AutoIntent: AutoML for Text Classification
Ilya Alekseev, Roman Solomatin, Darina Rustamova, Denis Kuznetsov
Abstract
AutoIntent is an automated machine learning tool for text classification tasks. Unlike existing solutions, AutoIntent offers end-to-end automation with embedding model selection, classifier optimization, and decision threshold tuning, all within a modular, sklearn-like interface. The framework is designed to support multi-label classification and out-of-scope detection. AutoIntent demonstrates superior performance compared to existing AutoML tools on standard intent classification datasets and enables users to balance effectiveness and resource consumption.- Anthology ID:
- 2025.emnlp-demos.53
- Volume:
- Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: System Demonstrations
- Month:
- November
- Year:
- 2025
- Address:
- Suzhou, China
- Editors:
- Ivan Habernal, Peter Schulam, Jörg Tiedemann
- Venue:
- EMNLP
- SIG:
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 707–716
- Language:
- URL:
- https://preview.aclanthology.org/ingest-emnlp/2025.emnlp-demos.53/
- DOI:
- Cite (ACL):
- Ilya Alekseev, Roman Solomatin, Darina Rustamova, and Denis Kuznetsov. 2025. AutoIntent: AutoML for Text Classification. In Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 707–716, Suzhou, China. Association for Computational Linguistics.
- Cite (Informal):
- AutoIntent: AutoML for Text Classification (Alekseev et al., EMNLP 2025)
- PDF:
- https://preview.aclanthology.org/ingest-emnlp/2025.emnlp-demos.53.pdf