TokenSmith: Streamlining Data Editing, Search, and Inspection for
Large-Scale Language Model Training and Interpretability

Mohammad Aflah Khan!*, Ameya Godbole?*,
Johnny Tian-Zheng Wei?, Ryan Wang?, James Flemings?,
Krishna P. Gummadi', Willie Neiswanger?, Robin Jia®
'Max Planck Institute for Software Systems, 2University of Southern California

Correspondence: afkhan @mpi-sws.org, ameyagod @usc.edu

Abstract

Understanding the relationship between train-
ing data and model behavior during pretraining
is crucial, but existing workflows make this
process cumbersome, fragmented, and often
inaccessible to researchers. We present Token-
Smith, an open-source library for interactive
editing, inspection, and analysis of datasets
used in Megatron-style pretraining frameworks
such as GPT-NeoX, Megatron, and NVIDIA
NeMo. TokenSmith supports a wide range of
operations including searching, viewing, in-
gesting, exporting, inspecting, and sampling
data, all accessible through a simple user inter-
face and a modular backend. It also enables
structured editing of pretraining data without
requiring changes to training code, simplifying
dataset debugging, validation, and experimen-
tation. TokenSmith is designed as a plug-and-
play addition to existing large language model
pretraining workflows, thereby democratizing
access to production-grade dataset tooling.

TokenSmith is hosted on GitHub', with ac-
companying documentation and tutorials?. A
demonstration video is also available on
YouTube.?

1 Introduction

The barrier to pretraining large language models
from scratch has been rapidly declining, driven by
improved access to GPUs, a growing number of
open-source frameworks, and the widespread shar-
ing of technical knowledge. As a result, academic
groups, open-source organizations and hobbyists
are increasingly able to conduct meaningful pre-
training research (Biderman et al., 2023; Azerbayev
etal., 2023; Chi et al., 2023; Yin et al., 2023; Gupta
et al., 2023; Horawalavithana et al., 2022; Ibrahim
et al., 2024; Gao et al., 2025a,b; Zeng et al., 2024).
“Equal contribution
1https://gi’chub.com/a1"”1ah02/TokenSmi’ch

2https://aflah@2.github.io/TokenSmith/
Shttps://www.youtube.com/watch?v=cDO8VE9fZvU

However, a persistent challenge across exist-
ing frameworks is the lack of robust tooling for
inspecting and interacting with the training data.
Tasks such as debugging loss spikes by tracing
relevant datapoints, generating modified datasets
for counterfactual experiments or decontamination,
and even viewing specific batches or sequences
remain cumbersome in open-source setups. For ex-
ample, producing a counterfactual dataset typically
requires manually identifying files, ensuring token
alignment, and re-tokenizing the entire corpus (a
process that can take over a day for large datasets).

We introduce TokenSmith, a toolkit designed to
make this process seamless. TokenSmith addresses
these gaps by providing intuitive abstractions for
editing, inspecting, and managing datasets, thereby
enabling faster iteration and deeper insight through-
out the pretraining workflow.

TokenSmith is built on top of Megatron-LM
(Shoeybi et al., 2020), a widely adopted and scal-
able framework for large language model pretrain-
ing. Several popular libraries such as GPT-NeoX
(Andonian et al., 2023) and NVIDIA NeMo* are
also based on Megatron-LM, sharing its dataset
format and training pipeline structure. Beyond
these, a number of direct forks leverage Megatron-
LM for model training, such as K2° (Liu et al.,
2025), MAP-NEOS (Zhang et al., 2024), Megatron-
Llama’, and Apertus®. The framework also serves
as a foundation for research into more efficient
training methods (Qi et al., 2023, 2024; Ao et al.,
2024; Yuan et al., 2024; Wan et al., 2025), with

*https://github.com/NVIDIA/NeMo
Shttps://github.com/LLM36@/k2-train
6https://github.com/multimodal—art—projection/
Megatron-LM-NEO
7https://github.com/alibaba/Megatron—LLaMA
8https://huggingface.co/collections/swiss—ai/
apertus-11m-68b699e65415c231ace3b059

678

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 678—687
November 4-9, 2025 ©2025 Association for Computational Linguistics

mailto:afkhan@mpi-sws.org
mailto:ameyagod@usc.edu
https://github.com/aflah02/TokenSmith
https://aflah02.github.io/TokenSmith/
https://www.youtube.com/watch?v=cDO8VE9fZvU
https://github.com/NVIDIA/NeMo
https://github.com/LLM360/k2-train
https://github.com/multimodal-art-projection/Megatron-LM-NEO
https://github.com/multimodal-art-projection/Megatron-LM-NEO
https://github.com/alibaba/Megatron-LLaMA
https://huggingface.co/collections/swiss-ai/apertus-llm-68b699e65415c231ace3b059
https://huggingface.co/collections/swiss-ai/apertus-llm-68b699e65415c231ace3b059

public implementations available.”>!%!! Finally,
adoption extends beyond NVIDIA GPUs, as GPU
providers such as AMD also maintain Megatron-
LM support.'?

