yu et al., 2022).

In its most basic conceptualisation, an LM-VAE
consists of: (a) an encoder type LLM (e.g., BERT,
T5), to provide base representations for each token
of the input text; (b) a pooling process to accumu-
late the input token representations; (c) a projection
layer, to convert the base encoding to the regu-
larised VAE latent space; (d) an unpooling process,
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Figure 2: Diagram of fundamental LMVAE architecture.

to derive token representations from a latent vector
and feed them to the decoder; and (e) a decoder
type LLM (e.g., GPT, Llama) capable of generat-
ing tokens from a sequence of input representations.
This structure is illustrated in Figure 2. On the top
of this base configuration, syntactic and semantic
features can be injected into the latent space, aim-
ing to improve the localisation and control of such
features via conditionalisation mechanisms, such
as CVAE or clustering losses. Moreover, further
architectural interventions can be integrated aiming
for additional control, such as the addition of INN
layers (Zhang et al., 2024a), aiming for improving
the separability of semantic features.

2.1 Optimus
The pioneer LM-VAE is Optimus (Li et al., 2020),
which combines a BERT encoder and a GPT-2 de-
coder to perform sentence encoding, using a mean
pooling process, a linear projection layer (MLP),
and an unpooling process consisting of two con-
current schemes for latent memory injection to the
decoder:
Memory: appends a projection of the latent vector
directly to each hidden layer of the decoder as a
hidden memory vector for the decoder to attend.
Embedding: adds a projection of the latent vector
to the decoder embedding layer at each decoding
step.

Optimus is trained end-to-end, meaning that the
encoder projection layer and the memory and em-
bedding injection layers are jointly trained with the
base encoder and decoder models. In this way, the
pre-trained models are fine-tuned to "weld" with
the projection and injection layers, facilitating con-
vergence.

Despite its demonstrated capabilities and poten-
tial, Optimus has some limitations, in particular
regarding model coupling and scalability. We next
discuss our proposed approach for building LM-
VAEs and its improvements over the SOTA.

LangVAE
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Figure 3: Overview of the LangVAE framework.

3 LangVAE: Building modular LM-VAEs

Aiming to address current LM-VAE limitations
and facilitate the development of specialised mod-
els and experimentation over next-gen LLMs, we
developed LangVAE. This is a novel framework tar-
geted at language representation learning research,
focused on the modular development of the ar-
chitectural components discussed in the previous
section (especially projections and unpooling pro-
cesses), and having a strong integration with the
python transformers library3. LangVAE is devel-
oped and distributed as a python library1 under the
GPLv3 License. It is built on top of the pythae
library for autoencoders (Chadebec et al., 2022).
Figure 3 provides an overview of LangVAE’s mod-
ules and responsibilities.

3.1 Architecture

LangVAE implements the fundamental LM-VAE
architecture (Figure 2) in the following ways:

Pre-trained LLM encoder: as a loader for an
encoder type LLM compatible with the transform-
ers library, via the automodel classes (AutoModel,
AutoModelForTextEncoding).

Pooling process: mean pooling, last hidden state
of the base encoder, or the CLS token hidden state,
which is automatically selected depending on the
pre-trained encoder model configuration.

Latent projection layer: a linear MLP that ad-
justs the input encoding size on training time.
3https://github.com/huggingface/transformers
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Unpooling process: a variation of the memory
injection scheme from Optimus, called KV cache
injection, which does not require customisation of
the pre-trained decoder code. Instead, it uses the
transformers library KV caching mechanism for
guiding the decoder (detailed in the next section).

Pre-trained LLM decoder: same as the
encoder, but relying on the transformers AutoMod-
elForCausalLM class for model parametrisation
regarding tokenizer configuration and hardware
optimisations (e.g., flash attention and multi-GPU
distribution).

In addition, LangVAE provides the following
functionalities:

Data conversion: TokenizedDataSet classes for
convenient and efficient tokenisation of text
datasets, including the handling of annotations.

Training pipeline: supporting cyclical schedule
KL annealing to avoid the KL vanishing problem,
with beta and KL thresholds.

Training monitoring: with tensorboard logging.

3.2 KV cache injection
One of the central contributions behind LangVAE
is the key-value (KV) cache injection scheme, as
an alternative to Optimus’ memory injection. This
new scheme uses the KV caching mechanism of the
Causal LM model classes within the transformers
library to inject a positional projection of the la-
tent vector. A linear projection of the latent vector
hcache = Wmz plays the role of an additional con-
text to guide generation, in the form of hidden KV
cache entries Xh

t interleaved with those produced
by the decoder, where Wm ∈ RLH×S is separated
into S × L (sequence length * # layers) vectors of
hidden size H = K × V . Figure 4 illustrates this
scheme.

