
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 729–738
November 4-9, 2025 ©2025 Association for Computational Linguistics

The Dangers of Indirect Prompt Injection Attacks on
LLM-based Autonomous Web Navigation Agents: A Demonstration

Sam Johnson
Indiana University

Bloomington, IN, USA
sj110@iu.edu

Viet Pham
University of Science

Ho Chi Minh City, Vietnam
24C11069@student.hcmus.edu.vn

Thai Le
Indiana University

Bloomington, IN, USA
tle@iu.edu

Abstract

This work demonstrates that LLM-based web
browsing AI agents offer powerful automa-
tion capabilities but are vulnerable to Indi-
rect Prompt Injection (IPI) attacks. We show
that adversaries can embed universal adver-
sarial triggers in webpage HTML to hijack
agents that utilize the parsed-HTML accessi-
bility tree, causing unintended or malicious
actions. Using the Greedy Coordinate Gra-
dient (GCG) algorithm and a Browser Gym
agent powered by Llama-3.1, this work demon-
strates high success rates across real websites
in both targeted and general attacks, including
login credential exfiltration and forced adver-
tisement clicks. Our empirical results high-
light critical security risks and the need for
stronger defenses as LLM-driven autonomous
web agents become more widely adopted. The
system software is released under the MIT
License at https://github.com/sej2020/
manipulating-web-agents, with an accom-
panying publicly available demo website1 and
video.2

1 Introduction

Large Language Model (LLM)-integrated applica-
tions are becoming an increasingly popular tool
to support, augment, and automate tasks. Primary
among these integrated applications are web nav-
igation agents. Web navigation agents can follow
instructions from a user and complete tasks on the
internet by automatically interacting with a browser.
These agents can book a reservation, hunt for apart-
ments, analyze balance sheets, and trade stocks,
along with nearly any other task carried out on
the internet. With the introduction of OpenAI’s
Operator (OpenAI, 2025), Manus (AI, 2025), and
Gemini Deep Research (LLC, 2025) tools, along
with deeper integrations like Deepmind’s Project

1http://lethaiq.github.io/
attack-web-llm-agent

2https://youtu.be/Zabpd1Gilic

click("order")

click("malicious
payload")Llama3.1

pizza.com

Task: "Order Pizza"

Action
Space

Malicious
Actor

User

Prompt

Browser Gym Agent

HTML
zyxq4~!%3

Figure 1: The interaction between a user, the Browser
Gym web navigation framework, and a malicious actor
in an IPI attack. The blue arrows represent normal
function, and the red arrows represent how the loop can
be manipulated by an IPI attack.

Mariner extension (DeepMind, 2025) and Perplex-
ity’s Comet Browser (Perplexity, 2025), automated
web interaction may already be so ubiquitous as to
begin to feel mundane. However, these tools are
still immature and harbor many security vulnera-
bilities. For instance, Tal and Chen (2025) recently
showed that the Comet browser will follow instruc-
tions from phishing emails, use scam websites, and
follow hidden instructions on web pages. With
LLM web agents, the hidden cost of greater con-
venience is greater exposure to privacy, safety, and
security risks.

Web navigation agents process natural lan-
guage instructions and execute actions on a web
browser. The system comprises an LLM like
Meta’s LLama3 (Grattafiori et al., 2024) or Ope-
nAI’s GPT-4 (Achiam et al., 2023), a software to
maintain and execute actions on a web browser,
and scripts to compile prompts from user instruc-
tions and the website HTML or accessibility tree.
Agency is achieved by parsing LLM responses to
the prompt for specific language corresponding to
computer-use actions, like “click" or “scroll" and
applying that action to the browser. Fundamentally,
web navigation agents are LLMs, which makes
them susceptible to the same issue that has afflicted

729

https://github.com/sej2020/manipulating-web-agents
https://github.com/sej2020/manipulating-web-agents
http://lethaiq.github.io/attack-web-llm-agent
http://lethaiq.github.io/attack-web-llm-agent
https://youtu.be/Zabpd1Gilic

deep neural network (DNN)-based AI systems for
the last decade: adversarial attack.

Szegedy et al. (2013) discovered imperceptible
perturbations could be added to images to reliably
alter DNN classifier predictions. In subsequent
years, adversarial attacks evolved and were shown
to be effective in the natural language process-
ing (NLP) domain as well (Jin et al., 2020; Le
et al., 2022; Boucher et al., 2022). Wallace et al.
(2019) build upon the gradient-based search meth-
ods of Ebrahimi et al. (2017) to find “triggers"–
sequences that, when appended to a prompt, can
induce any response from an NLP model. Recently
Zou et al. (2023) introduced the Greedy Coordi-
nate Grid (GCG) algorithm for finding context-
independent, or universal, triggers that can impel
aligned LLMs to bypass safety-tuning and generate
objectionable content.