This shared foundation allows TokenSmith to na-
tively support all three frameworks and other forks
with minimal integration overhead. Additionally,
TokenSmith is designed to be extensible, making it
easy to add support for other frameworks.

2 Library Offerings

We build TokenSmith for practitioners and re-
searchers working directly with large-scale lan-
guage model pretraining. Our goal is to make it sig-
nificantly easier to address a wide range of research
questions and engineering challenges that arise
when working with massive datasets and opaque
training processes. Instead of offering a monolithic
interface, we emphasize modularity and extensi-
bility, providing intuitive abstractions through a
simple frontend and a well-documented backend
that can be adapted to different workflows. Here
we describe the key functionalities we support: In-
spect, Sample, Edit, Export, Ingest, and Search.

2.1 Inspecting and Sampling Datasets

Understanding the relationship between training
data and model behavior is a recurring challenge
in large-scale pretraining. Practitioners often need
to trace issues back to specific sequences or iso-
late dataset subsets for hypothesis testing. Typical
questions include:

* How can we trace and identify sequences that
correlate with sudden spikes in training loss?

* Between two model checkpoints, what new
data did the model encounter, and how might
it explain improvements or regressions in per-
formance?

* Are there tokenization issues or formatting in-
consistencies that may have gone unnoticed?

* What happens if the model is trained only on
a specific subset, such as domain-specific doc-
uments or repeated early-stage data?

9https://github.com/thunlp/Seq1F1B
Ohttps://github.com/sail-sg/
zero-bubble-pipeline-parallelism
llhttps://github.com/kwai/Megatron—Kwai
Zhttps://github.com/ROCm/Megatron-LM

* Can we sample sequences based on properties
such as length, content patterns, or document
metadata?

TokenSmith provides a unified set of tools to
support both deep inspection and flexible sampling:

* Precise inspection utilities allow users to lo-
cate and analyze data at the level of individual
sequences, batches, or training steps using in-
dices or global step numbers.

» Sampling utilities support extracting subsets
of the data based on custom policies, enabling
rapid prototyping, ablation studies, and behav-
iorally targeted dataset construction.

* Modular integration through a backend API
allows seamless incorporation into training
pipelines, analysis scripts, or interactive Uls.

By enabling structured, reproducible interroga-
tion of the training dataset, TokenSmith empowers
practitioners to move from anecdotal debugging
to systematic, data-driven understanding of model
behavior.

2.2 [Editing Datasets

As training progresses or evaluation findings
emerge, practitioners frequently encounter the need
to modify the dataset. These changes are often mo-
tivated by new insights or requirements, such as:

* Removing specific batches that correlate with
spikes in training loss

* Filtering out examples that may result in test
set leakage or data contamination

* Creating counterfactual variants of the
dataset for controlled experiments, such as
ablation studies or robustness analysis

To support such use cases, TokenSmith offers a
flexible editing interface that allows for targeted
edits, enabling users to directly specify and modify
individual sequences.

These capabilities allow researchers to iterate on
dataset versions without re-engineering the training
pipeline. Edits can be performed programmatically
and are fully compatible with the inspection and
sampling modules of the library. This makes it pos-
sible to run sophisticated data-centric experiments,
such as testing the effect of subtle perturbations,
while maintaining full control over what the model
sees during training.

679

https://github.com/thunlp/Seq1F1B
https://github.com/sail-sg/zero-bubble-pipeline-parallelism
https://github.com/sail-sg/zero-bubble-pipeline-parallelism
https://github.com/kwai/Megatron-Kwai
https://github.com/ROCm/Megatron-LM

2.3 Exporting Datasets

Beyond sampling, reproducibility and interoper-
ability are essential in dataset-centric research.
Some recurring challenges are:

* How can we verify and share a specific ver-
sion of the dataset used for a paper, in a re-
producible format compatible with popular
libraries like HuggingFace Datasets?

* Can we export only specific batches/sequences
of a dataset that show interesting trends to
avoid sharing large binaries?

To this end, TokenSmith includes export tools
for converting datasets (entirely or in parts) into for-
mats such as JSONL and CSV which are also Hug-
gingFace compatible. These tools enable seamless
sharing, integration with external pipelines, and
long-term reproducibility of experimental results.

2.4 Ingesting Datasets

Curating datasets for large-scale pretraining often
begins with converting diverse data sources into
a format compatible with Megatron-style frame-
works. However, this step is frequently under-
documented and error-prone. A common challenge
is: How can we ingest and tokenize new datasets
into the Megatron binary format without writing
custom conversion pipelines?

TokenSmith addresses this through streamlined
ingestion utilities that support converting standard
formats such as JSONL and CSV into the required
.bin/.idx representation. These tools reduce the
overhead of dataset preparation and ensure seam-
less compatibility with Megatron-based pretraining
workflows.

2.5 Searching Datasets

As pretraining datasets grow in size and complex-
ity, being able to efficiently search and retrieve
relevant content becomes essential for both debug-
ging and targeted experimentation. Practitioners
and researchers often encounter challenges such
as:

* How can we locate all occurrences of a spe-
cific phrase, token, or n-gram to inspect or
remove sensitive or duplicate content?

* Can we curate the likely continuations given a
naive n-gram model to contrast the generation

likelihoods of our LLMs?

* Is it possible to trace model behaviors to spe-
cific textual patterns or domains within the
training set?

* How do we efficiently support search at scale
without loading the entire dataset into mem-

ory?

To address these challenges, TokenSmith builds
abstractions over Tokengram'?, an efficient n-gram
indexing and search tool optimized for large-scale
corpora. This allows users to perform fast searches
over pre-tokenized corpora. Integrating Tokengram
in TokenSmith provides support for end-to-end data
interventions. For example, the search results can
be processed with the Inspect and Export utilities
for easy sharing with your collaborators or down-
stream post-processing. The matched documents
from the search results can be processed with the
Edit utilities. This might be useful to mask out
toxic text, anonymize documents in place, etc.

By making dataset search fast and program-
matically accessible, TokenSmith empowers users
to build more informed training sets, track down
model behaviors to specific training signals, and
conduct controlled data-centric research at scale.

3 Practical Case Studies

In this section, we provide examples of how Token-
Smith could simplify pipelines for NLP research.

3.1 Training Dynamics of Memorization

Several research groups have attempted to study
memorization of natural (Huang et al., 2024; Jagiel-
ski et al., 2023) or counterfactually curated (Chang
et al., 2025; Wei et al., 2024) data during LM pre-
training. In order to study training dynamics, these
projects relied on one of two approaches:

1. Re-tokenizing the corpus: Wei et al. (2024)
studied the memorization of watermarks in
pre-training by injecting randomized strings in
groups of documents. They re-tokenize the en-
tire corpus along with different sets of water-
marked documents. Note that the number of
modified documents is a small fraction of the
full corpus; thus, they spend considerable time
re-tokenizing unchanged data. Moreover, their
approach cannot control the order of unchanged
documents in different training runs.

Bhttps://github.com/EleutherAl/tokengrams

680

https://github.com/EleutherAI/tokengrams

2. Modifying the training library: Huang et al.
(2024) and Chang et al. (2025) study verbatim
memorization of documents in the early, middle,
and late stages of pre-training by injecting curat-
ed/synthetically generated documents in specific
training sequences. They achieve this by mod-
ifying the data loader and training loop of the
pre-training library (Andonian et al., 2023; Team
OLMo et al., 2024). This engineering-intensive
approach requires a deep understanding of the
underlying pre-training libraries. Moreover, this
may decrease the training efficiency of the li-
brary.

In contrast, TokenSmith allows you to directly
edit the tokenized dataset (§ 2.2). This allows you
to perform the same experiments (1) without hav-
ing to re-tokenize documents that haven’t changed
between training runs, and (2) without modifying
the pre-training libraries.

3.2 Identifying Causes of Instability

Team OLMo et al. (2024) highlight that sudden
spikes in training loss can lead to instability fur-
ther along in pre-training and worse final model
performance. In order to debug the cause of the
instability, they inspect the batches of data that
caused the spikes and identify that the batches con-
tain training sequences with repeated n-grams. The
Inspect and Export tools in TokenSmith provide a
straightforward interface to extract batches based
on the step number (where the loss spike occurred).

4 Library Design

TokenSmith is designed to support two comple-
mentary modes of interaction: a Pythonic API for
seamless integration into existing training or analy-
sis pipelines, and a visual UI for interactive explo-
ration and inspection.

4.1 Overview: Megatron Dataset Format

Megatron-LM’s indexed format uses two files per
data split. The .bin file contains raw token se-
quences (packed back-to-back) as a flat array of
integers. The .idx file contains metadata and point-
ers into the .bin. Specifically, the index begins
with a header (version, dtype, number of sequences,
number of documents) and then lists, for each se-
quence, its length (number of tokens) and its byte
offset in the .bin. It also records, for each docu-
ment, which sequences belong to it. In effect, .idx

681

lets the dataset class reconstruct which slice of the
big token array corresponds to each example.

The consistency of this format across libraries
allows TokenSmith to support them out-of-the-box
with minimal adaptations, enabling seamless inter-
operability and inspection without requiring sepa-
rate data handling logic for each framework.

4.2 Pythonic API

TokenSmith exposes a modular, object-oriented
API that allows users to programmatically ingest,
edit, search, sample, inspect, and export datasets.
This API is well-suited for integration into training
scripts, research notebooks, or batch processing
workflows. Figures 1, 2, 3, 4 and 5 illustrate the
core API patterns:

* Figure 1 illustrates how users can configure
and execute token-level search queries using
a Tokengram-backed index over the dataset.

* Figures 2 and 3 showcase the interfaces for
inspecting specific sequences and sampling
data according to user-defined policies.

* Figure 4 presents the editing interface, which
supports fine-grained, targeted modifications
to existing sequences.

* Figure 5 demonstrates the dataset ingestion
and export utilities, which allow users to im-
port new corpora and export subsets or modi-
fied datasets in standard formats.

