TruthTorchLLM:
A Comprehensive Library for Predicting Truthfulness in LLM Outputs

Duygu Nur Yaldiz!*
Alperen Ozis®
Zhiqi Huang *

Yavuz Bakman'*
Hayrettin Eren Yildiz®
Anoop Kumar*
Sai Praneeth Karimireddy!
"University of Southern California
3Bogazici University

Sungmin Kang!
Mitash Shah !
Alfy Samuel* Daben Liu*

Salman Avestimehr!
’Independent Researcher
4 Capital One

{yaldiz, ybakman}@usc.edu

Abstract

Generative Large Language Models (LLMs)
inevitably produce untruthful responses. Accu-
rately predicting the truthfulness of these out-
puts is critical, especially in high-stakes set-
tings. To accelerate research in this domain and
make truthfulness prediction methods more ac-
cessible, we introduce TruthTorchLM! 23 an
open-source, comprehensive Python library fea-
turing over 30 truthfulness prediction methods,
which we refer to as Truth Methods. Unlike ex-
isting toolkits such as Guardrails (guardrails-
ai), which focus solely on document-grounded
verification, or LM-Polygraph (Fadeeva et al.,
2023), which is limited to uncertainty-based
methods, TruthTorchLM offers a broad and
extensible collection of techniques. These
methods span diverse trade-offs in computa-
tional cost, access level (e.g., black-box vs.
white-box), grounding document requirements,
and supervision type (self-supervised or super-
vised). TruthTorchLM is seamlessly compati-
ble with both HuggingFace and LiteLLM, en-
abling support for locally hosted and API-based
models. It also provides a unified interface for
generation, evaluation, calibration, and long-
form truthfulness prediction, along with a flex-
ible framework for extending the library with
new methods. We conduct an evaluation of
representative truth methods on three datasets,
TriviaQA, GSMSK, and FactScore-Bio.

1 Introduction

Generative Large Language Models (LLMs) have
been widely adopted in many real-world applica-
tions due to their remarkable performance across a
range of tasks, from code generation to conversa-
tional agents (Band et al., 2021). Despite these suc-
cesses, LLMs inevitably produce outputs that are
factually or logically incorrect, commonly referred

lhttps ://github.com/Ybakman/TruthTorchlLM
thtps ://www.youtube.com/watch?v=Bim-6Tv_qu4
3https ://pypi.org/project/TruthTorchLM/

to as hallucinations (Ravi et al., 2024). Detect-
ing such untruthful outputs is particularly crucial
in high-stakes applications where reliability and
correctness are essential.

In response, numerous methods have been pro-
posed to assess the truthfulness of LLM-generated
content to support reliable decision-making. These
include uncertainty estimation techniques, agen-
tic tool use, multi-LLLM collaboration strategies,
supervised classification models, and document-
based verification approaches. Each method varies
in terms of computational cost, required access to
model internals, and reliance on external resources.
As LLM usage continues to grow, developing new
techniques and refining existing ones remains cru-
cial, given that truthfulness is a core requirement
for trustworthy language generation.

To support research in this domain, an open-
source library that consolidates existing methods
and offers a flexible development framework is es-
sential. Current software tools only partially meet
this need. For instance, Guardrails (guardrails-ai)
is an open-source library that focuses on document-
based guardrails to assess the truthfulness of LLM
outputs. However, it lacks support for a broader
range of methods that do not rely on external docu-
ments, such as uncertainty estimation techniques.
Similarly, LM-Polygraph (Fadeeva et al., 2023)
provides implementations of uncertainty estima-
tion methods, but it does not include supervised ap-
proaches, document-checking techniques, or tool-
based strategies. A more comprehensive and ex-
tensible toolkit is needed to facilitate systematic
evaluation and innovation across the full spectrum
of truthfulness prediction methods.

