
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 634–642
November 4-9, 2025 ©2025 Association for Computational Linguistics

o-MEGA: Optimized Methods for Explanation Generation and Analysis

L’uboš Kriš♠ Jaroslav Kopčan♠ Qiwei Peng♥

Andrej Ridzik♠ Marcel Veselý♠ Martin Tamajka♠

♠Kempelen Institute of Intelligent Technologies
♥University of Copenhagen

{name.surname}@kinit.sk♠ qipe@di.ku.dk♥

Abstract
The proliferation of transformer-based lan-
guage models has revolutionized NLP domain
while simultaneously introduced significant
challenges regarding model transparency and
trustworthiness. The complexity of achieving
explainable systems in this domain is evidenced
by the extensive array of explanation meth-
ods and evaluation metrics developed by re-
searchers. To address the challenge of selecting
optimal explainability approaches, we present
o-mega, a hyperparameter optimization tool de-
signed to automatically identify the most effec-
tive explainable AI methods and their configu-
rations within the semantic matching domain.
We evaluate o-mega on a post-claim matching
pipeline using a curated dataset of social me-
dia posts paired with refuting claims. Our tool
systematically explores different explainable
methods and their hyperparameters, demon-
strating improved transparency in automated
fact-checking systems. As a result, such au-
tomated optimization of explanation methods
can significantly enhance the interpretability of
claim-matching models in critical applications
such as misinformation detection, contributing
to more trustworthy and transparent AI sys-
tems.

1 Introduction

The incredible success of today’s transformer-
based language models drastically changed the
landscape of the natural language processing do-
main and how we approach complex tasks within it.
However, with great power comes great responsi-
bility. This success comes with a significant trade-
off: the increasing complexity of these models
has made them essentially black boxes, limiting
their adoption in critical applications where trans-
parency and interpretability are of great importance.
Traditionally, addressing such interpretability chal-
lenges has relied on post-hoc relevance attribution
methods, which provide post-hoc explanations (La-
puschkin et al., 2019; Søgaard, 2021) for trained

models by assigning importance scores to input
features or model parameters. While these explain-
able AI (XAI) techniques have proven valuable in
revealing model behavior and identifying potential
underlying flaws, so-called "Clever Hans" effects,
or biases, they introduce a new challenge: the over-
whelming variety of available XAI algorithms and
their possible configurations. Just as practition-
ers may struggle to select optimal model architec-
tures or hyperparameters, there is now emerging
equally complex task of choosing the right explain-
ability method for a given use case (Ali et al., 2023).
This explainability challenge is especially relevant,
for instance, in semantic matching tasks, where
understanding why a model determined that two
pieces of text are semantically similar or different
is crucial for building user trust and ensuring re-
liable performance. Moreover, the interpretable
semantic matching scenario is relevant in situa-
tions where the nuanced relationships between two
texts require explanations that describe the model’s
decision-making process precisely and understand-
ably to end users. Different XAI algorithms may
highlight different aspects of the input text, lead-
ing to varying levels of usefulness depending on
the specific matching task, domain, and user re-
quirements. The manual process of evaluating and
selecting appropriate XAI configurations is time-
consuming, resource-intensive, subjective, and of-
ten suboptimal. Our o-mega1 tool addresses this
critical gap by automating the selection and op-
timization of post-hoc explainability algorithms,
specifically within the semantic matching tasks.
We have built the o-mega tool on top of previous
work, which was inspired by the AutoML concept
(Thornton et al., 2013), and adjusted to the do-
main of explainable AI. The main functionality is
focused on the systematic evaluation of different

1We have released the code as well as documentation and
examples at o-mega repository.