The library is designed to latch onto your exist-
ing pretraining environments with minimal con-
figuration (instructions outlined clearly in the
README). '

from .manager import

dex_tokenized_data.idx",

= [67, 45, 991 # List of tokens

.search.count()
.search.contains(
.search.positions(

Figure 1: Search API

from Data
= DatasetManager()

setup_edit_inspect_sample_export(
_document ",

='batch_in

inspect_sample_by_id(

inspect_sample_by_batch(

Figure 2: Inspect API

.manager import
= O

.setup_edit_inspect_sample_export(
='data_t xt_document "',

=100,

sparse_sample_policy(,

return [in range(

def fibo! batch_pc

= [1, 1]

while [-1] < 3
.append(fib[-1] + [-21)

return [f for in if f <]

.sample.get_samples_by_policy(
, =50,

.sample.get_batches_by_policy(
=2,

Figure 3: Sample API

from .manager import
= O

.setup_edit_inspect_sample_export(

’
=True,
Set to False to not o

but also perform

Figure 4: Edit API

4.3 Interactive Ul

To enable visual exploration and rapid debugging,
TokenSmith provides an intuitive user interface
built with Streamlit."> The UI serves both as a
reference implementation and a customizable layer
for users to extend based on their workflows. It sup-
ports interactive search, batch and sequence level
inspection, and document viewing. Figures 6a and
6b show examples of the inspect and document

Yhttps://github.com/aflah02/tokensmith?tab=
readme-ov-file#-quick-start
Bhttps://streamlit.io/

.manager import

= O
=True,
='HFTokenizer®,

.setup_ed
="data_tc

nspect_sample_export(

100, 200, 3001,

s/sequence

.export.export_batch_range(

Export

Select Function

GetBatch

Batch 5 (Size: 16)
@ inc ment detals
@ Retum detokenized text sample1
Sample2

‘Sample Data:

(a) Inspect UI showing detailed information for a selected
batch, including tokenized and detokenized sequences and
document metadata.

View Documents

VewDocment

Training Order: 5

Document Viewer ouate

5 uint1l6
Raw Tokens

Detokenized Text

Text Statistics

987

Export Options

(b) View Document UI for browsing individual documents
and their tokenized representations.

Figure 6: TokenSmith inspection and viewing interfaces
for exploring dataset contents at the batch and document
levels.

viewing pages, while Figure 8 (Appendix B) illus-
trates different search modes. Users can browse
individual sequences or batches to trace issues such

682

https://github.com/aflah02/tokensmith?tab=readme-ov-file#-quick-start
https://github.com/aflah02/tokensmith?tab=readme-ov-file#-quick-start
https://streamlit.io/

as loss spikes, search for specific phrases, locate
them within documents, and explore next token
distributions, all through simple point and click
interactions.

Together, the API and UI provide a unified
and flexible interface to dataset management, en-
abling both hands-on experimentation and auto-
mated workflows at scale.

4.4 Design Patterns

TokenSmith is built with a strong emphasis on clean
software engineering to ensure ease of use, extensi-
bility, and long-term maintainability. Its architec-
ture follows established design patterns to provide
a clear separation of concerns, enable safe experi-
mentation, and support both research and produc-
tion environments. These design choices also make
it easier for contributors to extend and integrate the
toolkit with custom workflows. A detailed break-
down of the patterns used, including handler-based
modularity, a facade interface, and runtime config-
urability, is provided in Appendix A.

5 Benchmarking

While there are no established baselines for many
of the operations supported by TokenSmith we
compare against the de facto workflows that practi-
tioners currently rely on to achieve similar out-
comes. These comparisons highlight the com-
plexity and overhead of existing approaches, and
demonstrate how TokenSmith streamlines them.

» Editing a dataset to produce a counterfactual
version: Consider the case where a researcher
wants to generate a modified dataset that differs
by only a few examples from an original corpus
spanning hundreds of billions of tokens.

— Current workflow: Manually identify and re-
place relevant files, ensure token alignment
(if needed), and re-tokenize the entire dataset.
This process is brittle and time-consuming;
for example, tokenizing a S00B-token corpus
can take over a day depending on the system
configuration.

— With TokenSmith: Users can programmati-
cally perform targeted or randomized edits
directly on the tokenized dataset using our
editor interface. This removes the need to rea-
son about token boundaries or initiate a full
re-tokenization pass, significantly reducing it-
eration time and engineering overhead.

¢ Sampling Sequences According to Custom
Policies:

— Without TokenSmith : Practitioners must man-
ually extract sequences from the binary files,
align them with training indices, implement
policy-based filtering logic, and reconstruct
the final subset (often requiring non-trivial
changes to the existing pipeline).

— With TokenSmith : The sampling API abstracts
away these complexities, allowing users to
specify high-level parameters and a custom
policy function to obtain the desired subset
with minimal effort.

—e— Setup Time
—e— sampling Time
Editing Time

o ° o
s S ®

Time (seconds)

o
N

L

-

10° 10t 102 10° 10* 10° 10°
Dataset Size

o
°

Figure 7: Execution time for setup, sampling, and edit-
ing operations across varying dataset sizes. For sam-
pling and editing, the reported times correspond to 100
operations.

We also examine the scalability of our system by
measuring the time taken for three representative
operations as dataset size increases.

5.1 Dataset Setup

We measure the time required to execute the
setup_edit_inspect_sample_export method,
which initializes all necessary handlers based on
the user’s configuration. This step introduces negli-
gible overhead, remaining under 0.03 seconds even
for corpora with one million documents.

5.2 Sampling Performance

We randomly sample 100 sequence indices and
measure the total retrieval time. This process is
repeated five times, and we report the average
and standard deviation. A single-item fetch is per-
formed beforehand to warm up the system. Sam-
pling remains stable across dataset sizes. For exam-
ple, sampling 100 sequences from a 1M-document
corpus takes under 0.1 seconds.

5.3 Editing Time

To assess editing performance, we insert the sen-
tence (This is a test sentence.) at 100 ran-

683

dom positions across the dataset, following an ini-
tial warm-up edit. This operation is repeated five
times, with average time and standard deviation
reported. Edit latency remains under 0.5 seconds
even for a 1IM-document corpus, indicating mini-
mal sensitivity to dataset size.

We showcase the benchmarking results in Fig-
ure 7. These results highlight that TokenSmith
offers low-latency interactivity, making it well-
suited for both rapid experimentation and large-
scale dataset manipulation. For search-related
benchmarks, we refer readers to Tokengrams’ eval-
uations,'® as TokenSmith directly integrates Token-
grams for all token-level search operations.

Before each benchmark measurement, we rein-
stantiate the DatasetManager and explicitly trig-
ger garbage collection using gc.collect() from
Python’s gc module.!” The benchmarking script,
along with the corresponding results, is available
in the repository.!®

6 Conclusion

We present TokenSmith, a modular and extensi-
ble toolkit designed to streamline dataset-centric
workflows in Megatron-style LLM pretraining. By
offering intuitive abstractions for ingesting, edit-
ing, inspecting, sampling, searching, and exporting
training data, TokenSmith fills a crucial gap in cur-
rent open-source infrastructure. TokenSmith’s sup-
port for multiple backends, efficient operations at
scale, and dual interface (Pythonic API and visual
UI) makes it accessible to researchers, practition-
ers, and hobbyists alike. As the LLM ecosystem
increasingly embraces open and reproducible re-
search, we believe TokenSmith will serve as a prac-
tical foundation for understanding, debugging, and
experimenting with the data that drives modern
language models.

Acknowledgments

We thank the EleutherAl team for open-sourcing
Tokengrams and GPT-NeoX, and for their helpful
responses to our questions. We also acknowledge
the contributions of NVIDIA’s Megatron and GPT-
NeoX repositories, which serve as foundational
components in our work. The results presented

16https ://github.com/EleutherAI/tokengrams?tab=
readme-ov-file#performance

17https ://docs.python.org/3/1library/gc.html

Bhttps://github.com/aflahe2/TokenSmith/tree/
main/benchmarking

in this work used compute resources from the Na-
tional Al Research Resource Pilot, with support
from NVIDIA, including NVIDIA’s DGX Cloud
product and the NVIDIA Al Enterprise Software
Platform. This work was supported in part by a
gift from the USC-Amazon Center on Secure and
Trusted Machine Learning, and the National Sci-
ence Foundation under Grant No. IIS-2403436.
Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those
of the author(s) and do not necessarily reflect the
views of the National Science Foundation. Finally,
we note that large language models were used to
assist in editing and refining the writing of this

paper.
Licensing

TokenSmith is released under the Apache 2.0 li-
cense. This permissive license allows for both aca-
demic and commercial use, as well as modification
and redistribution, making it suitable for a wide
range of research and production workflows.

References

Alex Andonian, Quentin Anthony, Stella Biderman, Sid
Black, Preetham Gali, Leo Gao, Eric Hallahan, Josh
Levy-Kramer, Connor Leahy, Lucas Nestler, Kip
Parker, Michael Pieler, Jason Phang, Shivanshu Puro-
hit, Hailey Schoelkopf, Dashiell Stander, Tri Songz,
Curt Tigges, Benjamin Thérien, and 2 others. 2023.
GPT-NeoX: Large Scale Autoregressive Language
Modeling in PyTorch.

Sun Ao, Weilin Zhao, Xu Han, Cheng Yang, Zhiyuan
Liu, Chuan Shi, and Maosong Sun. 2024. Seq1fl1b:
Efficient sequence-level pipeline parallelism for

large language model training. arXiv preprint
arXiv:2406.03488.

Zhangir Azerbayev, Bartosz Piotrowski, Hailey
Schoelkopf, Edward W. Ayers, Dragomir Radev, and
Jeremy Avigad. 2023. Proofnet: Autoformalizing
and formally proving undergraduate-level mathemat-
ics. Preprint, arXiv:2302.12433.

Stella Biderman, Hailey Schoelkopf, Quentin Anthony,
Herbie Bradley, Kyle O’Brien, Eric Hallahan, Mo-
hammad Aflah Khan, Shivanshu Purohit, USVSN Sai
Prashanth, Edward Raff, Aviya Skowron, Lintang
Sutawika, and Oskar Van Der Wal. 2023. Pythia:
a suite for analyzing large language models across
training and scaling. In Proceedings of the 40th Inter-
national Conference on Machine Learning, ICML’23.
JMLR.org.

Hoyeon Chang, Jinho Park, Seonghyeon Ye, Sohee
Yang, Youngkyung Seo, Du-Seong Chang, and Min-
joon Seo. 2025. How do large language models

684

https://github.com/EleutherAI/tokengrams?tab=readme-ov-file#performance
https://github.com/EleutherAI/tokengrams?tab=readme-ov-file#performance
https://docs.python.org/3/library/gc.html
https://github.com/aflah02/TokenSmith/tree/main/benchmarking
https://github.com/aflah02/TokenSmith/tree/main/benchmarking
https://doi.org/10.5281/zenodo.5879544
https://doi.org/10.5281/zenodo.5879544
https://arxiv.org/abs/2302.12433
https://arxiv.org/abs/2302.12433
https://arxiv.org/abs/2302.12433

acquire factual knowledge during pretraining? In
Proceedings of the 38th International Conference on
Neural Information Processing Systems, NIPS ’24,
Red Hook, NY, USA. Curran Associates Inc.

Ta-Chung Chi, Ting-Han Fan, Alexander Rudnicky, and
Peter Ramadge. 2023. Dissecting transformer length
extrapolation via the lens of receptive field analysis.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 13522—-13537, Toronto, Canada.
Association for Computational Linguistics.

E. Gamma. 1995. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-
Wesley professional computing series. Pearson Edu-
cation.

Tianyu Gao, Alexander Wettig, Luxi He, Yihe Dong,
Sadhika Malladi, and Dangi Chen. 2025a. Metadata
conditioning accelerates language model pre-training.
Preprint, arXiv:2501.01956.

Tianyu Gao, Alexander Wettig, Howard Yen, and Danqi
Chen. 2025b. How to train long-context language
models (effectively). Preprint, arXiv:2410.02660.

Kshitij Gupta, Benjamin Thérien, Adam Ibrahim,
Mats L. Richter, Quentin Anthony, Eugene
Belilovsky, Irina Rish, and Timothée Lesort. 2023.
Continual pre-training of large language mod-

els: How to (re)warm your model? Preprint,
arXiv:2308.04014.
Sameera Horawalavithana, Ellyn Ayton, Shivam

Sharma, Scott Howland, Megha Subramanian, Scott
Vasquez, Robin Cosbey, Maria Glenski, and Svit-
lana Volkova. 2022. Foundation models of scientific
knowledge for chemistry: Opportunities, challenges
and lessons learned. In Proceedings of BigScience
Episode #5 — Workshop on Challenges & Perspec-
tives in Creating Large Language Models, pages 160—
172, virtual+Dublin. Association for Computational
Linguistics.

Jing Huang, Diyi Yang, and Christopher Potts. 2024.
Demystifying verbatim memorization in large lan-
guage models. Preprint, arXiv:2407.17817.

Adam Ibrahim, Benjamin Thérien, Kshitij Gupta,
Mats L. Richter, Quentin Anthony, Timothée Lesort,
Eugene Belilovsky, and Irina Rish. 2024. Simple
and scalable strategies to continually pre-train large
language models. Preprint, arXiv:2403.08763.

Matthew Jagielski, Om Thakkar, Florian Tramer,
Daphne Ippolito, Katherine Lee, Nicholas Car-
lini, Eric Wallace, Shuang Song, Abhradeep Guha
Thakurta, Nicolas Papernot, and Chiyuan Zhang.
2023. Measuring forgetting of memorized training
examples. In The Eleventh International Conference
on Learning Representations.

Zhengzhong Liu, Bowen Tan, Hongyi Wang, Willie
Neiswanger, Tianhua Tao, Haonan Li, Fajri Koto,
Yuqi Wang, Suqgi Sun, Omkar Pangarkar, Richard

Fan, Yi Gu, Victor Miller, Liqun Ma, Liping Tang,
Nikhil Ranjan, Yonghao Zhuang, Guowei He, Renxi
Wang, and 6 others. 2025. LIm360 k2: Building
a 65b 360-open-source large language model from
scratch. Preprint, arXiv:2501.07124.

R.C. Martin. 2003. Agile Software Development: Prin-
ciples, Patterns, and Practices. Alan Apt series. Pear-
son Education.

Penghui Qi, Xinyi Wan, Nyamdavaa Amar, and Min Lin.
2024. Pipeline parallelism with controllable memory.
Preprint, arXiv:2405.15362.

Penghui Qi, Xinyi Wan, Guangxing Huang, and
Min Lin. 2023. Zero bubble pipeline parallelism.
Preprint, arXiv:2401.10241.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. 2020. Megatron-lm: Training multi-billion
parameter language models using model parallelism.
Preprint, arXiv:1909.08053.

Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groen-
eveld, Kyle Lo, Shane Arora, Akshita Bhagia, Yuling
Gu, Shengyi Huang, Matt Jordan, Nathan Lambert,
Dustin Schwenk, Oyvind Tafjord, Taira Anderson,
David Atkinson, Faeze Brahman, Christopher Clark,
Pradeep Dasigi, Nouha Dziri, and 21 others. 2024. 2
OLMo 2 Furious. Preprint, arXiv:2501.00656.

Xinyi Wan, Penghui Qi, Guangxing Huang, Min Lin,
and Jialin Li. 2025. Pipeoffload: Improving scalabil-
ity of pipeline parallelism with memory optimization.
Preprint, arXiv:2503.01328.

Johnny Wei, Ryan Wang, and Robin Jia. 2024. Proving
membership in LLM pretraining data via data water-
marks. In Findings of the Association for Computa-
tional Linguistics: ACL 2024, pages 13306—13320,
Bangkok, Thailand. Association for Computational
Linguistics.

Junqi Yin, Sajal Dash, Feiyi Wang, and Mallikarjun
Shankar. 2023. Forge: Pre-training open foundation
models for science. In Proceedings of the Interna-
tional Conference for High Performance Computing,
Networking, Storage and Analysis, SC 23, New York,
NY, USA. Association for Computing Machinery.

Tailing Yuan, Yuliang Liu, Xucheng Ye, Shenglong
Zhang, Jianchao Tan, Bin Chen, Chengru Song, and
Di Zhang. 2024. Accelerating the training of large
language models using efficient activation remateri-
alization and optimal hybrid parallelism. In Proceed-
ings of the 2024 USENIX Conference on Usenix An-
nual Technical Conference, USENIX ATC’24, USA.
USENIX Association.

Zhiyuan Zeng, Qipeng Guo, Zhaoye Fei, Zhangyue Yin,
Yunhua Zhou, Linyang Li, Tianxiang Sun, Hang Yan,
Dahua Lin, and Xipeng Qiu. 2024. Turn waste into
worth: Rectifying top-k router of moe. Preprint,
arXiv:2402.12399.

685

https://doi.org/10.18653/v1/2023.acl-long.756
https://doi.org/10.18653/v1/2023.acl-long.756
https://books.google.co.in/books?id=K4qv1D-LKhoC
https://books.google.co.in/books?id=K4qv1D-LKhoC
https://arxiv.org/abs/2501.01956
https://arxiv.org/abs/2501.01956
https://arxiv.org/abs/2410.02660
https://arxiv.org/abs/2410.02660
https://arxiv.org/abs/2308.04014
https://arxiv.org/abs/2308.04014
https://doi.org/10.18653/v1/2022.bigscience-1.12
https://doi.org/10.18653/v1/2022.bigscience-1.12
https://doi.org/10.18653/v1/2022.bigscience-1.12
https://arxiv.org/abs/2407.17817
https://arxiv.org/abs/2407.17817
https://arxiv.org/abs/2403.08763
https://arxiv.org/abs/2403.08763
https://arxiv.org/abs/2403.08763
https://openreview.net/forum?id=7bJizxLKrR
https://openreview.net/forum?id=7bJizxLKrR
https://arxiv.org/abs/2501.07124
https://arxiv.org/abs/2501.07124
https://arxiv.org/abs/2501.07124
https://books.google.co.in/books?id=0HYhAQAAIAAJ
https://books.google.co.in/books?id=0HYhAQAAIAAJ
https://arxiv.org/abs/2405.15362
https://arxiv.org/abs/2401.10241
https://arxiv.org/abs/1909.08053
https://arxiv.org/abs/1909.08053
https://arxiv.org/abs/2501.00656
https://arxiv.org/abs/2501.00656
https://arxiv.org/abs/2503.01328
https://arxiv.org/abs/2503.01328
https://doi.org/10.18653/v1/2024.findings-acl.788
https://doi.org/10.18653/v1/2024.findings-acl.788
https://doi.org/10.18653/v1/2024.findings-acl.788
https://doi.org/10.1145/3581784.3613215
https://doi.org/10.1145/3581784.3613215
https://arxiv.org/abs/2402.12399
https://arxiv.org/abs/2402.12399

Ge Zhang, Scott Qu, Jiaheng Liu, Chenchen Zhang,
Chenghua Lin, Chou Leuang Yu, Danny Pan, Es-
ther Cheng, Jie Liu, Qunshu Lin, Raven Yuan, Tuney
Zheng, Wei Pang, Xinrun Du, Yiming Liang, Ying-
hao Ma, Yizhi Li, Ziyang Ma, Bill Lin, and 26 oth-
ers. 2024. Map-neo: Highly capable and transpar-
ent bilingual large language model series. Preprint,
arXiv:2405.19327.

A Design Patterns Employed in the
Library

TokenSmith is structured around well-established
software design principles that promote modular-
ity, extensibility, and maintainability. The internal
architecture is intentionally clean and componen-
tized to accommodate both research prototyping
and production-scale workflows. Below, we de-
scribe the primary design patterns used in the code-
base.

Handler Pattern (Command or Service Object)
(Gamma, 1995) Each major functional area (edit-
ing, inspecting, sampling, exporting, and search-
ing) is encapsulated within its own handler class.
For instance, EditHandler, InspectHandler, Sample-
Handler, ExportHandler, and SearchHandler each
manage their domain-specific logic while exposing
a consistent interface. This clear separation of con-
cerns makes the system easier to extend, test, and
reason about.

Facade Pattern (Gamma, 1995) The Dataset-
Manager class serves as a unified entry point to
the system. It orchestrates the initialization of han-
dlers and provides a high-level API to the end user.
This shields users from internal complexities and
reduces the cognitive load involved in accessing
multiple capabilities.

Dependency Injection Rather than relying on
tight coupling or global state, handlers receive ref-
erences to the DatasetManager or its specific com-
ponents during initialization. This inversion of
control enhances testability and supports future de-
coupling and modular reuse.

Type Hinting and Forward References To
avoid circular dependencies while retaining strong
type safety, the library uses TYPE_CHECKING
blocks and string-based type annotations (e.g.,
’DatasetManager’). This allows static analyzers
and IDEs to provide full support while maintaining
clear dependency boundaries.'”

Yhttps://peps.python.org/pep-0484/

Strategy Pattern (Configurable Behavior)
(Gamma, 1995) Handlers expose methods
whose behavior can be configured at runtime
via parameters. For example, the EditHandler
supports multiple injection strategies. This makes
the system adaptable for experimentation without
requiring internal changes to core logic.

Template Method Pattern (Gamma, 1995) Ex-
port operations follow a template structure in which
base methods (such as export) provide a standard
workflow but allow subclasses or extensions to
override certain steps. This approach encourages
consistent behavior while allowing flexibility for
future extensions or format support.

Validation and Defensive Programming Ro-
bust input validation and error handling are system-
atically applied across the codebase. Although not
a formal design pattern, this practice contributes
significantly to the reliability and maintainability of
the library, especially in high-scale or adversarial
settings.

Modular Package Structure The code is di-
vided into clearly defined submodules (edit, in-
spect, sample, export, search), with each exposing
a single handler class through its __init__.py. This
supports the Single Responsibility Principle (Mar-
tin, 2003) and allows contributors to quickly locate,
understand, and extend functionality.

These design decisions collectively ensure that
TokenSmith remains extensible and maintainable
as it grows to support additional backends, work-
flows, and research use cases.

B User Interface

Figure 8 showcases different components of the
TokenSmith search interface, illustrating how users
can query token counts, presence, positions of oc-
currence, and likely next tokens using an n-gram
model—all through intuitive visual tools.

686

https://arxiv.org/abs/2405.19327
https://arxiv.org/abs/2405.19327
https://peps.python.org/pep-0484/

pect Dataset
B ViewDocuments

B Search Dataset

Select Function

Choose an operation:

® count
contains
positions
count_next

Inspect Dataset
B ViewDocuments

@ SearchDataset

Select Function

Choase an operation:
count
contains

® positions
count_next

(c) Search for positions of occurrence

Search Dataset T —
Queryinput type:

® Text (string)
Token IDs (JSON array)

B SsearchDataset

Select Function

Enter your query as text:
LAy Choose an operation:

Hey count

® contains
Tokenized query: [8262] positions
count_next

Query Information

Query length: © taken Originaltext:

Token IDs: (8262 Detokenized: F:c

Results
Total count of tokens

385

(a) Search for count

Search Dataset

Queryinput type:
® Text (string)
Token IDs (JSON array)

Select Function

Chose snoperation:
count
contains

Enter your query as text: postions

® count next

Hey

s

Tokenized query: (8262] N 10
Normole ditsbution

Query Information

Query length: 1 toker Original text:

Token IDs: (5262 Detokenized: ke

Results

Positions of tokens: (985326, 1761424, 4340094, 3259114, 2716990,
1777267, 3156298, 3044888, 1204735, 970204, 3043611, 3197691,
2402762, 845074, 138853, 2026996, 2462975, 2824367, 668778,
4330019, 3039663, 1736660, 2352277, 1811005, 3255301, 3248323,
2979086, 1064830, 561892, 1486332, 961006, 3394572, 3138388,
4192861, 4487185, 2939788, 2776321, 4115794, 3818106, 1979405,
3919057, 2752220, 3141502, 3321703, 3840706, 2940204, 1638525,
2781635, 3626501, 784248, 2959568, 991668, 1380523, 4180105,
3597982 3299913, 2198162, 1997712, 3477511, 2063806, 3521304,

Search Dataset

Queryinput type: (
® Text (string)
Token IDs (JSON array)

Enter your query as text:

Hey
Tokenized query: [8262]
Query Information

Query length: © ol Original text:

Token IDs: (5262 Detokenized:

Results

Contains tokens: True

(b) Search for presence

Enter your query astext:

Hey
Tokenized query:
Query Information
Query length: Original text:
TokenIDs: Detokenized:
Results

(d) Search for likely next tokens using an n-gram model

Figure 8: TokenSmith search UI showing different search strategies: filtering by count, containment, positional
match, and context-based continuation.

687