To facilitate research and address the limitations
of existing software in the domain of truthfulness
prediction, we introduce TruthTorchLM (TTLM),
an open-source library that currently implements
over 30 truth methods with diverse algorithmic
ideas. The library provides an intuitive and ex-
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Figure 1: Overview of TruthTorchLM functionalities.

tensible interface for integrating new methods, en-
abling researchers to prototype and evaluate novel
approaches with ease. TruthTorchLM is seam-
lessly compatible with both HuggingFace (Wolf
et al., 2020) and LiteLLM (BerriAl), two of
the most widely used frameworks for deploying
LLMs in local and hosted environments. Beyond
method implementation, the library offers compre-
hensive evaluation tools for benchmarking perfor-
mance and includes calibration utilities to produce
more interpretable truthfulness scores. Importantly,
TruthTorchLM supports the application of truth
methods to long-form generations, where multi-
ple factual claims may be present and each claim
requires individual assessment. This long-form set-
ting represents a challenging and underexplored
area of research, which is currently underserved by
existing libraries.
Our contributions can be summarized as follows:
1. We release TruthTorchLM (TTLM), an open-
source library that implements over 30 truth-
fulness prediction methods, fully compatible
with both HuggingFace and LiteLLM frame-

works.
2. TruthTorchLM provides a unified interface

for generation, evaluation, calibration, and
long-form extension of existing truth methods,
along with a flexible framework for adding

new methods.
3. We conduct a comprehensive evaluation of

a representative truth methods across three
diverse datasets, TriviaQA, GSMS8K, and
FactScore-Bio, using both an open-weight
model (LLaMA-3-8B) and a closed-weight
model (GPT-40-mini).

2 System Design and Features of TTLM

TTLMis designed around a central abstraction: truth
methods, which are methods for predicting the

truthfulness of LLM-generated outputs. Using
TTLM, users can generate responses for any in-
put query and apply one or more truth methods to
assess the reliability of these outputs, whether they
are short-form answers containing a single claim
or long-form responses with multiple factual as-
sertions. In addition to prediction, TTLM enables
users to evaluate and calibrate the outputs of truth
methods with just a few lines of code. In the fol-
lowing sections, we detail each of TTLM’s core
features and explain how they support robust and
scalable research in truthfulness assessment.

2.1 Truth Methods

Truth Methods are methods designed to estimate the
truthfulness or correctness of an LLM’s response
to a given query. These methods operate in an
off-the-shelf manner, meaning they do not inter-
fere with the generation process itself, but instead
assign a post hoc truthfulness score (referred to
as a truth value) after the response has been pro-
duced. Each Truth Method can optionally define
its own parameters and must implement a standard-
ized forward function, which takes as input the
relevant generation-time information, such as gen-
erated token ids, the LLM and tokenizer objects,
and returns a truth value. All methods inherit from
the TruthMethod base class and follow a consis-
tent interface, making the library easily extensible
for users to implement custom methods.
Truthfulness estimation can be approached in a
variety of ways, each with distinct trade-offs. The
first major axis of variation is the use of external
context: for example, Natural Language Inference
(NLI) (Lei et al., 2023) methods assess truthful-
ness relative to supporting documents, while Un-
certainty Quantification (UQ) methods rely solely
on the model’s output probabilities or internal
states and do not require any external resources.
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Table 1: Categorization of a representative subset of available methods in TruthTorchLM.

Truth Methods

Document-Grounding Supervised Access Level Sampling-Required

LARS (Yaldiz et al., 2025)

MARS (Bakman et al., 2024)

SelfDetection (Zhao et al., 2024)
PTrue(Kadavath et al., 2022)

AttentionScore (Sriramanan et al., 2024)
CrossExamination (Cohen et al., 2023)
Eccentricity (Lin et al., 2024)
GoogleSearchCheck (Chern et al., 2023)
Inside (Chen et al., 2024)
KernelLanguageEntropy (Nikitin et al., 2024)
MiniCheck (Tang et al., 2024)
Matrix-Degree (Lin et al., 2024)

SAPLMA (Azaria and Mitchell, 2023)
SemanticEntropy (Kuhn et al., 2023)
MultiLLMCollab (Feng et al., 2024)

SAR (Duan et al., 2024)
VerbalizedConfidence (Tian et al., 2023)
DirectionalEntailmentGraph (Da et al., 2024)

]J] ™A™ XXX NUX XN X XXX XXX

Grey-box
Grey-box
Black-box
Grey-box
White-box
Black-box
Black-box
Black-box
White-box
Black-box
Black-box
Black-box
White-box
Grey-box
Black-box
Grey-box
Black-box
Black-box

3¢ 3 3¢ % X N X X X X X% X X X X X X\
ARXRANIXARXRCI XX X N\% X

In addition to document-grounding (1), we cate-
gorize truth methods along three further dimen-
sions: (2) whether the method is supervised or
self-supervised, that is, whether it requires separate
training or can operate in a zero-shot fashion; (3)
the level of access to the underlying model, ranging
from black-box (output only), to gray-box (output
probabilities), to white-box (internal representa-
tions); and (4) whether the method requires sam-
pling, some approaches explore the output space to
assign truth values, while others operate directly on
a single response, which often reflects their compu-
tational cost. A representative subset of currently
available methods and their categorization is pro-
vided in Table 1.

2.2 Unified Generation Interface

TTLM provides a unified generation interface that
supports both locally hosted models via Hugging-
Face and API-based models through LiteLLM.
This interface enables seamless integration of
truth prediction with model inference, regard-
less of deployment type. The core function,
generate_with_truth_value, accepts a chat his-
tory formatted as a list of message dictionaries
(including system prompts, user queries, and prior
exchanges), along with a list of predefined truth
methods. It also supports standard generation pa-
rameters such as temperature, sampling strategy,
and maximum token limits, with full compatibility
with both HuggingFace and LiteLLM generation
arguments.

The function returns the generated output along-
side the assigned truth values for each specified
truth method and each truth methods’ specific de-

tails if desired. This streamlined interface enables
effortless evaluation of generation reliability across
diverse model backends. Figure 1.1 illustrates
the function’s architecture, and a code example
is shown below.

Listing 1: Usage of generate_with_truth_value

import TruthTorchLM as ttlm

# Define truth methods

lars = ttlm.truth_methods.LARS()

confidence = ttlm.truth_methods.Confidence()

self_detection = ttlm.truth_methods.
SelfDetection(number_of_questions=5)

truth_methods = [lars, confidence,
self_detection]

# Define chat input

chat = [{"role": "system”, "content”: "You are a
helpful assistant."},
{"role": "user”, "content”: "What is the

capital city of France?"}]

# Generate with a HuggingFace model
output_hf_model= ttlm.generate_with_truth_value(
model=model, tokenizer=tokenizer,
messages=chat,
truth_methods=truth_methods,
max_new_tokens=100, temperature=0.7)

# Generate with an API-based model

output_api_model=ttlm.generate_with_truth_value(
model="GPT-40", messages=chat,
truth_methods=truth_methods)

2.3 Evaluation of Truth Methods

Truth methods assign a scalar score, referred to as
the truth value, to each model-generated output or
individual claim. In short-form question answer-
ing tasks, evaluation follows a simple principle: if
the generation is correct with respect to the ground
truth, the assigned truth value should be high; if in-
correct, it should be low. We explain the evaluation
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in long-form generations in Section 2.5.

Since free-form generations may vary lexically
even when correct, we employ both traditional
and modern correctness evaluators. Classical
approaches include string-based metrics such as
ROUGE (Lin, 2004), Exact Match, and BLEU (Pa-
pineni et al., 2002), while more recent methods
such as Model-as-a-Judge leverage large language
models to assess semantic correctness(Lin et al.,
2024; Yaldiz et al., 2025). TruthTorchLM supports
all of these evaluation criteria out-of-the-box. Once
correctness labels are assigned, the performance
of a truth method can be measured using both
threshold-independent metrics, such as AUROC
and PRR, and threshold-dependent metrics like F1
score, accuracy, precision, and recall. In Figure 1.4,
we provide the design of evaluation functionality
and, below is an example illustrating how to run
evaluation using TTLM on the TriviaQA dataset:

Listing 2: Evaluating truth methods on TriviaQA

# Define correctness evaluator
model_judge = ttlm.evaluators.ModelJudge(’gpt-40-
mini’)

# Use built-in or custom datasets for evaluation

results = ttlm.evaluate_truth_method(
dataset=’trivia_ga’,
model=model, tokenizer=tokenizer,
truth_methods=truth_methods,
eval_metrics=[’auroc’, ’prr’, ’accuracy’],
correctness_evaluator=model_judge,
size_of_data=1000, max_new_tokens=64)

2.4 Calibration of Truth Methods

Different truth methods may produce scores on
varying ranges. For example, some methods out-
put values between O and 1, while others pro-
duce unbounded negative scores (e.g., in the range
(—00,0]). As a result, directly comparing or inter-
preting these raw truth values can be challenging.

To address this, TTLM supports the calibration
of truth method outputs. Calibration maps the origi-
nal score range into a normalized interval, typically
[0, 1], where O represents minimal likelihood of
truthfulness and 1 represents maximal likelihood.
This enables both meaningful comparison across
methods and the possibility of ensembling multiple
truth scores into a unified signal, as demonstrated
in prior work (Bakman et al., 2025).

We provide several calibration techniques, in-
cluding Isotonic Regression (Han et al., 2017), and
simple min-max normalization. Some calibration
methods require labeled data for supervision, while

others can operate in an unsupervised manner us-
ing only queries. Figure 1.3 provides the system
overview of the calibration feature.

2.5 Predicting Truthfullness in Long Form
Generation

Most questions require long-form generations that
contain multiple factual claims, some correct, oth-
ers incorrect. Evaluating the truthfulness of such
outputs is non-trivial. Assigning a single truthful-
ness score to the entire generation lacks granularity
and is not intuitive. To address this, we assign truth
values to each individual factual claim within the
generation, a strategy also adopted in prior work
(Farquhar et al., 2024; Wei et al., 2024; Fadeeva
et al., 2024; Zhang et al., 2024; Min et al., 2023).
To extract individual claims from a generation,
the long-form text must first be decomposed. The
quality of the decomposition process is critical for
reliable truthfulness assessment. Each extracted
claim must be self-contained and contextually co-
herent to enable accurate evaluation. TTLM’s De-
composition Methods use language models with
carefully designed prompts to ensure high-quality
results across a wide range of topics. Users can
choose any capable model and optionally enforce a
structured output format to prevent parsing issues.
Next step is the assessment of truthfulness of the
decomposed claims. However, most truth methods
are designed for short-form generations and are
not inherently applicable to long-form outputs. To
address this limitation, TTLM introduces Claim
Check Methods. These methods operate on individ-
ual claims extracted from long-form generations
and assign truth scores to each claim. Similar to
truth methods, each claim check method can define
its own parameters and must implement a standard-
ized forward function, which takes a claim along
with relevant generation-time information and re-
turns a truth value.
Claim check methods serve two main purposes:
1. Wrapper functionality: They adapt existing truth
methods for claim-level checks (e.g., claim-specific
question generation). In this case, the claim check
method is initialized with one or more truth meth-
ods as input. TTLM provides three such wrapper
methods by default. 2. Claim-level evaluation:
These methods are specifically designed for assess-
ing individual claims directly. All claim check
methods inherit from the ClaimCheckMethod base
class, ensuring a consistent, extensible interface.
To generate a long-context output with
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corresponding truth values, TTLM contains
long_form_generation_with_truth_value.
This function accepts a chat history, a set of claim
check methods, and a decomposition method.
First, it generates a response ant this process is
fully compatible with both Hugging Face and
LiteLLM, supporting their respective generation
configurations. The output is then decomposed
into individual factual claims, each of which is
evaluated using the specified claim check methods.
The function returns the full generation, the
set of claims with their associated truth values,
and optionally, detailed metadata describing the
decomposition and truth assessment processes.
Figure 1.2 provides an overview of the long-form
generation functionality, with a code example
shown below.

Listing 3: Long-form generation with truth values

import TruthTorchLM.long_form_generation as LFG

#define a decomposition method

decomposition_method = LFG.decomposition_methods.
StructuredDecompositionAPI(model="gpt-40-
mini", decomposition_depth=1)

#claim check method that apply truth methods

ga_generation = LFG.claim_check_methods.
QuestionAnswerGeneration(model="gpt-40-mini”
, truth_methods=[confidence, lars])

#claim check methods designed for this purpose

ac_entailment = LFG.claim_check_methods.
AnswerClaimEntailment( model="gpt-40-mini”,
num_questions=3, num_answers_per_question=2)

#tdefine a chat history

chat = [{"role": "system”, "content”: "You are a
helpful assistant."},
{"role": "user", "content”: "Who is Ryan

Reynolds?"}]

# Generate with an API-based model
out = LFG.long_form_generation_with_truth_value(
model="gpt-40-mini", messages=chat,
decomp_method=decomposition_method,
claim_check_methods=[qa_generation,
ac_entailment])