634

https://github.com/kinit-sk/o-mega


XAI methods and their configurations in order to
identify those that provide the most useful expla-
nations for a given model and dataset combination
according to specified criteria. The main motiva-
tion for the o-mega tool stems from the fact that ex-
plainability is not one-size-fits-all. In the semantic
matching domain—whether it is a claim-matching
task for fact-checking, document similarity assess-
ment, or content recommendation—users need ex-
planations that help them understand and trust the
model’s matching decisions. Since explainability
is often overlooked because of its often ambiguous
explanations, which are difficult to understand and
struggles with implementation of the methods it-
self, by automating the explainability process of
finding satisfactory XAI configurations, o-mega
enables the use of interpretable semantic matching
systems more efficiently while ensuring that the
explanations provided are both technically correct
and somehow practically useful. This tool repre-
sents an addition to the claim-matching task, which
is central to fact-checking applications (Vo and Lee,
2020; Kazemi et al., 2021; Peng et al., 2025), and
it is the first action step towards our effort to make
it possible for domain experts to obtain meaningful
insights from complex deep learning models with-
out requiring extensive expertise in XAI method-
ologies.

2 Related Work

A wide range of explainable Artificial Intelligence
(XAI) methods have been developed to enhance
understanding of the decision-making process in
machine learning models. Among post-hoc tech-
niques, perturbation-based approaches are widely
used where model predictions are examined by
systematically sampling perturbed versions of the
input and observing corresponding changes in out-
put. LIME (Ribeiro et al., 2016) provides local
explanations by fitting an interpretable surrogate
model to approximate the behavior of a complex
model. SHAP (Lundberg and Lee, 2017) attributes
feature importance based on Shapley values from
cooperative game theory. Other perturbation-based
methods include Occlusion Sensitivity (Zeiler and
Fergus, 2014), which assesses feature relevance
by masking parts of the input directly. In contrast,
gradient-based methods such as Integrated Gradi-
ents (Sundararajan et al., 2017) and LRP (Bach
et al., 2015) propagate relevance scores or gradi-
ents backward through the model to identify in-

fluential features. Additionally, some studies pro-
pose textual explanation generation methods that
aim to produce human-readable justifications for
model predictions (Lei et al., 2016; Camburu et al.,
2018; Atanasova et al., 2020). Explainability meth-
ods provide explanations of different qualities, and
various metrics have been proposed to evaluate
them. Common evaluation criteria include faith-
fulness, plausibility, and stability (Alvarez-Melis
and Jaakkola, 2018; Mohseni et al., 2021; Nauta
et al., 2023). However, no single metric captures
all aspects of explanation quality, and different met-
rics may yield conflicts. This makes the evaluation
of XAI methods a persistent challenge. This chal-
lenge is further compounded when selecting the
most appropriate explanation technique for a given
task. To address this, AutoXAI frameworks (Cugny
et al., 2022), inspired by AutoML systems (He
et al., 2021), have been proposed to automate the
selection and configuration of XAI techniques. The
framework aims to adaptively choose the most suit-
able explanation method and optimize associated
hyperparameters based on user-defined objectives.
The existing AutoXAI framework works only with
the tabular modality of data and has implemented
only two methods - SHAP and LIME, which are
often considered as baselines when dealing with
structured data. Inspired by it, we have created the
o-mega framework within the domain of informa-
tion retrieval, focusing on textual data. oMEGA
framework incorporates multiple XAI methods,
metrics for evaluation, and puts a specific focus
on the claim matching task, which is a crucial task
in fact-checking.

3 System Description

The o-mega tool is designed as a comprehensive
framework for automatically selecting and opti-
mizing explainable AI methods within semantic
matching application. As illustrated in Figure 1,
the system architecture consists of four intercon-
nected modules that work together to identify the
most effective explanation approach for a given
AI model and dataset: 1) the model component
that generates predictions requiring explanation, 2)
the method component, which is a comprehensive
space of available XAI algorithms and their config-
urations, 3) the metric part is an evaluation module
incorporating both proxy measures and ground-
truth annotations, and 4) the optimization compo-
nent is a conditional hyperoptimization engine that

635



systematically explores and ranks different explain-
ability approaches.

3.1 Methods

For semantic matching and text classification tasks,
we require attribution-based XAI methods capable
of capturing token-level or word-level importance.
Additionally, for semantic matching specifically,
these methods must capture cross-sequence inter-
actions as well. We also want the methods to be di-
verse in their design and computationally efficient,
therefore we have selected XAI methods spanning
three paradigms: 1) gradient-based; 2) perturbation-
based; and 3) architecture-specific. Overall, 11 ex-
plainable methods were implemented, 9 of them
were from the Captum library. The entire selec-
tion is presented in Table 2. We have excluded
several attribution methods from the library like
Deconvolution, DeepLift, DeepLiftShap, because
of irrelevancy for our task, or computational ex-
penses.

3.2 Models

The inherent design of how these post-hoc explain-
ability methods are computed introduces signifi-
cant architectural rigidness. This introduces a con-
straint to same extent - the scoping of supported
models. We have included an exhaustive list of
most widely used semantic matching models. Ta-
ble 1 presents the list of models which we have
thoroughly tested. However, in general, the meth-
ods available within the o-mega framework should
work with any transformer-based model for seman-
tic matching of natural language text.

Model name Embedding layer
sentence-transformers/gtr-t5-large encoder.embed_tokens
sentence-transformers/gtr-t5-xl encoder.embed_tokens
sentence-transformers/sentence-t5-xl encoder.embed_tokens
sentence-transformers/all-mpnet-base-v2 embeddings.word_embeddings
sentence-transformers/multi-qa-mpnet-base-cos-v1 embeddings.word_embeddings
sentence-transformers/all-MiniLM-L12-v2 embeddings.word_embeddings
BAAI/bge-large-en-v1.5 embeddings.word_embeddings
BAAI/bge-base-en-v1.5 embeddings.word_embeddings
BAAI/bge-small-en-v1.5 embeddings.word_embeddings
llmrails/ember-v1 embeddings.word_embeddings
thenlper/gte-large embeddings.word_embeddings
intfloat/e5-large-v2 embeddings.word_embeddings
BAAI/bge-large-en-v1.5 embeddings.word_embeddings

Table 1: Overview of tested language models for ex-
plainable use in semantic matching

3.3 Metrics

Evaluation module of the o-mega tool is the most
crucial one, because based on the measurements of
quality of computed explanations, the optimization

Method
Captum-based methods
Occlusion token-level
Input X Gradient
Guided Backprop
Feature Ablation
Kernel Shap
Gradient Shap
LIME
Saliency
Custom implementations
GAE
Conservative LRP
Occlusion word-level

Table 2: Overview of available XAI methods

process is guided, and at the output ends the recom-
mendation for best methods regarding the task, data
and model used. In order to evaluate how good the
provided explanations actually are, it is important
to firstly define what is meant by the explanation
quality - what constitutes to a good explanation?
There are two main approaches for how to answer
this quality question, the first one is quantitative
measurements, the second one is qualitative. While
the qualitative measurements are just as much im-
portant, because of their subjective nature they can
not be expressed by metrics. Therefore, within the
o-mega evaluation we have focused primarily on
the quantitative approach. On this topic was a lot of
work done (Zhou et al., 2021; Markus et al., 2021)
about how to find out if the explanation is of high
quality - it needs to adhere to two components -
fidelity and plausibility.

• Explanation high in fidelity reflects the ac-
tual underlying behavior of the model, mean-
ing the features deemed as important by expla-
nation method for specific prediction, should
be the same which influenced model the most.
Metrics designed to test this are based on ab-
lations or perturbations.

• Explanation high in plausibility reflects how
easy is to comprehend the explanation for
human-being, while this being the closest mea-
sure possible to qualitative evaluation within
the quantitative domain. In order to be able
express this semi-subjective property these
metrics needs the human annotations - what
humans themselves have deemed to be com-
prehensible explanation given the data and the
task.

While during the evaluation is important to score
high in both of these measurements, they often

636



Figure 1: The architecture of the o-mega tool.

conflict with each other. An optimal explanation
requires to strike a balance between them, while
prioritizing one typically comes at the expense of
the other. Our o-mega framework has available
metrics for both categories - fidelity and plausibil-
ity which we have deemed as important and user
could choose before the optimization if he wants to
favor one over the other, or optimize towards both
of them. All these metrics are custom implemented
versions of established, previously published met-
rics which work with textual data (DeYoung et al.,
2020; Hedström et al., 2023; Attanasio et al., 2023).

Metrics Category
AOPC Comprehensiveness

Fidelity
AOPC Sufficiency
AUPRC

Plausibility
Token-level F1 scores
Token-level IoU
Average Precision Score

Table 3: Overview of available metrics

3.4 Optimization

For hyperparameter optimization, we employed
the Optuna library (Akiba et al., 2024), which of-
fers significant advantages over traditional grid
search approaches. While grid search exhaustively
evaluates all possible parameter combinations, Op-
tuna uses intelligent search strategies such as Tree-
structured Parzen Estimator (TPE) and Bayesian
optimization that learn from previous evaluations
to guide future parameter selection (Feurer and Hut-
ter, 2019). This adaptive approach allows the opti-
mizer to focus computational resources on promis-

ing regions of the hyperparameter space, effectively
avoiding areas that have already shown poor perfor-
mance. The efficiency gains become particularly
pronounced in high-dimensional hyperparameter
spaces, where grid search suffers from the curse of
dimensionality. For instance, if we have 5 hyperpa-
rameters with 10 possible values each, grid search
would require 105 = 100,000 evaluations, while
Optuna’s intelligent sampling can often find near-
optimal configurations with significantly fewer tri-
als—often by an order of magnitude or more. This
efficiency is crucial in our context, where Captum’s
explanation methods have numerous hyperparam-
eters that can substantially impact both computa-
tional cost and explanation quality. Moreover, Op-
tuna’s pruning capabilities allow early termination
of unpromising trials, further reducing computa-
tional overhead. This is particularly valuable when
working with explanation methods that may have
expensive evaluation metrics, as the optimizer can
quickly identify and abandon parameter configura-
tions that are unlikely to yield good results based
on partial evaluations. The result is a more effi-
cient exploration of the hyperparameter space that
converges to high-quality explanations faster than
traditional optimization approaches.

3.5 Configuration

As a base part of the o-mega, the user can select a
model from the Huggingface library (See Table 1)
or a local pre-trained model. Plausibility and faith-
fulness have corresponding weights to adjust the
priority of each group of metrics (See Figure 6).
Then, the form of evaluation of explanations can
take place in 3 options: either in token form, or by

637



combining explanations and masks into sentences,
or into words. One example of the base configura-
tion is shown in Figure 2.

model_path: "intfloat/multilingual -e5-
large"

embeddings_module_name: "embeddings.
word_embeddings"

methods: [" GAE_Explain ","Occlusion "]
normalizations: [" without_normalize "]
explanation_maps_token: True
plausability_weight: 0.5
faithfulness_weight: 0.5
multiple_object: False

Figure 2: Configuration block specifying the base pa-
rameters for hyperoptimization and evaluation of expla-
nations

The user can further configure 6 search strate-
gies from the Optuna library (See Figure 3). These
6 search strategies can be divided into 2 groups:
(1)single-object and (2)multi-object hyperoptimiza-
tion. Within the configuration, plausibility and
plausibility values can be considered separately.
Within single-object hyperoptimization, we have
TPESampler, GPSampler, and BruteForceSampler
available for use, and within multi-object hyperop-
timization, we can use NSGAIIISampler, NSGAI-
ISampler, and TPESampler.

Optuna_parameters:
sampler: "TPESampler"
n_trials: 14
n_startup_trials: 4
seed: 1000

Figure 3: Configuration block for Optuna Sampler and
its parameters.

XAI methods also accept a list of configurations
for customization. One example is shown in Figure
4, where the hyperparameters of XAI methods can
be restrained to a specific search space.

method_param:
Gradient Shap:

parameters:
stdevs: (0.1, 0.9, {'step ': 0.1})
n_samples: [10, 15]

Lime:
parameters:

n_samples: [80, 90]
token_groups_for_feature_mask: true

Figure 4: Configuration block specifying hyperparame-
ters for explainable method.

4 Case Study

In this case study, we focus on the task of claim
matching, a key component in automated fact
checking. The claim matching task is typically
formulated as an information retrieval task. Given

Figure 5: One example of the post-claim pair with an-
notated explanations.

an input text (e.g., social media posts), the goal
is to find an appropriate claim from a database of
claims that have already been fact-checked by pro-
fessional fact-checkers. When a user posts a post
making a claim worth fact-checking, the model
aims to find a semantically similar claim from a
list of previously fact-checked claims. For this
study, we utilize the MultiClaim dataset (Pikuliak
et al., 2023). To examine interpretability, five hu-
man annotators are asked to provide explanations
for why specific claims were matched. Examples
are given in figure 5. To assess the quality of the
annotation, if the majority vote is not determined,
we directly throw the sample away. This results in
512 post-claim pairs with human annotations.

4.1 Task Configuration

To generate optimal explanations for this task, we
developed a hyperparameter optimization approach
that selects the best combination of explanation
methods and their configurations. The explanation
methods identify significant attributes in both posts
and claims by analyzing the cosine similarity be-
tween them. We utilized the Captum library for
generating explanations, which provides multiple
options for modifying explainable method parame-
ters that affect how individual embeddings are pro-
cessed. Our hyperparameter optimization frame-
work incorporates these configurable parameters
as well. Specific methods need to set the model in
a specific way. In Figure 6 are shown the model
parameters required for each explanation method
are shown, such as the necessary layer or gradi-
ent settings, which show how different methods
require access to specific components of the neural
architecture. Figure 7 details the specific tunable
parameters for each explanation method, such as
perturbation sizes for occlusion methods or base-
line values for gradient-based approaches. For the
optimization process, we employed the Optuna li-
brary, which offers various optimization algorithms.
Our evaluation framework uses five metrics which
can be organized into two categories: fidelity and

638



plausibility. Additionally, we included average pre-
cision score (APS) as a supplementary metric for
plausibility assessment.

4.2 Results and Analysis
Table 4 presents results from o-mega optimization
which should provide clear guidance for practition-
ers. Occlusion is the recommended explainability
method for this semantic matching task, achieving
the best overall performance (0.819 average) by bal-
ancing technical accuracy with human interpretabil-
ity. This automated recommendation eliminates the
need for manual trial-and-error testing of different
explanation methods. The results reveal that while
most methods can accurately capture model behav-
ior (faithfulness >0.94), they vary significantly in
producing explanations that users can easily un-
derstand (plausibility 0.35-0.68). This means that
method selection critically impacts user experience.
Occlusion provides best explanations that are both
technically correct and accessible to non-experts,
while alternatives like ConservativeLRP (0.641)
may confuse users despite being technically valid.
The optimization process successfully identified
the configuration that maximizes both explanation
quality dimensions, providing practitioners with a
data-driven recommendation rather than relying on
popularity or default settings of explanation meth-
ods.

Table 5 depicts comparison of single objective
samplers. Results reveals TPESampler as the most
efficient optimization algorithm for this task, com-
pleting the same optimization quality in signifi-
cantly less time compared to alternatives. While
all three samplers identify Saliency as the opti-
mal method with identical performance scores,
TPESampler demonstrates superior computational
efficiency, requiring only 14 trials versus Brute-
ForceSampler’s 35 trials to achieve the same result.
BruteForceSampler provides the most thorough ex-
ploration but at a substantial computational cost
(1.112 hours), making it impractical for real-world
applications. GPSampler offers a middle ground
with moderate efficiency (0.672 hours, 14 trials)
but shows higher memory usage (760MB against
748MB for TPESampler) and experiences dupli-
cate trials, indicating less efficient search space ex-
ploration. The main recommendation from the op-
timization run comparison is that the TPESampler
represents the optimal choice, delivering the same
explanation quality recommendations as exhaustive
search methods while reducing optimization time

Methods Faithfulness Plausibility Average
Occlusion 0.963 0.675 0.819
Gradient Shap 0.967 0.627 0.797
Saliency 0.966 0.621 0.794
GAE_Explain 0.959 0.615 0.787
Lime 0.962 0.599 0.781
Feature Ablation 0.960 0.597 0.779
Occlusion word-level 0.946 0.605 0.776
Kernel Shap 0.952 0.563 0.757
Guided Backprop 0.943 0.516 0.730
Input X Gradient 0.935 0.497 0.716
ConservativeLRP 0.927 0.354 0.641

Table 4: Comparison of Methods with Faithfulness,
Plausibility, and Average scores.

by approximately 66%, making automated XAI se-
lection feasible for routine deployment. Lastly, Ta-
ble 6 shows the multi-objective optimization results.
It shows that BruteForceSampler and TPESampler
both correctly identify Occlusion as the optimal
method, while NSGA-II and NSGA-III variants
select the inferior Saliency method. BruteForce-
Sampler achieves the highest performance scores
(0.957 faithfulness, 0.646 plausibility) but requires
35 trials and 1.121 hours, while TPESampler de-
livers nearly identical results (0.958 faithfulness,
0.622 plausibility) with 70% less computation time
(14 trials, 0.339 hours). The NSGA variants show
identical performance, indicating no benefit from
the increased complexity of NSGA-III. For practi-
tioners, TPESampler is the recommended choice,
providing the correct method selection with op-
timal efficiency for multi-objective explainability
optimization.

Single objective BruteForceSampler GPSampler TPESampler
method_best Saliency Saliency Saliency
overall_score 0.784 0.78 0.784
best_find_at 13 5 7
peak memory usage (MB) 936.53 760.92 748.43
time (hours) 1.112 0.672 0.379
number_dup 0 1 4
all_trials 35 14 14

Table 5: Comparison of single objective samplers’ per-
formance. The best performances are depicted in bold.

Metric BruteForceSampler TPESampler NSGAIISampler NSGAIIISampler
Total Trials 35 14 14 14
Best Method Occlusion Occlusion Saliency Saliency
Faithfulness 0.957 0.958 0.957 0.957
Plausibility 0.646 0.622 0.606 0.606
Peak Memory (MB) 907.08 761.84 747.27 749.35
Time (hours) 1.121 0.339 0.261 0.261
Duplicates 0 5 7 7

Table 6: Comparison of Multi-Objective Samplers’ Per-
formance

5 Conclusion

This work presents o-mega, an automated hyper-
parameter optimization tool for explainable AI
method selection in semantic matching and text
classification tasks. Our evaluation within seman-

639



tic matching demonstrates that automated opti-
mization successfully identifies optimal XAI con-
figurations, with Occlusion emerging as the best-
performing method for post-claim matching appli-
cations. By automating the complex process of
XAI method selection and configuration, o-mega
enables users to deploy transparent AI systems
without requiring deep expertise in explainability
techniques. This work has demonstrated the possi-
bility of making explainability more accessible and
frictionless for real-world applications, particularly
in critical domains such as automated fact-checking
and disinformation detection.

Limitations

The current implementation of o-mega has several
limitations:

• The tool was developed specifically for claim
matching as an enhancer for a specific dataset
- MultiClaim, although the text classification
pipeline is also available, it is still limiting its
immediate applicability to other domains

• Evaluation metrics are currently restricted to
only established ones, and tools do not include
other experimental metric evaluations, such
as localization and sparseness

• Computationally expensive explanation meth-
ods have not been incorporated yet, but this is
also partially desired since high computational
resource requirements render the methods less
effective, therefore users are less likely to use
them

Acknowledgments

We would like to thank all reviewers for their in-
sightful comments and feedback. This work was
supported by DisAI - Improving scientific excel-
lence and creativity in combating disinformation
with artificial intelligence and language technolo-
gies, a project funded by European Union under
the Horizon Europe, GA No. 101079164. This
work was also partially funded by European Union,
under the project lorAI - Low Resource Artificial
Intelligence, GA No. 101136646.

References
Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru

Ohta, and Masanori Koyama. 2024. