
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 739–748
November 4-9, 2025 ©2025 Association for Computational Linguistics

LaTeXMT: Machine Translation for LATEX Documents

Calvin Hoy and Samuel Frontull and Georg Moser
University of Innsbruck, Austria

calvin.hoy@screee.ee, {samuel.frontull,georg.moser}@uibk.ac.at

Abstract

While machine translation has taken great
strides in recent years, thanks in large part
to transformer language models, tools are de-
signed primarily for plain text, and thus not
equipped to deal with complex markup docu-
ments such as LATEX. Not even Large Language
Models can reliably handle LATEX source files,
as non-standard structures are not captured by
any available training data. Previous attempts
to create translation engines for LATEX either
work on compiled documents, rely on docu-
ment pre-processors which may lose critical
semantic elements, or cannot distinguish be-
tween text and non-text content. In this paper
we present LaTeXMT, a software solution for
structure-preserving, source-to-source transla-
tion of LATEX documents. All of the source
code to LaTeXMT is provided under the LGPL-
3.0 open-source licence and a web version is
publicly available1.

1 Introduction

Much progress has been made in the field of Ma-
chine Translation (MT), especially Neural Machine
Translation (NMT), over the past decade. In partic-
ular, transformer-based language models (Vaswani
et al., 2017) have proven highly effective.

At its core MT works only on plain text, and can-
not handle additional information generally con-
tained within digital documents in addition to their
text content—for example, formatting, images and
other non-text structures, or programmatic ele-
ments. To leave structural elements in place, it
is thus necessary to identify the actual text content
and the surrounding structural or programmatic
components of the document. Utilities for this
purpose have long existed for e.g. the Microsoft
Office Open XML format2, but at present no such
system is available for the LATEX (Lamport, 1986)

1https://latexmt-informatik.uibk.ac.at
2https://en.wikipedia.org/wiki/Office_Open_XML

typesetting system commonly used for scientific
documents.

Being plain text, LATEX source files can be fully
transformed using MT models. However, they
present a challenge for machine translation in that
there is no clear separation between text and non-
text elements, with macros representing both. Ad-
vances in transformer models, often also trained
on LATEX sources, enable state-of-the-art MT to
largely preserve standard structures. This extends
to generative LLMs, which excel in machine trans-
lation (Hendy et al., 2023) and are somewhat effec-
tive at source code generation (Jiang et al., 2025).
However, even sophisticated LLMs are ultimately
little more than text generation engines without true
understanding of formal or natural languages; their
outputs rely on statistical patterns, thereby demand-
ing extensive training data. Thus, state-of-the-art
machine translation may break LATEX structures
in—sometimes subtle—ways. Moreover, they are
limited by the languages and the amount of text
they can process.

To address this challenge, we developed
LaTeXMT, a dedicated software solution for
LATEX document translation based on the idea of
separating document text from other elements. This
enables us to: (i) accurately translate the textual
content of LATEX source files, (ii) preserve the
overall document structure, and (iii) retain inline
markup associated with the text, all without re-
lying on machine translation services specifically
tuned for LATEX. LaTeXMT enables the integration
of custom MT systems, e.g. for languages that are
not supported by LLMs. All of the source code3

to LaTeXMT is provided under the LGPL-3.0 open-
source licence and a web version is publicly avail-
able at https://latexmt-informatik.uibk.ac.
at and is also showcased in a short demo video4.

3https://github.com/latexmt
4https://youtu.be/reXOXoZfw3s

739

https://latexmt-informatik.uibk.ac.at
https://en.wikipedia.org/wiki/Office_Open_XML
https://latexmt-informatik.uibk.ac.at
https://latexmt-informatik.uibk.ac.at
https://github.com/latexmt
https://youtu.be/reXOXoZfw3s

Replace Text
Reinsert Markup

Translation

Parse

Extract Text
Strip Markup

Preserve Structure

Compose

Source
Document

Text aus Abschnitt 2

1. Einleitung

Beispieldokument

2. Beispiel 1

Text mit Formatierung
aus Abschnitt 1

A := B u C ...

3. Beispiel 2

Abb. 1: Beispielbild

Text aus Abschnitt 3

Text in section 2

1. Introduction

Example Document

2. Example 1

Text with formatting in
section 1

A := B u C ...

3. Example 2

Fig. 1: Example image

Text in section 3

Introduction

Example Document

Text with
formatting
in section 1

Example 1

Einleitung

Beispieldokument

Text mit Formatierung
aus Abschnitt 1

Beispiel 1

Target
Document

Figure 1: Overview of translation process

Translation Process We have implemented the
following pipeline, illustrated in Figure 1:

1. Parse: We use the pylatexenc5 Python li-
brary to split the source document into a
nested node list, with each node representing
a LATEX structure such as plain text, macros,
environments, or comments.

2. Extract Text: We recursively iterate over the
nested node list to identify contiguous bodies
of text (which may consist of multiple para-
graphs). We refer to these as text items. A text
item may contain (i) plain text, (ii) text macros
(e.g. em-dashes, quotation marks, accented
characters), (iii) markup nodes for formatting
(e.g. \emph), and (iv) non-text nodes. As
we want to preserve non-text nodes (e.g. in-
line math) verbatim, we substitute them with
placeholders, so that they do not interfere with
translation.

3. Strip Markup: As markup nodes within text
items may be nested, we create a flattened
representation of the plain text with markup
ranges, which we call a Markup-annotated
String.

4. Translation: The plain text part of each
Markup-annotated String is translated from
the source to the target language. LaTeXMT is
designed to be agnostic of the translation back-
end used and supports both local and external
services. The local model is provided by the
transformers6 library. Moreover, we added
support for external APIs, including DeepL
and OpenAI, for translation via their respec-
tive APIs. Additional translation services can

5https://github.com/phfaist/pylatexenc
6https://github.com/huggingface/transformers

be "dropped in" with minimal or no changes
to the core codebase.

5. Reinsert Markup: For each text item, a
new Markup-annotated String is created from
the translated text by mapping the position
of markup nodes from the original text into
the translated text using word alignments.
From there, we construct a new list of LATEX
nodes by linearly scanning over the Markup-
annotated String and back-substituting non-
text nodes every time we encounter their cor-
responding placeholder.

6. Replace Text: Finally, each text item’s ref-
erenced nodes are removed from the original
node list, and the newly constructed nodes are
inserted at the same position. From the mod-
ified nodelist, the output LATEX document is
assembled.

The following sections will describe the most
important parts of this pipeline in more detail.

2 Text Extraction

We want to create an output document that retains
as the original structure. To achieve this, we need
to take into account that document text can appear
at different nesting levels of a LATEX document—
most commonly at the top level, but also within
macros or environments. Structures containing text
can also be nested and contiguous text bodies may
be interrupted by non-text elements. Thus, we con-
struct an internal representation that preserves the
location of document elements while allowing in-
place modification of the text. For this, we rely on
pylatexenc, more specifically its latexwalker
component. The library provides functionality for
parsing a LATEX document into a nested node list,
in which environments and macro arguments each
hold sub-nodelists representing their contents.

740

https://github.com/phfaist/pylatexenc
https://github.com/huggingface/transformers

Input Write a program P for a register machine $R=((x_i)_{0 < i < 6}, P)$.
Masking Write a program #1_ for a register machine #2_.
Translation Schreiben Sie ein Programm #1_ für eine Registermaschine #2_.
Re-populate Schreiben Sie ein Programm P für eine Registermaschine $R=((x_i)_{0 < i < 6}, P)$.

Table 1: Preserving non-translatable contents via masking.

2.1 Identifying Document Text

The aforementioned node list does not by itself hold
information about which LATEX structures represent
text and which ones do not. While top-level plain
text universally represents document text, decisions
had to be made on how to interpret other specific
structures that we encounter.

Environments We treat the text enclosed within
environments as text by default, as we found that
to be their most common use, in particular with
custom environments. Not all environments do
represent translatable document text. Therefore,
we provide the ability to specify environments that
should be treated differently, e.g. code listings,
TikZ graphics, or environments introduced by the
amsmath packages.

Macros While macros sometimes enclose docu-
ment text, we determined that, unlike environments,
it is more common for macros to serve other pur-
poses. Therefore, we do not translate the arguments
of macros by default, and maintain two lists for ex-
ceptions: one for markup macros (see Section 4),
and another for macros which enclose independent
text elements (e.g. \section).

Special characters LATEX existed in a time before
Unicode, aka. before many commonly used sym-
bols (such as quotation marks or German umlauts)
could be represented in text files without portabil-
ity issues. LATEX therefore has a number of macros
and "specials" simply for representing these charac-
ters, which we previously referred to as text macros.
While modern LATEX engines do all support Uni-
code, these representations must still be handled by
text extraction, so that they may be properly passed
to a generic translation service. To obtain a plain
Unicode representation of the document text, we
extended the pylatexenc’s LATEX-to-text compo-
nent with a list of common replacements, e.g. for
German umlauts ({\"u} → ü). This list can be
extended with additional replacements as needed.

Based on the decisions above, we recursively
traverse the root node list and create a list of text
items, each of which holds a reference to its posi-

tion within the node list. These text items are then
individually translated, and have their new contents
inserted in-place at their original position.

2.2 Preserving Non-text Content

A nearly universal pattern in LATEX source files is
the inclusion of non-text content within the text
flow of otherwise plain text, most commonly inline
math blocks. Non-text elements generally should
not be translated, as most machine translation mod-
els cannot handle them. One may simply take
the plain text fragments of sentences and translate
those individually, but it should be obvious that
this is hardly ideal—sentence context is lost, which
almost universally leads to sub-par strange transla-
tion results. For translation, we must thus consider
the sentence as a whole, while hiding its non-text
elements from the model—we call this masking.

Masking Neural MT models typically retain spe-
cial symbols, provided they are recognised by
the tokenizer, in their original form in the trans-
lated output. We leverage this to handle non-text
elements by masking them with a mask, i.e., a
uniquely identifiable sequence of characters. We
mask each non-text element appearing within a
text body using such a sequence, then translate the
masked text bodies, and finally re-populate each
mask with their original content, as illustrated in Ta-
ble 1. We empirically determined the sequence of
characters ~N_, which has been found to work
well for the Opus-MT models. This sequence is un-
likely to occur naturally within a document, and is
uniquely identifiable by the literal number N . Im-
portantly, it does not include any words (which may
end up being translated), and it starts and ends with
different characters.7 Because different models
may handle special character sequences differently,
the mask can be customised in the user interface to
match model-specific requirements.

7We initially used the sequence _N_, and found that when
two of these occur back-to-back (e.g. _1__2_), occasionally
one of the two underscores in the middle is lost in translation.

741

3 Machine Translation

LaTeXMT is designed to be agnostic of the trans-
lation backend used; any translation service can
be "dropped in" with minimal or no changes to
the core codebase for any language pair supported
by a translation backend. Three backends were
implemented:

Transformers performs on-device translation us-
ing a machine translation model running on the
local machine via the transformers Python library.8

Any translation model supported by the library may
be used. For multilingual models, a prefix can be
specified to set the target language. We primar-
ily used the Opus-MT models (Tiedemann and
Thottingal, 2020; Tiedemann et al., 2023). The
Helsinki-NLP/opus-mt-de-en9 model for Ger-
man to English translation is used by default.

Opus-MT models are trained on corpora with
guided alignments, which enables them to emit
alignments between input and output tokens for
translated text via the transformer attention mech-
anism. We chose to take advantage of this: when
used with Opus-MT models, this translator can si-
multaneously serve as a word aligner, thus reducing
redundant computation and improving processing
throughput. When word alignments are available,
they can further be used to perform a very rudimen-
tary form of glossary enforcement, where words in
the target text are replaced after translation. As this
feature may be desirable in certain domain-specific
contexts, we extended the translator to include it.

DeepL performs translation off-device via
DeepL’s public free-tier API, which is limited to
processing 500,000 characters per month. The API
has built-in support for glossaries.

OpenAI similarly performs translation off-
device via OpenAI’s API. Translations are obtained
by sending a text completion request to a speci-
fied GPT model, instructing the language model to
translate the text along with an optional glossary.
This requires providing a valid API key.

4 Markup Reinsertion

While separating text from non-text during the
parsing step is simple enough, macros are com-
monly used within LATEX source files for pur-
poses of text markup (aka. formatting), where

8https://github.com/huggingface/transformers
9https://huggingface.co/Helsinki-NLP/opus-m

t-de-en

the macro encloses the text to be formatted—e.g.
\emph{text with emphasis}. This presents a
challenge, as we want to (i) translate the contents
of such macros, (ii) translate the complete sentence
they appear in, and (iii) convey the intended for-
matting in the translated document.

Handling markup in the same way we handle
non-text macros (via masking) may result in poor
translations, again due to loss of context. One ap-
proach that could be taken to solve this is to train a
machine translation model which is markup-aware,
but this would go against our core idea of not re-
lying on specialised translation models. We there-
fore chose to pursue markup reinsertion instead,
where we: (i) take note of character ranges en-
closed by markup nodes in the input text (ii) trans-
late the input text without markup (iii) for each
range from step (i), find its corresponding output
range(s) (iv) re-insert the markups at the identified
output positions. We solve (i) with a datastructure
we call Markup-annotated String, and (iii) with
word alignments.

Markup-annotated String As we do not work
with LATEX-aware translation backends, we have to
strip markup macros from the text prior to trans-
lation, leaving only their contents in place. We
transform the nested structure of nodes into a flat
representation, where information about markups—
including the macro name and the span of charac-
ters it encompasses—is stored in a list external to
the text body. Both the text body10 and markup
information are encapsulated in a structure we call
a Markup-annotated String.

Word Alignments In order to accomplish step
(iii) of the process outlined above, we make use
of word alignments. Obtaining these is a common
task in NLP, and different methods exist for this
purpose. We rely on awesome-align (Dou and
Neubig, 2021) that splits sentences into words, to-
kenises them, and then maps tokens to words to
obtain word alignments. We adapted the code11

to treat punctuation as "whitespace" during align-
ment, as punctuation is rarely marked up with ad-
jacent words unless another marked-up word fol-
lows. Once we have determined markup bound-
aries in the source text and obtained word align-
ments, we can use these two components to deter-
mine which words in the target text correspond to

10Note that these text items have already been normalised
into a Unicode representation with non-text nodes masked.

11https://github.com/neulab/awesome-align

742

https://github.com/huggingface/transformers
https://huggingface.co/Helsinki-NLP/opus-mt-de-en
https://huggingface.co/Helsinki-NLP/opus-mt-de-en
https://github.com/neulab/awesome-align

marked-up words in the source text, and apply the
same markup to them.

5 Evaluation

We evaluated LaTeXMT together with four other
systems on synthetic test snippets and full
LATEX-documents: a state-of-the-art NMT sys-
tem (DeepL), a state-of-the-art LLM (GPT-
4o), TransLATEX, another dedicated tool for ma-
chine translation of LATEX12, and the open-
source NMT systems that serve as base mod-
els for LaTeXMT. For German to English trans-
lation, we used opus-mt-de-en13 (Tiedemann
and Thottingal, 2020) and for Italian to Ladin
lld_valbadia-ita-loresmt-N414 (Frontull and
Moser, 2024). The source code of the snippets and
the references to the full documents and translation
outputs are provided in Appendix B.

5.1 Synthetic LATEX Snippets
We created a small benchmark of short LATEX snip-
pets to evaluate German to English and Italian to
Ladin translation. The snippets incorporate spe-
cialised syntax and commands, including markup
macros, custom commands, custom environments,
mathematical expressions and special symbols.

Results Table 2 presents the obtained results
where we distinguish between the following sym-
bols and codes: ✓ means that the LATEX snippet
was translated correctly and compiled successfully,
! that the snippet compiled after translation, but
the translation was incorrect or contained errors
and ✗ that the snippet did not compile after trans-
lation. N/A indicates that the system did not sup-
port the respective language pair. More specific
error codes are used to describe the nature of the
errors. ✗ cmd and ✗ env denote erroneously trans-
lated macros and environment names, respectively.
✗ omit denotes that critical syntactical elements
were missing, ✗ halu and ! halu that the transla-
tion is purely hallucinated, and ! tex means that
non-LATEX syntax was emitted. ! noise indicates
that the translation contained additional, spurious
text, ! rev denotes the translation requires revi-
sion, while ! markup denotes incomplete transfer
of markup elements. base refers to the respective

12As of 2025, TransLATEX is the only tool still available
among those mentioned in Section 7

13https://huggingface.co/Helsinki-NLP/opus-m
t-de-en

14https://huggingface.co/Helsinki-NLP/opus-m
t-it-lld

MT models we used for local machine translation
with LaTeXMT.

German to English For German to English trans-
lation, we observed that DeepL and the Opus model
both struggle with translating LATEX code, partic-
ularly when it comes to handling commands (C,
G,K) and environments (B, J) that match the lan-
guage being translated. Moreover, they occasion-
ally omit code (H,I), especially when dealing with
longer sequences of consecutive macros (H), and
have difficulty with special symbols. This can lead
to inconsistencies in the output that require revi-
sion. In contrast, GPT-4o demonstrates good per-
formance in translating LATEX code and handles
most cases effectively. However, the responses
from GPT-4o tend to vary significantly, and the
system is sensitive to the instructions given in
the prompt. Two instances (J,K) fail to compile
after translation due to the inappropriate transla-
tion of macros and environments. TransLATEX and
LaTeXMT, on the other hand, prove to be more re-
liable solutions for translating LATEX documents.
With TransLATEX, however, the challenge is to find
token strings that are reliably retained, because
these are used to hide LATEX-specific code during
translation and then restored afterwards. This is
also evident in E, where this does not work and
results in code that cannot be compiled. The other
examples that require revision (A, F, H) can be
traced back to Google Translate. For LaTeXMT, only
one example (L) failing to compile after translation,
where it erroneously attempted (and failed) to trans-
late the contents of the unknown-to-it longtable
environment. This is because environment contents
are treated as text by default. However, LaTeXMT
could easily be extended to handle this environ-
ment (and others). While, it successfully preserves
structural components, it faces challenges related
to the reinsertion of markup elements (D,F). In
particular, nested formatting macros may lead to in-
consistencies. Refining the alignment mechanisms
to address these issues is left for future work.

Italian to Ladin For Italian to Ladin translation,
the base model performs poorly and just generates
hallucinated content (A–L). DeepL and GPT-4o do
not support Ladin at all. TransLATEX allows to de-
fine custom translation services. We implemented a
custom machine translation service using the same
base model as employed by LaTeXMT within the
TransLATEX framework. However, in most cases
the output contained non-compilable LATEX-code

743

https://huggingface.co/Helsinki-NLP/opus-mt-de-en
https://huggingface.co/Helsinki-NLP/opus-mt-de-en
https://huggingface.co/Helsinki-NLP/opus-mt-it-lld
https://huggingface.co/Helsinki-NLP/opus-mt-it-lld

German to English Italian to Ladin
DeepL GPT-4o TransLATEX base LaTeXMT DeepL GPT-4o TransLATEX base LaTeXMT

A ✓ ✓ ! rev ✓ ✓ N/A N/A ✗ omit ! halu ✓
B ✗ env ✓ ✓ ✗ env ✓ N/A N/A ✗ cmd ✗ halu ✓
C ✓ ✓ ✓ ✗ cmd ✓ N/A N/A ✗ cmd ! halu ✓
D ✗ cmd ✓ ✓ ✓ ! markup N/A N/A ✗ cmd ! halu ! rev
E ! noise ✓ ✗ cmd ! rev ✓ N/A N/A ✗ cmd ! halu ✓
F ! rev ! noise ! rev ! rev ! markup N/A N/A ✗ cmd ! halu ! markup
G ✗ cmd ✓ ✓ ✗ cmd ✓ N/A N/A ✗ omit ✗ halu ✓
H ✗ omit ✓ ! rev ✗ omit ✓ N/A N/A ✓ ! halu ✓
I ✗ omit ✓ ✓ ✗ arg ✓ N/A N/A ✗ cmd ! halu ✓
J ✗ env ✗ env ✓ ✗ env ✓ N/A N/A ✗ env ✗ halu ✓
K ✗ cmd ✗ cmd ✓ ✗ cmd ✓ N/A N/A ✗ omit ✗ halu ✓
L ✗ cmd ✓ ✓ ✗ omit ✗ omit N/A N/A ✗ omit ! halu ✗ omit

Table 2: Error codes and descriptions for the evaluation of LATEX translation.

due to the persistence of special tokens added by
TransLATEX for translation purposes15. Among all
tested examples, only example H successfully com-
piled. LaTeXMT, on the other hand, produces better
translations using the custom MT model for Ladin,
and converts most code examples into valid LATEX,
while significantly reducing hallucinations.

5.2 Full-Document Tests

For a test with complete LATEX documents, we com-
pared the output of LaTeXMT on the conference
paper templates for (T1) ACL, (T2) Springer Na-
ture, (T3) ACM, and (T4) IEEE against the re-
spective outputs from the latest available release of
TransLATEX and the current free versions16 of both
DeepL and ChatGPT 5 (as of September 2025).

Results DeepL fails all four tests due to its highly
restrictive input length limit, delivering only four
truncated documents.17 ChatGPT, similarly, pro-
duces incomplete documents in the cases of all
documents except T1, where a valid and fully trans-
lated (including comments) LATEX file is produced—
although earlier runs had yielded semantically
incomplete documents, which compile but are
missing subsections and figures from the origi-
nal. TransLATEX using its default (Google Trans-
late) backend generates a compilable document
from T2 and T4, but some of the content near the
end of T4 appears horizontally squashed; T1, T3
both show compilation errors. LaTeXMT produces
valid output for all documents except T318. T4

15We have tried three different format strings (-tf): default,
={}.{}=, ∼{}.{}_, <{}.{}>, and +{}-{}+ but none of them
brought any improvements.

16In this case used via their respective web interfaces.
17Used via an API call, there is no such restriction, although

the document may be split mid-word at certain boundaries.
18With the limitation that comments are not translated.

appears correct except for some preamble macros
that were seemingly incorrectly transformed and
show up before page 1. T3 fails to compile due
to an edge case around custom macros wrapping
\begin{document} and \end{document}.

6 User Interface(s)

We designed LaTeXMT to be extensible and adapt-
able, both to different backends for translation and
word alignment, and to different user interfaces or
document sources. Core functionality is thus en-
capsulated in a Python library. We chose Python be-
cause the transformers library provides a simple
and flexible interface for running machine learning
models locally. Libraries for interacting with many
public APIs (DeepL and OpenAI in our case) are
also readily available. To interface with LaTeXMT,
we provide both a command-line interface (CLI), as
well as a web interface via the Flask19 framework.

CLI All translation parameters—location of the
input document(s), source and target language, and
optionally, output directory20, a glossary file, and
which translation and alignment backend to use as
well as parameters for those backends, are specified
via command-line arguments.

latexmt --src -lang de --tgt -lang en \
--translator opus \
--aligner opus \
--opus -model -base ./opus -mt-de-en \
--glossary ./ glossary.csv \
input.tex

Listing 1: CLI command example

By specifying ’-’ for the input file name, LATEX
source code will be read from the terminal standard

19https://flask.palletsprojects.com/
20The default is ./latexmt_out.

744

https://flask.palletsprojects.com/

input, and the translated LATEX source code is emit-
ted via terminal standard output. In this mode, the
output directory is only used for supplemental files
included via \input. Listing 1 shows an example
usage for the command-line interface.

Web Interface For the web interface, the transla-
tion and alignment backends are configured server-
side, and users may select the source and tar-
get language as well as a glossary for translation.
The web interface provides text translation, and
optionally an interface for submitting multi-file
document translation jobs. A live version (with-
out document translation) is made available at
https://latexmt-informatik.uibk.ac.at.

7 Related Work

Various works have developed methods to address
the challenges of translating LATEX and other struc-
tured documents. In the following, we discuss re-
lated works, highlighting how they are connected to
our approach. Ohri and Schmah (2021) presented
a system for translation of mathematical text from
English to French. They rely on Pandoc21 to parse
a LATEX document and later create a new one, which
lets them implement translation as a Pandoc filter.
Similar to our work, they mask non-text elements
contained within passages of text, before passing
those passages to the translation service for pro-
cessing, and back-substitute them afterwards. Their
work however does not handle reinsertion of format
macros; these are simply removed. TransLATEX22,
seemingly developed originally at the University
of Strasbourg in 2023, takes an approach similar to
our work. LATEX documents are parsed using the
TexSoup library23, LATEX structures are remove and
the remaining content is then send to an external
translation service of choice. TransIns (Steffen and
van Genabith, 2021) is a system for translating rich
text documents. They rely on the Okapi frame-
work24 for parsing various document formats (not
including LATEX) for parsing the document into an
abstract structure and later reassembling a trans-
lated version. Their paper discusses an older strat-
egy, namely mtrain for markup reinsertion, which
they demonstrate to be highly error-prone. They
compare this to their own method, which they call
Complete Mapping Strategy (CMS), and which is

21https://pandoc.org/
22https://github.com/Ectalite/translatex
23https://github.com/alvinwan/texsoup
24https://okapiframework.org/

similar to our Markup-annotated String approach
in that it uses word alignments to map markup
spans from the original to the translated text. Fire-
fox’ built-in translation feature25 is similar to our
work—it parses the current page’s DOM, performs
text extraction, and translates the text while pre-
serving and re-inserting markup based on word
alignments. It uses Opus-MT-derived transformer
models26 running on the local machine for transla-
tion, and a statistical word aligner, eflomal27.

8 Conclusion

We developed LaTeXMT, a software solution which
can reliably translate a wide range of LATEX docu-
ments by separating their text content from non-text
elements, producing LATEX source files that faith-
fully preserve the original document structure. It
maintains the relative positioning of content, sup-
ports mixed text and non-text elements (masking),
and restores text formatting (markup reinsertion).
In order to achieve markup reinsertion, we made
use of word alignments obtained from the internal
state of a neural machine translation model. State-
of-the-art NMT models struggle to process LATEX
code effectively. While modern LLMs are better
equipped to manage LATEX, their capabilities are
still limited by context size and language support.
LaTeXMT offers a compelling solution by provid-
ing greater controllability and the ability to handle
larger documents more efficiently. Through the
integration of custom MT systems, users can tailor
LaTeXMT to their specific needs, extending its ap-
plicability across a wider range of languages, also
those not supported by LLMs.

Markup reinsertion based on word alignments
usually yields good results, but it does not handle
e.g. partial word markup, and it of course fails
when word alignment does not find a correspon-
dence between source text and its the translation.
To address this, further refinement of the alignment
mechanism is needed, possibly through the use of
static analysis techniques.

Despite these limitations, LaTeXMT provides
users with the necessary tools to correct errors as
they arise, making it the preferred choice for han-
dling complex LATEX documents.

25https://github.com/mozilla/translations
26https://github.com/mozilla/firefox-translati

ons-models/
27https://github.com/robertostling/eflomal

745

https://latexmt-informatik.uibk.ac.at
https://pandoc.org/
https://github.com/Ectalite/translatex
https://github.com/alvinwan/texsoup
https://okapiframework.org/
https://github.com/mozilla/translations
https://github.com/mozilla/firefox-translations-models/
https://github.com/mozilla/firefox-translations-models/
https://github.com/robertostling/eflomal

Acknowledgments

We would like to thank the anonymous reviewers
for their work and valuable comments and sugges-
tions, which have greatly helped to improve our
presentation and Gernot Baumgartner for his in-
valuable support behind the scenes.

References
Zi-Yi Dou and Graham Neubig. 2021. Word Alignment

by Fine-tuning Embeddings on Parallel Corpora. In
Conference of the European Chapter of the Associa-
tion for Computational Linguistics (EACL).

Samuel Frontull and Georg Moser. 2024. Rule-Based,
Neural and LLM Back-Translation: Comparative In-
sights from a Variant of Ladin. In Proceedings of the
The Seventh Workshop on Technologies for Machine
Translation of Low-Resource Languages (LoResMT
2024), pages 128–138, Bangkok, Thailand. Associa-
tion for Computational Linguistics.

Amr Hendy, Mohamed Abdelrehim, Amr Sharaf,
Vikas Raunak, Mohamed Gabr, Hitokazu Matsushita,
Young Jin Kim, Mohamed Afify, and Hany Hassan
Awadalla. 2023. How Good Are GPT Models at
Machine Translation? A Comprehensive Evaluation.
Preprint, arXiv:2302.09210.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and
Sunghun Kim. 2025. A survey on large language
models for code generation. ACM Trans. Softw. Eng.
Methodol. Just Accepted.

Leslie Lamport. 1986. LATEX: A Document Prepara-
tion System. Addison-Wesley Publishing Company.

Aditya Ohri and Tanya Schmah. 2021. Machine
Translation of Mathematical Text. IEEE Access,
9:38078–38086.

Jörg Steffen and Josef van Genabith. 2021. TransIns:
Document Translation with Markup Reinsertion. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 28–34, Online and Punta
Cana, Dominican Republic. Association for Com-
putational Linguistics.

Jörg Tiedemann and Santhosh Thottingal. 2020. OPUS-
MT – Building open translation services for the
World. In Proceedings of the 22nd Annual Confer-
ence of the European Association for Machine Trans-
lation, pages 479–480, Lisboa, Portugal. European
Association for Machine Translation.

Jörg Tiedemann, Mikko Aulamo, Daria Bakshandaeva,
Michele Boggia, Stig-Arne Grönroos, Tommi Niem-
inen, Alessandro Raganato Yves Scherrer, Raul
Vazquez, and Sami Virpioja. 2023. Democratizing
neural machine translation with OPUS-MT. Lan-
guage Resources and Evaluation, 58(2):713–755.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of the 31st International
Conference on Neural Information Processing Sys-
tems, NIPS’17, page 6000–6010, Red Hook, NY,
USA. Curran Associates Inc.

A Limitations

Over the course of development, we made a number
of decisions in approaching issues with no perfect
solutions, with trade-offs usually being made in
favour of more general solutions as opposed to
more specific ones, and to avoid overcomplicating
things as a whole. This ultimately left some edge
cases we chose not to solve for, some of which
we already mentioned, and all of which we will
recount below. In this section, we describe these
limitations and mention ways in which it might be
approached.

Masking of word sequences Sometimes, a non-
text element may act as a stand-in for not just a
single noun, but several words. For instance, short
equations may be used to say "X gleich Y" in Ger-
man. Using the masking approach in this case may
lead to an incorrect translation:
Prüfen Sie , ob 1$$A = B$$1 ist.
Prüfen Sie , ob #1_ ist.
Check whether #1_ is.
Check whether 1$$A = B$$1 is.

In general however, we found masking to be
an effective strategy for preservation of non-
translatable content—and while attempts could be
made to solve for this particular edge cases, others
most certainly exist, so we chose to accept it as a
limitation.

Non-standard macros/environments It is dif-
ficult to determine ahead of LATEX compilation
whether or not the arguments to a macro are going
to appear as document text. We thus cannot au-
tomatically determine which macros should have
their contents translated, and rely instead on a list
of well-known ones; unknown macros and their ar-
guments are simply left untouched. Perhaps some
form of static analysis could be applied, e.g. repeat-
edly expanding macros per their definition until
only well-known macros remain, in order to track
how the arguments are ultimately used.

Named Entities Any named entity that appears
in the source text and which matches the source
language is translated among with the text. This

746

https://aclanthology.org/2024.loresmt-1.13
https://aclanthology.org/2024.loresmt-1.13
https://aclanthology.org/2024.loresmt-1.13
https://arxiv.org/abs/2302.09210
https://arxiv.org/abs/2302.09210
https://doi.org/10.1145/3747588
https://doi.org/10.1145/3747588
https://doi.org/10.1109/ACCESS.2021.3063715
https://doi.org/10.1109/ACCESS.2021.3063715
https://doi.org/10.18653/v1/2021.emnlp-demo.4
https://doi.org/10.18653/v1/2021.emnlp-demo.4
https://aclanthology.org/2020.eamt-1.61
https://aclanthology.org/2020.eamt-1.61
https://aclanthology.org/2020.eamt-1.61
https://doi.org/10.1007/s10579-023-09704-w
https://doi.org/10.1007/s10579-023-09704-w

simply cannot be solved without either making use
of a very finely-trained machine translation model,
or adjusting the input to demarcate passages of text
that should be preserved verbatim (e.g. enclosing
it within a non-standard macro).

Partially marked-up words Our alignment-
based markup reinsertion method cannot map
markup that spans only part of an input word to the
corresponding part in the output. However, partial
markup reinsertion is theoretically possible using
token-level alignments. Still, the granularity of this
approach is inherently limited by the model’s tok-
enization, and thus alternative methods would be
needed for fine-grained markup handling.

Comments In LATEX, nothing can actually ever
follow a comment within a line. One might thus
consider remembering the contents of comments
together with the line number they originally ap-
peared on, then simply appending the comment to
the same line after translation. However, this idea
is complicated by the fact that we do not preserve
individual line breaks in their original position, (as
these are structurally irrelevant to the LATEX engine),
which shifts line numbers between the input and
output documents.

Whitespace The text extraction functionality of
pylatexenc simply maps all whitespace characters
to a plain space, including non-breaking spaces and
manual line breaks. While this behaviour could be
changed with ease, this leaves the problem that
there is no universal way to represent different
whitespace characters in a way that will be re-
liably preserved by machine translation models,
as most if not all perform whitespace-delimited
word tokenization and do not concern themselves
with different kinds of whitespace. Unlike non-
text macros, whitespace also never represents any
words within the text body. Thus, we cannot use
masking to preserve them, as that would most cer-
tainly adversely affect translation results. Beyond
paragraph splitting, we did not address with this
issue, and accepted a lack of whitespace handling
as a limitation. Since output documents tend to
require manual review anyway, any non-breaking-
spaces or manual newlines can be added back in
manually after translation.

Code Listings Presently, the LATEX parser we use
represents the contents of code listings simply as
a single text node. This could be extended to run
another parser, based on the language specified for

the code listing (or a "one-size-fits-most" parser
if no language is specified), over the contents of
code listings, breaking those up into comment and
non-comment nodes, then adding the contents of
comments to the list of text items to be translated.

B Test Data

This section includes the code snippets and descrip-
tions of the larger test files used for the evaluation
discussed in Section 5. The translation outputs
of the different models are not included here, but
can be found in the latexmt/test-cases28 repos-
itory.

Synthetic LATEX Snippets

A. LATEX snippet with mathematical expressions
Konstruieren Sie eine TM M über

dem Alphabet $\Sigma = \{\ma, \mb
\}$, welche die Sprache

\[
L = \{x \mid x \text{ enthält den
String $\ma \mb \ma$}\}

\]
akzeptiert.

Costruisci una Macchina di Turing
M sull 'alfabeto $\Sigma = \{\ma,
\mb\}$, tale che M accetti la

lingua
\[

L = \{x \mid x \text{ contiene la
secuenza $\ma \mb \ma$}\}

\]

B. Custom environment
\begin{hinweis}

Das ist ein \emph{Hinweis} in
einem \textbf{custom environment }.

\end{hinweis}

\begin{nota}
Una \emph{nota} in un \textbf{
ambiente personalizzato }.

\end{nota}

C. Custom command definition
\newcommand {\FF}{\ mathsf{false}}
\newcommand {\TT}{\ mathsf{true}}

Das \textbf{Ergebnis} ist \TT.

\newcommand {\FF}{\ mathsf{false}}
\newcommand {\TT}{\ mathsf{true}}

Il \textbf{risultato} equivale a $\
TT$.

D. Custom command usage
28https://github.com/latexmt/test-cases

747

https://github.com/latexmt/test-cases

\hinweis{Das ist ein \textit{Hinweis
}.}

\nota{Questo serve da \textit{nota
}.}

E. Special symbols
\textit{Kategorisieren} Sie die

Sprache der Palindrome \"uber dem
Alphabet $\Sigma = \{\Null ,\Eins\}
$ anhand der \emph{Chomsky -
Hierarchie }.

\textit{Categorizza} il linguaggio
dei palindromi sull 'alfabeto $\
Sigma = \{\zero ,\uno\}$
utilizzando la \emph{Gerarchia di
Chomsky }.

F. Special symbol 2
Es kann gezeigt werden dass die

Sprache \textbf {\emph{nicht} regul
\"ar} ist.

Si pu\`o dimostrare che il
linguaggio \`e \textbf {\emph{non}
regolare }.

G. align* with custom macros
\begin{align*}

P & \to \lw \mid \Null \mid \Eins
\\

P & \to \Null P \Null \mid \Eins P
\Eins

\end{align*}

\begin{align*}
P & \to \lw \mid \Zero \mid \Uno
\\
P & \to \Zero P \Zero \mid \Uno P
\Uno

\end{align*}

H. Sequence of custom macros
Testen Sie Ihren Automaten mit den

Zeichenreihen $\mb\mb\mb$, $\mb\mb
\ma\mb\mb$ und $\mb\mb\ma\mb\mb\ma
\mb\mb$.

Testate il vostro automa a stati
finiti con le sequenze $\mb\mb\mb$
, $\mb\mb\ma\mb\mb$ e $\mb\mb\ma\
mb\mb\ma\mb\mb$.

I. Define date
\newtheorem *{ uebungen }{Übungen}
\date{\today}

\newtheorem *{ esericizi }{ Esercizi}
\date{\today}

J. Custom environment 2
\begin{leer}

nicht leer
\end{leer}

\begin{vuoto}
non vuoto

\end{vuoto}

K. Macro for untranslatable content
\newcommand {\ germanText }{\ textbf{

Dies ist deutscher Text , der nicht
übersetzt werden kann !}}

Hier ist der deutsche Text:
\germanText

\newcommand {\ italianText }{\ textbf{
Questa frase italiana non deve
essere tradotta !}}

Ecco la frase in italiano:
\italianText

L. longtable environment
\begin{longtable }{|c|c|c|}
\hline
\textbf {1} & \textbf {2} & \textbf {3}

\\
\hline
\end{longtable}

\begin{longtable }{|c|c|c|}
\hline
\textbf {1} & \textbf {2} & \textbf {3}

\\
\hline
\end{longtable}

Full-Documents Tests

R1. ACL Paper Style LATEX Template
acl_latex.tex available at h t t p s : / /
github.com/acl-org/acl-style-files/

R2. Springer Nature LATEX Template, available at
https://www.overleaf.com/latex/templ
ates/springer-nature-latex-templat
e/myxmhdsbzkyd

R3. ACM Generic Journal Manuscript LATEX Tem-
plate, available at https://www.overleaf
.com/latex/templates/association-f
or-computing-machinery-acm-generic
-journal-manuscript-template/yffvrv
zbhhpt

R4. IEEE Conference LATEX Template, available
at https://www.overleaf.com/latex/tem
plates/ieee-conference-template/gr
fzhhncsfqn

748

https://github.com/acl-org/acl-style-files/
https://github.com/acl-org/acl-style-files/
https://www.overleaf.com/latex/templates/springer-nature-latex-template/myxmhdsbzkyd
https://www.overleaf.com/latex/templates/springer-nature-latex-template/myxmhdsbzkyd
https://www.overleaf.com/latex/templates/springer-nature-latex-template/myxmhdsbzkyd
https://www.overleaf.com/latex/templates/association-for-computing-machinery-acm-generic-journal-manuscript-template/yffvrvzbhhpt
https://www.overleaf.com/latex/templates/association-for-computing-machinery-acm-generic-journal-manuscript-template/yffvrvzbhhpt
https://www.overleaf.com/latex/templates/association-for-computing-machinery-acm-generic-journal-manuscript-template/yffvrvzbhhpt
https://www.overleaf.com/latex/templates/association-for-computing-machinery-acm-generic-journal-manuscript-template/yffvrvzbhhpt
https://www.overleaf.com/latex/templates/association-for-computing-machinery-acm-generic-journal-manuscript-template/yffvrvzbhhpt
https://www.overleaf.com/latex/templates/ieee-conference-template/grfzhhncsfqn
https://www.overleaf.com/latex/templates/ieee-conference-template/grfzhhncsfqn
https://www.overleaf.com/latex/templates/ieee-conference-template/grfzhhncsfqn