There are two main advantages to this approach.
Firstly, it eliminates the need to change the layout
of the hidden layers to accommodate the injected
memory vector. Therefore, it is compatible with
any model that supports the KV caching mech-
anism. Lastly, in enables training the LM-VAE
model with the weights for the base pretrained mod-
els frozen, greatly reducing the computational and
memory requirements. Additionally, this scheme
allows distributed training of the injection layer, as
the projection matrices can be co-located with the
respective hidden layers in training time, and size
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Figure 4: Illustration of the KV cache injection scheme.
Wmz projects hidden KV cache entries Xh

t that are
attended by the decoder when predicting the next token.
The hidden cache entries are interleaved with the ones
produced by the decoder.

of context (number of hidden cache entries) can be
adjusted.

3.3 Main advantages & Limitations

The main advantages of LangVAE can be sum-
marised as follows:
• Modular architecture allows flexible development
of different LM-VAE configurations. Flexible com-
position of base models and bottleneck parametri-
sations, loss functions, etc.
• Compatible with most state-of-the-art autoregres-
sive models.
• Has a substantially reduced computational re-
quirements for training, compared to the SOTA
LM-VAE (Optimus), with an average parameter re-
duction of over 95% measured when using decoder
models between 3B to 7B parameters (Section 5.1).
• Supports multi-GPU training and inference.

Its main limitations are related to the cache in-
jection mechanism:
• Slower convergence, as there are far less parame-
ters to adjust.
• Latent vector sizes tend to be larger, compared to
Optimus, to compensate for the overall parameter
reduction.
• The model size scales linearly with the maximum
context size, creating a tradeoff between efficiency
and context capacity.

3.4 Installation and API Examples

LangVAE can be installed directly from the PyPI
package repository with: pip install langvae

We briefly illustrate the key components of Lang-
VAE’s API and how they are instantiated in the
supplementary material (Appendix Section A.1). A
full example of model training can be found in the
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README file of the code repository1 and on the
supporting python notebook4.

4 LangSpace: Simplified probing for
LM-VAEs

LangSpace2, is a companion framework to Lang-
VAE focused on the evaluation and on the latent
space probing for LM-VAEs. It provides an easy-
to-use API to perform a variety of analyses on pre-
trained LM-VAEs models, namely:
• Probes: vector arithmetic and interpolation, la-
tent space traversal, disentanglement and cluster
visualisation.
• Metrics: disentanglement (z-diff, z-min-var, MIG,
Disentanglement, Informativeness, Completeness),
interpolation (quality, smoothness).

4.1 Installation and API Examples
Like LangVAE, LangSpace can be installed from
the PyPI repository with: pip install langspace

We briefly illustrate below the use of one of
LangSpace probes: latent traversal. A full example
with all the available probes can be found within the
available public notebook5, with some illustrated
in Figures 6 and 7 (Appendix B).

# Seed sentences to traverse
sentences = [

"animals require food to survive",
"water vapor is invisible"

]
# Dataset importer
ds = ListImporter()(

[sent.split() for sent in sentences]
).sentences
# Create dataset tokeniser
seeds = TokenizedDataSet(

ds, model.decoder.tokenizer,
model.decoder.max_len

)
# Create probe and generate report: a
# dataframe with collumns for the
# original sentence, traversed dimension,
# distance traversed and the generated
# result, respectively.
trav_report = TraversalProbe(

model, trav_dataset,
sample_size=10,
dims=list(range(128))

).report()
4https://bit.ly/3FMPg5N
5https://bit.ly/424bjw3

5 Case study & Model availability

To demonstrate LangVAE and LangSpace capabili-
ties for language modeling and highlight the effects
of different combinations of encoder and decoder
models, in terms of generalisation and disentan-
glement of the latent space, we conducted a set
of experiments as a case study. The experiments
consist of a simple explanation sentence modeling
task (Zad et al., 2021; Dalvi et al., 2021) with pos-
terior evaluation of the induced latent space. While
LM-VAE models could be employed in a range of
downstream tasks (e.g., sentiment analysis, style-
transfer, among others), this study focuses on the
semantic representation aspect and its conditional
intervention. Pre-trained checkpoints for all model
combinations presented in this study are available
in our public HF Hub repository6.

5.1 Experimental setup
For the pre-trained LLMs, we selected three dis-
tinct encoder models, in order of parameter size:
BERT (base-cased) (Devlin et al., 2019), Flan-
T5 (base) (Chung et al., 2024) and Stella (en-
1.5B_v5) (Zhang et al., 2025), and four decoder
models: GPT-2 (base) (Radford et al., 2019), Qwen
(2.5-3B) (Team, 2024), Llama (3.2-3B) (Grattafiori
et al., 2024) and Mistral (7B-v0.3) (Jiang et al.,
2023). The selection considered the inclusion of
different model families and sizes. For each com-
bination, inputs without and with semantic role
labeling (SRL) annotations were used (as semantic
features), where the SRL annotations were passed
as additional variables (one-hot encoded) to the
encoder only, going through a separate pooling pro-
cess (always mean pooling). The latent size (128)
and maximum sentence was kept the same for all
tests. All models were trained for 50 epochs, with
LR = 0.001, target_kl = 2.0, max_beta = 1.0,
40 beta annealing cycles, and batch size of 50. Dis-
entanglement measurements were obtained using
LangSpace’s disentanglement probe for the metrics
z-diff (Higgins et al., 2017), z-min-var (Kim and
Mnih, 2018) and Informativeness (Eastwood and
Williams, 2018).

All experiments were performed on a computer
with the following specifications: CPU: AMD
EPYC 7413 24-Core, GPU: 2x NVIDIA A100-
SXM4-80GB, Memory: 200GB. LangVAE allows
caching of the base encoder outputs, which causes
the training time to be mostly dominated by the
6https://huggingface.co/neuro-symbolic-ai
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base decoder inference time. The shortest training
time was of aprox. 1h (GPT-2) and the longest was
about 4.5h (Mistral-7B). Training requirements for
larger decoders scale similarly to inference, with a
training run of Phi-4 (14B) also taking about 4.5h
to complete. The ratios of the LangVAE trained
models’ size to the base LLMs was: GPT-2 =
0.547, Qwen2.5-3B = 0.024, Llama3.2-3B = 0.076,
Mistral-7B = 0.037. Excluding GPT-2, this repre-
sents an over 95% parameter reduction.

5.2 Data

The same data was used for all tests: a subset of
all explanatory sentences from the EntailmentBank
dataset (Dalvi et al., 2021), which was loaded us-
ing the saf-datasets7 library. The dataset contains
12496 sentences, from which 99% were used for
training and 1% for validation8. Evaluation was
performed on a random sample of 200 sentences
including the validation set and a small portion of
the training set. SRL annotation was performed
using the AllenNLP9 library with a SOTA SRL
model (Shi and Lin, 2019).

5.3 Results

The results for the explanation sentence modeling
task are presented in Table 1. The first observation
is that the highest reconstruction performance was
achieved by the smallest model combination (for
SRL). While not the expected outcome, this can be
explained by the constraint imposed on the latent
space size and training data, causing the simpler
model to better generalise the inputs.

The encoder complexity has a substantial impact
on the generalisation capability of the model: even
though bert-base-cased and flan-t5-base have the
same encoding size (768), BERT outperforms T5 in
most cases, indicating a higher level of information
entanglement on T5. Stella, on the other hand, has
a much larger encoding size (1536), with a larger
dominating effect based on the information loss
over the dimensionality reduction.

The injection of the SRL categories within the
model improved reconstruction performance in all
combinations except when Mistral is the decoder.
This is a surprising result and indicate some par-
ticularity of Mistral’s internal representations that
invite further investigation.
7https://github.com/neuro-symbolic-ai/saf_datasets
8The validation split here is just a means to prevent overfitting,
since we are only testing the representations.

9https://github.com/allenai/allennlp-models

Encoder Decoder Annot. Reconstr. Disentanglement
(BLEU) z-diff z-m-var ↓ inform.

BERT gpt-2 - 0.76 0.46 0.68 0.36
BERT gpt-2 SRL 0.84 0.43 0.70 0.40
BERT Qwen - 0.44 0.58 0.69 0.46
BERT Qwen SRL 0.49 0.53 0.61 0.44
BERT Llama - 0.65 0.62 0.71 0.38
BERT Llama SRL 0.80 0.59 0.65 0.43
BERT Mistral - 0.81 0.51 0.59 0.43
BERT Mistral SRL 0.75 0.55 0.62 0.44
Flan-T5 gpt-2 - 0.11 0.50 0.62 0.35
Flan-T5 gpt-2 SRL 0.81 0.62 0.67 0.42
Flan-T5 Qwen - 0.19 0.52 0.69 0.39
Flan-T5 Qwen SRL 0.31 0.55 0.68 0.43
Flan-T5 Llama - 0.74 0.52 0.68 0.49
Flan-T5 Llama SRL 0.80 0.59 0.64 0.41
Flan-T5 Mistral - 0.78 0.62 0.61 0.39
Flan-T5 Mistral SRL 0.72 0.51 0.63 0.43
Stella gpt-2 - 0.18 0.50 0.68 0.34
Stella gpt-2 SRL 0.61 0.52 0.65 0.40
Stella Qwen - 0.15 0.48 0.69 0.44
Stella Qwen SRL 0.27 0.54 0.66 0.43
Stella Llama - 0.45 0.51 0.73 0.40
Stella Llama SRL 0.64 0.62 0.72 0.42
Stella Mistral - 0.57 0.54 0.72 0.46
Stella Mistral SRL 0.55 0.51 0.71 0.39

Table 1: Results from the explanation sentence model-
ing experiments. Best values for each column in bold.

Finally, the SRL categories did not induce consis-
tent improvements on the disentanglement scores,
with the exception of Llama3.2, where it led to
qualitative improvements in terms of SRL cluster
separability, as illustrated in Figure 5. We addition-
ally trained a single instance of Llama3.1-8B on
the Wiktionary dataset from saf-datasets7 (∼1M
sentences) and analysed latent space interpolation,
illustrated on Table 2.

(a) No annotation
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(b) SRL annotation

Figure 5: TSNE plots for the [bert-base-cased, Llama-
3.2-3B] combination, without (a) and with (b) SRL an-
notated inputs. We can observe a better separation of
the water and animal subjects on the annotated model.

Source / Target Distance Generate

the high seas /
the continent 0.361

1. the high
2. the high
3. the sea
4. the sea
5. the sea
6. the sea
7. the sea
8. the land
9. the world
10. the world

a primary schooler /
a college student 0.299

1. a primary school
2. a primary school
3. a junior school
4. a junior school
5. a high school
6. a high school
7. a high student
8. a college
9. a college
10. a student

Table 2: Latent interpolation example using a LangVAE
model (BERT [base-cased] - Llama3.1 [8B]), trained
on the Wiktionary dataset. Ten points connecting from
the source to the target latent vectors are decoded to
generate a list of interpolated sentences. We used short
sentences for which there are expected intermediate con-
cepts. We can observe a semantic progression when con-
necting terms for which there are intermediate senses.

6 Conclusion

In this work we presented LangVAE, a modular
and efficient library for building language model
VAEs (LM-VAEs), and its companion framework
LangSpace, dedicated to LM-VAE latent space con-
trol, probing and evaluation. With the goal of low-
ering the experimental barriers in this research area,
it introduces a novel approach for latent vector un-
pooling to autoregressive LMs that sharply reduces
the computational and memory requirements for
training such models, along with a flexible code ar-
chitecture which is oriented towards modern LLM
development.

We demonstrated the representation capabilities
of LangVAE and LangSpace with a set of experi-
ments using different encoder and decoder combi-
nations, as well as annotated inputs, which reveal a
wide range of interactions across architectural fam-
ilies and sizes w.r.t. generalisation and disentangle-
ment. Such interactions point to uncovered factors
regarding the models’ internal representation prop-
erties and how they exchange information.

Limitations

While the evaluation aimed at covering a diverse
set of pre-trained encoders and decoders, it is lim-
ited in the scope of downstream tasks and dataset
diversity. Further analisys of the failure modes of
each encoder-decoder combination should also be
done to better understand the unexpected results
and how latent space geometry can be optimised.
We leave those as future work.

LangVAE is designed to work with the standard
model interfaces provided by the HuggingFace
transformers library3, and may not be compatible
with models containing specialised custom code
or that do not have a KV cache implementation or
use a different one (e.g., Gemma). We welcome
contributions to the LangVAE and LangSpace code
repositories1,2, specially those aimed at increasing
model compatibility.
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A API examples

A.1 LangVAE
# Creates a GPT-2 based decoder expecting
# a latent vector of size 128, that
# generates a maximum of 32 tokens,
# distributed on any number of CUDA GPUs.
decoder = SentenceDecoder(

"gpt2", latent_size=128,
max_len=32, device="cuda",
device_map="auto"

)

# Creates a BERT based encoder producing
# a latent vector of size 128, expecting
# GPT-2 tokenised inputs.
encoder = SentenceEncoder(

"bert-base-cased", latent_size=128,
decoder.tokenizer, device="cuda"

)

# Defines a basic VAE model configuration
model_config = VAEConfig(latent_dim=128)

# Initialise LangVAE model
model = LangVAE(

model_config, encoder, decoder
)

# Alternatively, loads a pretrained
# checkpoint from the HF Hub.
org = "neuro-symbolic-ai"
name="eb-langvae-flan-t5-base-gpt2-l128"
model = LangVAE.load_from_hf_hub(

f"{org}/{name}"
)
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B Notebook examples

Figure 6: Example of the clustering probe use in the notebook.

Figure 7: Example of the arithmetic probe use in the notebook.
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