With the ascendance of LLM-integrated applica-
tions, a new adversarial attack vector has emerged:
Indirect Prompt Injection (IPI) (Greshake et al.,
2023). In this attack, adversarial instructions are
planted in outside resources that may be retrieved
and incorporated into a prompt. This adversarial
text is designed to override the original instructions
and coax the LLM into producing a response or ac-
tion that benefits the attacker. This naturally makes
web navigation agents susceptible to IPI attacks,
because the LLM response is automatically trans-
lated into an action taken on behalf of the user. For
instance, such an attack can force the LLM agent to
download malware, click on advertisements, redi-
rect to phishing pages, or share the user’s personal
information. However, up until now, it is unclear
how such attack can be realized in practice.

Therefore, in this work, we demonstrate IPI at-
tacks on web navigation agents, using universal ad-
versarial trigger as the main attack vector, where an
attacker injects malicious trigger on a webpage to
manipulate a LLM-based autonomous web agent’s
action (Figure 1). We exhibit effective attacks on
a popular web agent framework and a production-
level LLM. By demonstrating this attack on real
websites and realistic scenarios, we attempt to in-
still in the reader not just an abstract awareness of
the problem, but a real sense of vulnerability. Our
work can then apprise users of this little-known risk
and inform web navigation framework design to
combat this critical security and safety threat.

2 System Design

2.1 Web Navigation Agent

There are many open-source frameworks available
for creating LLM-based web navigation agents, in-
cluding Browser-User (Browser Use, 2025), Auto-
GPT (Significant-Gravitas, 2025), and Langchain
(LangChain, 2025). Among the most popular
of these is Browser Gym (Drouin et al., 2024).
Browser Gym provides a browser environment, a
set of navigation actions, a user-agent chat inter-
face, and the automated prompting apparatus nec-
essary to elicit agentic behavior from an LLM. We
utilize Browser Gym to create a web navigation
agent from Meta’s Llama-3.1-8B-Instruct model
(Grattafiori et al., 2024).

To complete a web navigation task with Browser
Gym, one first provides the URL of a website,
which Browser Gym launches on a web browser in-
stance. Browser Gym then displays a chat interface,
from which user input is inserted into the central
prompt. Browser Gym extracts the accessibility
tree–i.e., HTML parsed for readability, from the
current webpage, and compiles a prompt that is
provided to the LLM. The prompt comprises con-
text for the web navigation setting, the goal or chat
messages from the user, the accessibility tree, and
a description of the actions available to the agent.
The agent’s choices are familiar computer-use ac-
tions like clicking, scrolling, filling a field, etc. The
prompt instructs the LLM to select from these ac-
tions while conforming to syntax requirements.

Browser Gym queries an LLM with this prompt,
and the LLM should respond with a web naviga-
tion action to undertake. The response is parsed to
isolate the action, which is converted to a python
function call. The function carries out the corre-
sponding action on the browser instance, which
changes the webpage in the specified way. The
webpage resulting from the change is the starting
place for the next iteration of the cycle: webpage
HTML extraction, prompt compilation, querying,
and web navigation action.

2.2 Malicious Trigger Search

This section describes how we carry out our attacks.
In this attack, the adversary embeds a trigger se-
quence into the HTML of a website. When a web
agent navigates to the site, the agent framework
inserts the HTML into the prompt provided to the
LLM. The trigger in the HTML is optimized such
that the LLM responds with a pre-defined action

730

desired by the attacker, rather than the appropriate
action for the given instruction. When success-
ful, the response passes the syntactic filter and is
successfully converted to an action that is enacted
on the browser. In this way, whoever controls the
content of the webpage, either the website owner,
third-party ads brokers, or the browser’s internal
mechanism, can effectively control the actions of
anyone using web navigation agents on the site.

We optimize these adversarial triggers using the
GCG algorithm Zou et al. (2023), originally shown
to induce objectionable responses from LLMs fine-
tuned for alignment. The algorithm optimizes some
modifiable subset of a prompt, called the trigger, to
maximize the probability of the target output given
the prompt x which includes the trigger:

pθ(ytarg | (xpre||xtrig||xpost)) (1)

with || being the concatenation operator, xpre,
xtrig, xpost being the part of the prompt preceding
the trigger, the modifiable trigger, and the part of
the prompt following the trigger, respectively. pθ(·)
indicates the probability of an output for an LLM
parameterized by θ, and ytarg is the target output.
In the original paper Zou et al. (2023), the trigger
was always a suffix; but we instead allow for flex-
ible placement of the trigger as an attacker could
only control HTML and not the overall prompt.

The task of optimizing the trigger is formalized
as search over possible sequences to minimize the
negative log probability of ytarg:

minxtrig − log pθ(ytarg|(xpre||xtrig||xpost)) (2)

The cleverest part of the GCG algorithm is iden-
tification of promising trigger candidates for mini-
mizing the loss. Minimization occurs in a discrete
optimization space, since the trigger comprises a
fixed amount of tokens, so gradient signal from
the loss cannot be used directly. Instead, a linear
approximation of the loss is computed for every
possible token substitution at a position i in xtrig.
Since this is a simple matrix operation, it can be
done quickly. For a full treatment of this procedure,
see the GCG paper or Shin et al. (2020).

2.3 Universal Trigger Search

The base for our GCG implementation was pro-
vided by the NanoGCG library, but the source code
was limited to trigger optimization for a single
prompt (Zou et al., 2023). For many of our experi-
ments, we instead wanted an universal adversarial

trigger optimization, in which the trigger could reli-
ably induce the target sequence independent of the
surrounding prompt, which is a crucial requirement
in practice. Thus, we modified the algorithm for
optimizing the trigger in the context of n differ-
ent prompts: X={(x1pre, x1post), (x2pre, x2post), . . . ,
(xnpre, x

n
post)}, making the final task become find-

ing one trigger that minimizes loss over all of the
n contexts:

minxtrig

−
n∑

i

log pθ(ytarg|(xipre||xtrig||xipost)),
(3)

where xipre, x
i
post∈X . Each prompt in our dataset

X is constructed by processing an HTML page
using the Browser Gym template, which also in-
cludes the instructions for the agent, the action
space, and a web navigation goal. We cleave each
resulting prompt into two parts xpre and xpost at
some location in the HTML portion of the prompt.
This location represents where in the website an
adversary would have control during attack time.
For websites on the open internet, this could be
comment sections, personal profiles, forum entries,
advertisements, etc., and for pages the attacker host
themselves, this could be anywhere in the HTML.

2.4 Demo Interface
To complement our python library demonstrat-
ing the attacks available at https://github.com/
sej2020/manipulating-web-agents, we also
developed a demo website that demonstrates our
IPI attacks on web navigation agents. Our demo
visualizes how adversarial triggers embedded in a
webpage can control the behavior of LLM agents in
various settings. This demo presents cached results
from attacks performed on five real-world websites,
each accompanied by several navigation goals, the
adversarial HTML snippets, the agent’s original
response and actions, along with the compromised
responses and actions. Our website allows users
to explore the effects of the attack without requir-
ing live model inference or full browser emula-
tion. This demo is accessible at http://lethaiq.
github.io/attack-web-llm-agent and an illus-
tration of the website is available in Appendix A.

3 System Evaluation

3.1 Targeted Website Targeted Instruction
In this TWTI scenario, we optimize each trigger
for a single pair of website and instruction. We

731

https://github.com/sej2020/manipulating-web-agents
https://github.com/sej2020/manipulating-web-agents
http://lethaiq.github.io/attack-web-llm-agent
http://lethaiq.github.io/attack-web-llm-agent

(a) Chess (chess.com) (b) Google (translate.google.com)

(c) City (citybrewtours.com) (d) Norway (norway.no) (e) Binary (games.penjee.com)

Figure 2: Screenshots of each of our sample sites. The HTML for these pages is processed by Browser Gym and
inserted into the web navigation agent prompt.

illustrate several interesting scenarios in which our
attack could avail an attacker. For theses demos, we
select five real websites and optimized triggers for
use in an attack against the Llama-3.1-8B-Instruct
model in Browser Gym. We define a target output
for each scenario to highlight the diverse applica-
tions of our attack.
Chess (chess.com). We optimize a trigger
for this website to induce the response ‘re-
port_infeasible(“No cheating in chess!”)’. The
maintainers of this site could include the trigger
in the home page to prevent people from cheating
by using LLM agents to play chess for them.
Binary (games.penjee.com/binary-numbers-
game). We optimize for a trigger that compels
the action ‘click(’142’)’ on the home page of this
online game. ‘142’ is the accessibility tree ID
of a blog linked at the bottom of the page. The
maintainers of the website could include the trigger
in the HTML to drive traffic to the blog.
City (citybrewtours.com). We optimize for a
trigger that executes the command ‘click(’551’),’
which corresponds to a banner ad at the top of the
website. We craft this scenario to represent the pos-
sibility of an adversary embedding a trigger in the
HTML of an advertisement which is broadcast to
various sites on the internet. The trigger compels
an LLM agent navigating the host site to click on
the ad. If the attacker embeds malware in the link

of the ad, then serious harm could be done to the
user of the web agent.
Norway (norway.no/en/missions/un). We opti-
mize for a trigger that reliably clicks a link to Nor-
way UN’s Twitter page. One can imagine how a
trigger can be optimized for Norway UN’s Twitter
home page that causes agents to click the ‘follow’
button. Chaining triggers like this can turn every
norway.no/ page visitor into a Twitter follower!
Google (translate.google.com). We optimize for
a trigger that executes ‘tab_close()’ which could
help a web service turn away bot traffic that may
be impacting quality of service.
System Analysis. Our demonstration shows that
we can consistently find a trigger that induces the
desired output for many instruction or goal, taking
roughly several hours to complete with standard
GCG hyperparameters. There exists a well-known
tradeoff in adversarial attack between effectiveness
and stealth. In NLP, it is thought that longer ad-
versarial sequences are more effective but sacrifice
some guile. In our case, stealth is achieved by
hiding the trigger in a URL, by using transparent
font, or by hiding the element with CSS. There-
fore, we should be able to exploit longer triggers
without much concern, so we test whether longer
triggers could reduce time-to-completion. We also
examine whether Carlini-Wagner (CW) loss (Car-
lini and Wagner, 2017) offers any speedup over

732

Figure 3: Time-to-completion for trigger optimization
by search width. Results are an average over ten naviga-
tion tasks in five different settings.

cross-entropy loss. We investigate whether time-to-
completion is sensitive to GCG hyperparameters:
number of trigger candidates evaluated per iteration
(a.k.a. search width) or top-k token replacement
candidates. Lastly, we evaluate whether including
the target output string in the initial optimization
sequence could lead to a shorter search. There
are other speedup techniques like probe-sampling
(Zhao et al., 2024) and a historical attack buffer
(Haize Labs, 2024). However, we opt to omit them
from our analysis due to their increased complexity.

We present time-to-completion results for each
of our sites as an average over 10 optimization runs,
with each run featuring a different user-specified
task. Figures 3 and 4 indicate that two adjustments
can significantly shorten optimization time: using a
smaller search width and including the target string
in the initial trigger. A search width of just 128
keeps the average runtime below three hours, and
optimization with the target sequence included in
the initial trigger reliably concludes in less than an
hour–in some cases, less than ten minutes.

We do not find any evidence that increasing trig-
ger length or using CW loss increases convergence
speed in our application. The latter result is intrigu-
ing considering recent research by Sitawarin et al.
(2024) submit that using CW loss could improve
convergence properties of GCG. Figures for these
(null) results can be found in Appendix B.

3.2 Targeted Website Universal Instruction

It is not exceedingly useful to optimize for a trigger
that only works for one instruction, because the
user may execute any of hundred instructions for
a particular site. Thus, in this TWUI scenario, we
optimize for universal triggers with respect to user

Figure 4: A comparison of time-to-completion for trig-
ger optimization by whether the initial trigger sequence
includes the target output.

Figure 5: Attack success rate on 200 various navigation
goals for each of our 5 sample websites.

instructions for a specific, targeted website.
For each of our five sample websites, we use eq.

3 to find a universal adversarial trigger. Following
Zou et al. (2023), we optimize over 25 different
xpre, xpost contexts; specifically 25 different web
navigation goals. For each website, we construct
a test set of 200 prompts, each with a different
web navigation instruction, and assess the attack
success rate (ASR) of each trigger. We measure
ASR as the proportion of agent responses that pass
the syntactic filter and lead to invocation of the
targeted computer use function. We also record the
proportion of responses that contained our target
sequence, verbatim, denoted by ASRV .

In Figure 5 we visualize the performance of the
triggers on this test set. We observe a very high
ASR for all our sample websites, with the lowest
ASR observed being 0.83 in the city setting. In
some cases, like with chess.com, we see a signifi-
cantly higher ASR than ASRV . This can primarily
be attributed to usage of double-quotes in the LLM

733

Figure 6: Attack success rate for a universal trigger on
login pages. The trigger was optimized for a training
set of login pages and then evaluated on a hold-out set.

response instead of single-quotes. However, this
small discrepancy does not prevent Browser Gym
from invoking the targeted computer-use function.

3.3 Universal Website Targeted Instruction

Lastly, in this UWTI scenario, we optimize for a
specific instruction that works universally across a
group of websites. Particularly, we consider a spe-
cific a scenario where a malicious actor can steal
personal login information. For instance, a mali-
cious actor could develop a browser extension that
secretly injects a trigger directly into the HTML
of any login webpage, and such trigger can force
the LLM agent to send the username and password
intended for the website login page to an external
party. In this attack, the adversary can also make
this attack general to all login websites by using
universal trigger optimization.

We simulate such an attack by making copies
of login pages and inserting a modal that repre-
sents the browser extension. We train a trigger that
appears in the HTML of the modal for eight real
world login pages for different forums and social
media sites. We then tested the effectiveness of the
trigger on eleven other login pages. Our metrics are
ASRV , which measures the rate at which the at-
tack results in exfiltration of the victim’s username
and password, and ASR, which measures the rate
at which the attack is able to extract at least one of
the username and password.

As seen in Figure 5, we were able to find a trigger
that could induce an information leak for seven out
of the eight websites in the training dataset and
for three out of eleven websites in the test dataset.
Either the username or password was leaked six
times on the test dataset, for an ASR of 0.55.

4 Discussion

4.1 Transferability

We attempt to transfer triggers learned in the TWUI
setting to other LLMs, namely Llama-2-7b-chat-hf
(Touvron et al., 2023) and Mistral-7B-Instruct-v0.3
(Mistral AI team, 2024), but were unsuccessful.
Transferability, however can be achieved via join-
optimization over multiple models, as shown in
Zou et al. (2023).

4.2 Failure Analysis

Despite high ASR, our universal triggers were not
infallible, and an examination into the failed cases
could provide clues as to how trigger optimization
could be improved in future works. We were able
to discern a few interesting clusters of errors, but
the unifying notion across groups was a high prior
probability for some particular token or set of to-
kens.

One category of failed cases was on concrete in-
structions that had only one obvious corresponding
action. Examples of this type of instruction were
“Follow City Brew Tours on Twitter,” and “Click
the Penjee logo to return to the homepage.” Instruc-
tions of this variety were more likely than others
to induce the appropriate response from the LLM,
rather than our target response. Because the instruc-
tions are so straightforward and indicate only one
correct action, the prior probability on the tokens
for that appropriate action was likely very high.

Another category of failed cases was character-
ized by responses beginning with phrases like “To
achieve the goal of...”. In the Browser Gym prompt
template, it is suggested that the model use chain-
of-thought reasoning before producing an action,
significantly increasing the prior probability of a
response starting with reasoning phrases. Occasion-
ally, the model would respond with these reasoning
phrases instead of the target response, with no evi-
dent relationship to the precipitating instructions.

4.3 Potential Defense

Major LLM agent service providers are aware of
the threats posed by IPI attacks and have integrated
defenses into their agent platforms. Prevalent de-
fenses include using special characters to distin-
guish instructions from external text, reinforcement
of the system prompt to bias the LLM against fol-
lowing adversarial instructions, and sanitization of
web data to mask suspicious text (Paverd, 2025;
Team, 2025). These techniques employed by large

734

vendors provide some limited security but are in-
effectual against triggers from GCG and similar
algorithms. These defenses target human-written
adversarial text, while universal trigger attacks are
obfuscated and designed to induce a specific re-
sponse irrespective of the prompt. Another com-
mon strategy is to curtail agent privileges by im-
posing domain restrictions and requiring action
confirmations (Anthropic, 2025). While this does
decrease risk, it limits capability and autonomy–
qualities that the market will eventually compel.

Recent innovations that leverage a deep under-
standing of the IPI attack and focus on preserving
the continuity of instructions and actions may be
most promising. An et al. (2025) decouples plan-
ning from execution through a ‘Tool Dependency
Graph’, which establishes action sequences a pri-
ori. Zhu et al. (2025) propose a framework that
detects IPI attacks by observing whether an agent’s
actions are dependent on the presence of instruc-
tions. Sophisticated defenses like these provide
optimism that IPI attacks can be largely neutralized
in the near term.

5 Related Work

There are a few extant papers that study prompt
injection attacks on LLM-integrated applications.
Liu et al. (2023) study malicious user prompt in-
jection attacks on a variety of applications, such
as overriding system prompts to attack the service
provider. Zhan et al. (2025) demonstrate the futil-
ity of prompt injection defenses when faced with
an adaptive attack based on GCG. Greshake et al.
(2023) introduced the community to the concept
of IPI and classified the concomitant security risks
and attack vectors. Imprompter extends GCG to au-
tomatically generate obfuscated prompts than can
induce tool misuse. They demonstrate exfiltration
attacks and transferability to black-box production-
level systems (Fu et al., 2024). Additionally Evti-
mov et al. (2025) establish a benchmark for LLM
web agent vulnerability to IPI attack and show that
even cutting-edge models are at least partially sus-
ceptible to low-effort, human-written adversarial
instructions. Unlike these preceding works, we fo-
cus intently on web navigation agents and provide
concrete demonstrations of obfuscated IPI attacks
on a popular web agent framework.

6 Limitations

There are practical limitations to the attack tech-
nique that companies serving web-navigation
agents should understand and exploit. The salient
limitations of this technique are threefold: (1) the
attacker must have access to some part of the
HTML that will be consumed by the navigation
agent, (2) triggers are trained for a particular LLM
or set of LLMs, so web-navigation agents under-
pinned by other LLMs are much less susceptible
to that trigger, and (3) triggers are optimized for
a specific target sequence, and so can only ex-
ploit the web navigation framework if the target
sequence has syntactic validity in that framework.
A closed-source web navigation framework that ro-
tates its action-space scheme and does not disclose
the LLM it uses will be less susceptible to this type
of attack. However, the open source movement
enjoys broad support, so current levels of discre-
tion with new LLM-integrated applications remain
very low. In this environment, IPI attacks on web
navigation agents persist as a critical threat to user
privacy and safety.

7 Conclusion

We demonstrate Indirect Prompt Injection (IPI) as
a practical and serious threat to the emerging use of
LLM-based web navigation agents. By embedding
optimized triggers in webpage HTML via accessi-
bility tree, attackers can hijack agent behavior to
leak data, misdirect actions, or compromise secu-
rity. Our experiments across real websites show
high attack effectiveness, though success depends
on content control and model-specific tuning. De-
spite the limitations, the ease of deployment and
lack of robust defenses make IPI a pressing concern
as LLM-enabled web navigation agents proliferate.

Acknowledgment

The authors thank the reviewers for their detailed
feedback on this work. This work used Jet-
stream2 at Indiana University through allocations
#CIS250090, #CIS240570 from the Advanced
Cyberinfrastructure Coordination Ecosystem: Ser-
vices & Support (ACCESS) program, which is
supported by National Science Foundation grants
#2138259, #2138286, #2138307, #2137603, and
#2138296.

735

Ethical Consideration

We recognize and acknowledge that our attack
demonstration might unintentionally trigger harm-
ful implementations by bad actors. Therefore, we
withhold the UWTI scenario on our demonstration
website to take into account the high profile of such
an attack that can enable unauthorized access to a
user’s username and password. At the same time,
we believe that our work will help better secure
the emerging application of LLMs as autonomous
web navigation agents, helping the community to
secure those agents before the technology becomes
mature and broadly deployed. Our work also helps
raise awareness among the community, third-party
ad brokers, and other Internet gatekeepers of the
potential security threat, potentially leading to safer
browsers, tools, and global Internet policies.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, and 1 others. 2023. Gpt-4 techni-
cal report. arXiv preprint arXiv:2303.08774.

Manus AI. 2025. Leave it to manus. https://manus.
im/.

Hengyu An, Jinghuai Zhang, Tianyu Du, Chunyi Zhou,
Qingming Li, Tao Lin, and Shouling Ji. 2025. Ipi-
guard: A novel tool dependency graph-based defense
against indirect prompt injection in llm agents. arXiv
preprint arXiv:2508.15310.

Anthropic. 2025. Piloting claude for chrome. Anthropic
News.

Nicholas Boucher, Ilia Shumailov, Ross Anderson, and
Nicolas Papernot. 2022. Bad characters: Impercepti-
ble nlp attacks. In 2022 IEEE Symposium on Security
and Privacy (SP), pages 1987–2004. IEEE.

Browser Use. 2025. Browser use: The ai browser agent.
https://browser-use.com/.

Nicholas Carlini and David Wagner. 2017. Towards
evaluating the robustness of neural networks. In
2017 IEEE Symposium on Security and Privacy (SP),
pages 39–57.

Google DeepMind. 2025. Project mariner.

Alexandre Drouin, Maxime Gasse, Massimo Caccia,
Issam H. Laradji, Manuel Del Verme, Tom Marty,
David Vazquez, Nicolas Chapados, and Alexandre
Lacoste. 2024. WorkArena: How capable are web
agents at solving common knowledge work tasks?
In Proceedings of the 41st International Conference
on Machine Learning, volume 235 of Proceedings

of Machine Learning Research, pages 11642–11662.
PMLR.

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and De-
jing Dou. 2017. Hotflip: White-box adversarial
examples for text classification. arXiv preprint
arXiv:1712.06751.

Ivan Evtimov, Arman Zharmagambetov, Aaron
Grattafiori, Chuan Guo, and Kamalika Chaudhuri.
2025. Wasp: Benchmarking web agent security
against prompt injection attacks. arXiv preprint
arXiv:2504.18575.

Xiaohan Fu, Shuheng Li, Zihan Wang, Yihao Liu, Ra-
jesh K. Gupta, Taylor Berg-Kirkpatrick, and Earlence
Fernandes. 2024. Imprompter: Tricking llm agents
into improper tool use. Preprint, arXiv:2410.14923.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, and 1 others. 2024. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783.

Kai Greshake, Sahar Abdelnabi, Shailesh Mishra,
Christoph Endres, Thorsten Holz, and Mario Fritz.
2023. Not what you’ve signed up for: Compromis-
ing real-world llm-integrated applications with indi-
rect prompt injection. In Proceedings of the 16th
ACM Workshop on Artificial Intelligence and Secu-
rity, pages 79–90.

Haize Labs. 2024. Making a sota adversarial attack on
llms 38x faster.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter
Szolovits. 2020. Is bert really robust? a strong base-
line for natural language attack on text classification
and entailment. In Proceedings of the AAAI con-
ference on artificial intelligence, volume 34, pages
8018–8025.

LangChain. 2025. Langchain: The platform for reliable
agents. https://www.langchain.com/.

Thai Le, Jooyoung Lee, Kevin Yen, Yifan Hu, and Dong-
won Lee. 2022. Perturbations in the wild: Lever-
aging human-written text perturbations for realis-
tic adversarial attack and defense. arXiv preprint
arXiv:2203.10346.

Yi Liu, Gelei Deng, Yuekang Li, Kailong Wang, Zihao
Wang, Xiaofeng Wang, Tianwei Zhang, Yepang Liu,
Haoyu Wang, Yan Zheng, and 1 others. 2023. Prompt
injection attack against llm-integrated applications.
arXiv preprint arXiv:2306.05499.

Google LLC. 2025. Gemini deep research.

Mistral AI team. 2024. Mistral 7b.

OpenAI. 2025. Introducing operator. Technical report,
OpenAI, Inc., San Francisco, CA.

736

https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2303.08774
https://manus.im/
https://manus.im/
https://doi.org/10.48550/arXiv.2508.15310
https://doi.org/10.48550/arXiv.2508.15310
https://doi.org/10.48550/arXiv.2508.15310
https://www.anthropic.com/news/claude-for-chrome
https://doi.org/10.1109/sp46214.2022.9833641
https://doi.org/10.1109/sp46214.2022.9833641
https://doi.org/10.1109/SP.2017.49
https://doi.org/10.1109/SP.2017.49
https://deepmind.google/models/project-mariner/
https://doi.org/10.48550/arXiv.2403.07718
https://doi.org/10.48550/arXiv.2403.07718
https://doi.org/10.48550/arXiv.1712.06751
https://doi.org/10.48550/arXiv.1712.06751
https://doi.org/10.48550/arXiv.2504.18575
https://doi.org/10.48550/arXiv.2504.18575
https://doi.org/10.48550/arXiv.2410.14923
https://doi.org/10.48550/arXiv.2410.14923
https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.1145/3605764.3623985
https://doi.org/10.1145/3605764.3623985
https://doi.org/10.1145/3605764.3623985
https://www.haizelabs.com/technology/making-a-sota-adversarial-attack-on-llms-38x-faster
https://www.haizelabs.com/technology/making-a-sota-adversarial-attack-on-llms-38x-faster
https://doi.org/10.1609/aaai.v34i05.6311
https://doi.org/10.1609/aaai.v34i05.6311
https://doi.org/10.1609/aaai.v34i05.6311
https://www.langchain.com/
https://doi.org/10.48550/arXiv.2203.10346
https://doi.org/10.48550/arXiv.2203.10346
https://doi.org/10.48550/arXiv.2203.10346
https://doi.org/10.48550/arXiv.2306.05499
https://doi.org/10.48550/arXiv.2306.05499
https://gemini.google/overview/deep-research/?hl=en
https://mistral.ai/news/announcing-mistral-7b
https://openai.com/index/introducing-operator/

Andrew Paverd. 2025. How microsoft defends against
indirect prompt injection attacks. Microsoft Security
Response Center Blog.

Perplexity. 2025. Comet browser: A personal ai assis-
tant.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric
Wallace, and Sameer Singh. 2020. Autoprompt: Elic-
iting knowledge from language models with automat-
ically generated prompts. CoRR, abs/2010.15980.

Significant-Gravitas. 2025. Autogpt: Build, deploy,
and run ai agents. https://github.com/Significant-
Gravitas/AutoGPT.

Chawin Sitawarin, Norman Mu, David Wagner, and
Alexandre Araujo. 2024. Pal: Proxy-guided black-
box attack on large language models. Preprint,
arXiv:2402.09674.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian Goodfellow, and
Rob Fergus. 2013. Intriguing properties of neural
networks. arXiv preprint arXiv:1312.6199.

Nati Tal and Shaked Chen. 2025. “scamlexity” we put
agentic ai browsers to the test - they clicked, they
paid, they failed.

Google GenAI Security Team. 2025. Mitigating prompt
injection attacks with a layered defense strategy.
Google Online Security Blog. Accessed: YYYY-
MM-DD.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, and 1 others. 2023. Llama 2: Open foun-
dation and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner,
and Sameer Singh. 2019. Universal adversarial trig-
gers for attacking and analyzing nlp. arXiv preprint
arXiv:1908.07125.

Qiusi Zhan, Richard Fang, Henil Shalin Panchal, and
Daniel Kang. 2025. Adaptive attacks break de-
fenses against indirect prompt injection attacks on
llm agents. Preprint, arXiv:2503.00061.

Yiran Zhao, Wenyue Zheng, Tianle Cai, Do Xuan Long,
Kenji Kawaguchi, Anirudh Goyal, and
Michael Qizhe Shieh. 2024. Accelerating greedy
coordinate gradient and general prompt optimization
via probe sampling. Advances in Neural Information
Processing Systems, 37:53710–53731.

Kaijie Zhu, Xianjun Yang, Jindong Wang, Wenbo Guo,
and William Yang Wang. 2025. Melon: Provable
defense against indirect prompt injection attacks in
ai agents. In International Conference on Machine
Learning.

Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr,
J. Zico Kolter, and Matt Fredrikson. 2023. Univer-
sal and transferable adversarial attacks on aligned
language models. Preprint, arXiv:2307.15043.

737

https://msrc.microsoft.com/blog/2025/07/how-microsoft-defends-against-indirect-prompt-injection-attacks/
https://msrc.microsoft.com/blog/2025/07/how-microsoft-defends-against-indirect-prompt-injection-attacks/
https://www.perplexity.ai/comet
https://www.perplexity.ai/comet
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.48550/arXiv.2402.09674
https://doi.org/10.48550/arXiv.2402.09674
https://doi.org/10.48550/arXiv.1312.6199
https://doi.org/10.48550/arXiv.1312.6199
https://guard.io/labs/scamlexity-we-put-agentic-ai-browsers-to-the-test-they-clicked-they-paid-they-failed
https://guard.io/labs/scamlexity-we-put-agentic-ai-browsers-to-the-test-they-clicked-they-paid-they-failed
https://guard.io/labs/scamlexity-we-put-agentic-ai-browsers-to-the-test-they-clicked-they-paid-they-failed
https://security.googleblog.com/2025/06/mitigating-prompt-injection-attacks.html
https://security.googleblog.com/2025/06/mitigating-prompt-injection-attacks.html
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.1908.07125
https://doi.org/10.48550/arXiv.1908.07125
https://doi.org/10.48550/arXiv.2503.00061
https://doi.org/10.48550/arXiv.2503.00061
https://doi.org/10.48550/arXiv.2503.00061
https://doi.org/10.48550/arXiv.2403.01251
https://doi.org/10.48550/arXiv.2403.01251
https://doi.org/10.48550/arXiv.2403.01251
https://doi.org/10.48550/arXiv.2307.15043
https://doi.org/10.48550/arXiv.2307.15043
https://doi.org/10.48550/arXiv.2307.15043

Video after trigger injection

User-Agent Chat
 Interface

Video before trigger injection

Injected triggers to HTML

Figure 7: Main UI of the demo website.

Appendix

A Demo Website UI Interface

Figure 7 illustrates the main interface of the demo
website. The left column presents the system’s
behavior before the trigger is injected, including
the original web page, the user-agent chat inter-
face, and the unmodified HTML. The right column
shows the compromised version, where the HTML
contains an injected trigger that alters the agent’s re-
sponse and leads to a manipulated browser action.
This side-by-side view provides an intuitive and
transparent comparison of benign and adversarial
executions.

B Additional TWTI Results

Figure 8, 9 and 10 demonstrate the time-to-
completion of optimization for different hyperpa-
rameter values. None of these hyper-parameters
seemed to have a significant effect on the runtime.

Figure 8: The trigger length did not have a clear effect
on time-to-completion.

Figure 9: The value for top-k trigger candidates did not
have a clear effect on time-to-completion.

Figure 10: Using the Carlini-Wagner loss function
did not significantly improve optimization time-to-
completion over standard cross-entropy loss.

738