TTLM evaluates claim check methods, either in-
dividually or in combination with truth methods, at
the claim level within long-form generations. Since
ground truth labels are typically unavailable for
claims extracted from long-form outputs, we adopt
the SAFE algorithm (Wei et al., 2024), which esti-
mates claim correctness via Google Search. Once
correctness labels are established, each (claim,
truth value) pair is treated as a distinct evalua-
tion sample, and assessment is conducted across
all claims in the dataset. As in short-form eval-
uation, both threshold-dependent and threshold-
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independent metrics can be used to measure per-
formance. A code sample for evaluating long-form
generation is included in Appendix B.

3 Truth Method Selection Strategy

TTLM includes a broad collection of truthfulness
prediction methods, which may leave users unsure
about which methods are most appropriate for their
specific use cases. To guide this decision-making
process, we provide Table 1, which categorizes
truth methods across key axes of trade-offs and
constraints. First, users should consider the prac-
tical constraints of their application. If supporting
documents can be retrieved for verifying claims,
document-grounded methods are suitable; other-
wise, these methods are not applicable. If labeled
data is available, supervised methods can be used,
otherwise, users should opt for self-supervised or
zero-shot approaches. For deployment scenarios in-
volving API-based models (e.g., GPT models (Ope-
nAl, 2023)), white-box methods cannot be used,
and gray-box methods may be restricted depending
on whether the API provides access to output prob-
abilities. Finally, if the application has strict latency
or compute requirements, sampling-based methods
may be infeasible due to their higher computational
cost.

Once these constraints are considered, a second
step involves benchmarking the subset of applica-
ble truth methods on task-specific data. Perfor-
mance can vary significantly across different do-
mains, for example, some methods perform well
on factual QA but degrade on math problems, as
shown in prior work (Bakman et al., 2025).

Even after benchmarking, relying on a single
method may be suboptimal. Prior research (Bak-
man et al., 2025) suggests that ensembling mul-
tiple truth methods, after calibrating their out-
puts to a common scale, can yield stronger per-
formance. These ensembling strategies are typi-
cally simple, involving techniques such as averag-
ing or linear combinations of truth scores. More-
over, since many truth methods produce uncali-
brated or non-interpretable scores, applying calibra-
tion techniques helps transform their outputs into
probability-like values in the [0, 1] range, where
1 represents high likelihood of truthfulness. This
not only improves interpretability but also enables
effective method combination.



Table 2: AUROC and PRR performance of truth methods on TriviaQA, GSMS8K, and FactScore-Bio, across two

models: LLaMA-3 8B and GPT-40-mini.

| LLaMA-3 8B I GPT-40-mini

TriviaQA GSMS8K FactScore-Bio TriviaQA GSMSK FactScore-Bio
Truth Methods AUROC PRR | AUROC PRR | AUROC PRR || AUROC PRR | AUROC PRR | AUROC PRR
LARS 0.861 0.783 0.834 0.719 0.677  0.391 0.852  0.766 0.840  0.686 | 0.640  0.294
MARS 0.763 0.635 0.730 0.488 0.660  0.367 0.792  0.668 0.735 0.480 | 0.655 0.405
SelfDetection 0.780  0.590 0.556 0.090 0.687 0369 0.799  0.587 0.736 0421 0.671 0.313
PTrue 0.727 0.485 0.654 0.307 0.670  0.368 0.772  0.509 0.833 0.636 | 0.658  0.372
AttentionScore 0.523 0.092 0.503 -0.024 | 0.644  0.263 - - - - - -
CrossExamination 0.664 0377 0.585 0.187 0.683 0.361 0.718  0.483 0.768  0.551 0.635 0.289
Eccentricity 0.809  0.645 0.703 0.450 0.695 0.415 0.817  0.632 0.754 0455 0.671 0.421
GoogleSearchCheck 0.672 0.470 - - - - 0.779 0.673 - - - -
Inside 0.711 0.478 0.689 0.354 0.636 0221 - - - - - -
KernelLanguageEntropy 0.792  0.596 0.662 0.296 0.680  0.396 0.820  0.635 0.706  0.349 0.678  0.397
SAPLMA 0.850  0.726 0.815 0.642 0.651 0.347 - - - - - -
SemanticEntropy 0.799  0.652 0.699 0.417 0.682  0.403 0.813 0.673 0.735 0.464 | 0.681 0.447
MultiLLMCollab 0.632 0350 0.689 0.320 0.681 0.347 0.778  0.565 0.933 0.879 0.671 0.399
SAR 0.804  0.679 0.768 0.590 0.674  0.389 0.835 0.724 | 0.764 0512 | 0.671 0.433
VerbalizedConfidence 0.759  0.547 0.579 0.234 0.698  0.460 0.836  0.740 | 0.652  0.369 0.717  0.514
DirectionalEntailmentGraph 0.745 0.513 0.731 0.501 0.659  0.347 0.778  0.532 0.736  0.439 0.658  0.380

4 Related Works

The most closely related open-source libraries
to TruthTorchLM are GuardrailsAI (guardrails-
ai) and LM-Polygraph (Fadeeva et al., 2023).
GuardrailsAI implements guardrail mechanisms
for safe and structured LLM outputs, pri-
marily through document-grounded verification.
LM-Polygraph, on the other hand, focuses on un-
certainty quantification methods for generative lan-
guage models.TruthTorchLM distinguishes itself
from both in an important way. TTLM is ex-
plicitly designed for truthfulness prediction and
aims to unify a wide spectrum of methods, ranging
from uncertainty-based to supervised, document-
grounded, and LL.M-collaboration approaches. In
contrast, GuardrailsAI is limited to document-
grounded verification, while LM-Polygraph covers
only uncertainty-based techniques, which represent
a subset of the methods included in TTLM.

5 Experiments

We evaluate the performance of a subset of avail-
able truth methods listed in Table 1 using our pro-
posed library, TruthTorchLM. In this section, we
present the details of our experimental setup and
provide a discussion of the results.

Datasets Our primary evaluation focuses on
short-form question answering, a standard bench-
mark for assessing truthfulness. We use 1,000
samples from TriviaQA (Joshi et al., 2017) and
GSMS8K (Cobbe et al., 2021) for open-ended
and mathematical reasoning questions, respec-
tively. For long-form evaluation, we use FactScore-
Bio (Min et al., 2023), which targets biographical

questions with multi-fact generations.

Models We conduct evaluations using both open-
and closed-weight language models. Specifically,
we use LLaMA-3-8B (Al@Meta, 2024), an open-
source model that enables full access to internal
states, and GPT-40-mini (OpenAl, 2023), a closed-
weight API model. Note that white-box truth meth-
ods are not applicable to GPT-40-mini.

Metrics As discussed in Section 2.4, different
truth methods produce scores on varying numerical
scales, which complicates the use of fixed thresh-
olds for evaluation. While threshold-based metrics
such as accuracy can be informative, they require
method-specific thresholds, introducing potential
bias or instability in comparison.

To mitigate this issue, we primarily report
threshold-free metrics, following prior work (Kuhn
et al., 2023; Bakman et al., 2025). Specifically, we
use the Area Under the Receiver Operating Char-
acteristic Curve (AUROC) and the Prediction Re-
jection Ratio (PRR). AUROC measures a method’s
ability to distinguish between truthful and untruth-
ful outputs across all possible thresholds, with val-
ues ranging from 0.5 (random performance) to
1.0 (perfect discrimination). PRR quantifies the
relative precision gain obtained by rejecting low-
confidence predictions and ranges from 0.0 (ran-
dom rejection) to 1.0 (perfect rejection).

Correctness Measure Since our tasks involve
free-form generation, the model outputs may be
semantically correct even if they do not lexically
match the ground truths. To account for this,
we adopt the LLM-as-a-judge paradigm, follow-
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ing prior work (Bakman et al., 2025; Farquhar
et al., 2024). Specifically, we prompt a language
model with the question, the generated answer,
and the reference answer, and ask it to provide
a binary correctness judgment (0 or 1). For long-
form generations in FactScore-Bio, where refer-
ence ground truths are unavailable we use the
SAFE algorithm (Wei et al., 2024) to automatically
extract and assess the correctness of individual fac-
tual claims within the generated text.

5.1 Discussion

The results are summarized in Table 2. Since each
method entails different trade-offs, such as com-
putational overhead, model access level, and su-
pervision requirements, their performance varies
accordingly. In short-form QA tasks (TriviaQA
and GSM8K), LARS and SAPLMA achieve the
highest performance, except on GSM8K with GPT-
40-mini, which is expected given that both are
trained on labeled data. Among self-supervised
methods, SAR performs best on both TriviaQA
and GSMS8K for the LLaMA-3-8B model. For
GPT-40-mini, Verbalized Confidence achieves the
best results on TriviaQA, while MultiLLMCollab
leads on GSMS8K.

FactScore-Bio evaluates long-form generation,
which typically involves multiple factual claims
and thus presents a more challenging setting for
truthfulness detection. On this task, performance
generally drops across methods compared to short-
form QA. Verbalized confidence achieves the best
results on both models. Eccentiricity and Seman-
tic Entropy performs next best as sampling based
methods, with Semantic Entropy showing stronger
results for GPT-40-mini.

6 Conclusion

In this work, we introduced TruthTorchLM, an
open-source library for evaluating and developing
truthfulness prediction methods for large language
models. TTLM unifies a diverse set of techniques
under a common interface, supports both short- and
long-form generation tasks, and includes tools for
evaluation, calibration, and extensibility. We hope
TTLM serves as a valuable resource for the com-
munity and accelerates research in building more
trustworthy and reliable language models.

Ethics Statement

We acknowledge the ethical considerations asso-
ciated with the development and release of truth-
fulness prediction tools for large language models
(LLMs). Our library, TruthTorchLM, is designed
to assist researchers and practitioners in systemati-
cally evaluating and improving the truthfulness of
LLM outputs. It does not generate content on its
own; any harmful or incorrect content produced by
language models is not the product of this library.
Our goal is to help detect and reduce untruthful
outputs.

All experiments in this work were conducted
on publicly available datasets (TriviaQA, GSM8K,
and FactScore-Bio) that do not contain personally
identifiable or sensitive information. No private or
user-generated data was collected or used during
development or evaluation. We encourage respon-
sible use of our library and caution that automated
truthfulness prediction should complement, not re-
place, human oversight, especially in high-stakes
domains such as health, law, and finance.
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A Datasets Statistics

TriviaQA contains question-answer pairs authored
by trivia enthusiasts. Among the 17.2k samples
in the test split, we use a random subset of 1000
samples in our evaluations. GSM8K is composed
of grade school math word problems. It contains
1.32k samples in the test set. Similar to GSM8K,
we use a subset of 1000 samples in our experiments.
Lastly, FactScore-Bio contains biography queries
about people from Wikipedia. We used a random
subset of 50 questions from this dataset. After gen-
eration decomposition, the total number of claims
is 1290 for GPT-40-mini and 1764 for Llama-3-8B.
We provide sample questions from each dataset in
Table 3.

B Additional Code Snippets

Below is an example illustrating how to calibrate a
set of truth methods on the TriviaQA dataset:

Listing 4: Calibrating multiple truth methods using Iso-
tonic Regression.

# Assign a calibrator to each method
for truth_method in truth_methods:
truth_method.set_normalizer(ttlm.normalizers.
IsotonicRegression())

# Calibrate using labeled evaluation data
calib_results = ttlm.calibrate_truth_method(
dataset=’trivia_ga’,
model=model, tokenizer=tokenizer,
truth_methods=truth_methods,
correctness_evaluator=model_judge,
size_of_data=1000, max_new_tokens=64)

We provide a code sample below that evaluates
truth methods in long-form generation setting:

Listing 5: Evaluation on long-form generation.

#Define claim evaluator
safe = LFG.ClaimEvaluator(
rater="gpt-4o-mini’,

tokenizer = None,
max_steps 5,
max_retries =
num_searches =

10,
3)
# Use built-in or custom datasets for evaluation
results = LFG.evaluate_truth_method_long_form(
dataset=’longfact_objects’,
model=model, tokenizer=tokenizer,
sample_level_eval_metrics=[’f1"],
dataset_level_eval_metrics=[’auroc’,
decomp_method=decomposition_method,

claim_check_methods=[qa_generation],
claim_evaluator = safe)

‘prr’],

C Generation Decomposition

We provide a sample output of our decomposition
process in Table 4. The model used for decompo-
sition is GPT-40-mini and the output structure is
forced by instructor®.

4https://python.useinstructor.com/
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Question

| Ground Truth

David Lloyd George was British Prime Minister during the reign of

Tell me a bio of Henry Santos.

which monarch? King George V
S
-E How many symphonies did Jean Sibelius compose? | Seven
= The capital of Brazil was moved from Rio de Janeiro to the purpose- 1960
built capital city of Brasilia in what year?
Natalia sold clips to 48 of her friends in April, and then she sold half
as many clips in May. How many clips did Natalia sell altogether in 72
April and May?
M Julie is reading a 120-page book. Yesterday, she was able to read 12
OEO pages and today, she read twice as many pages as yesterday. If she 42
8 wants to read half of the remaining pages tomorrow, how many pages
should she read?
Mr. Sam shared a certain amount of money between his two sons,
Ken and Tony. If Ken got $1750, and Tony got twice as much as Ken, 5250
how much was the money shared?
é Tell me a bio of Vaira Vike-Freiberga. | -
% Tell me a bio of Ji Sung. | -
7
g Tell me a bio of Baltasar Corrada del Rio. | -
=

Table 3: Data samples from the datasets we use in our evaluations: TriviaQA, GSMS8K, and FactScore-Bio
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Question: Tell me a bio of Andrew Shue.

Generation: Andrew Shue is an American actor, producer, and former professional soccer player.
He was born on January 20, 1967, in South Orange, New Jersey, USA.

Shue began his career as a professional soccer player, playing for the United States national team
and the New York/New Jersey MetroStars in Major League Soccer. However, he suffered an injury
that forced him to retire from professional soccer in 1994.

After his soccer career, Shue turned to acting and began appearing in various television shows and
films. Some of his notable roles include:

* "The Breakfast Club" (1985) - Shue played the role of Andrew Clark, a popular high school student.
* "Mallrats" (1995) - Shue starred alongside Jason Lee and Jeremy London in this comedy film.

* "The Adventures of Pete & Pete" (1992-1996) - Shue played the role of C.J. Lane, the older brother
of the main characters, in this Nickelodeon television series.

* "Sister, Sister" (1994-1999) - Shue had a recurring role as Eddie Stevens, the love interest of one of
the main characters, in this ABC sitcom.

Shue has also worked as a producer and has been involved in several business ventures, including
the development of the social networking site, MySpace.

Shue is married to Amy Robach, a journalist and news anchor, and they have two daughters together.
Claims:

[‘Andrew Shue is an American actor.’,

‘Andrew Shue is a producer.’,

‘Andrew Shue is a former professional soccer player.’,

‘Andrew Shue was born on January 20, 1967.",

‘Andrew Shue was born in South Orange, New Jersey, USA.,

‘Andrew Shue began his career as a professional soccer player.’,

‘Andrew Shue played for the United States national soccer team.’,

‘Andrew Shue played for the New York/New Jersey MetroStars in Major League Soccer.’,

‘Andrew Shue suffered an injury that forced him to retire from professional soccer in 1994.’,
‘Andrew Shue turned to acting after his soccer career.’,

‘Andrew Shue began appearing in various television shows.’,

‘Andrew Shue began appearing in films.’,

‘Andrew Shue played the role of Andrew Clark in "The Breakfast Club" in 1985,

‘Andrew Shue starred in "Mallrats" in 1995.°,

‘Andrew Shue starred alongside Jason Lee in "Mallrats".’,

‘Andrew Shue starred alongside Jeremy London in "Mallrats".’,

‘From 1992 to 1996, Andrew Shue played the role of C.J. Lane in "The Adventures of Pete & Pete".’,
‘From 1994 to 1999, Andrew Shue had a recurring role as Eddie Stevens in "Sister, Sister".’,
‘Andrew Shue has worked as a producer.’,

‘Andrew Shue has been involved in several business ventures.’,

‘Andrew Shue has been involved in the development of the social networking site MySpace.’,
‘Andrew Shue is married to Amy Robach.’,

‘Amy Robach is a journalist.’,

‘Amy Robach is a news anchor.’,

‘Andrew Shue and Amy Robach have two daughters together.’]

Table 4: Output of long-text decomposition. The question is from FactScore-Bio and the model used to generate the
answer is LLaMa-3-8B.
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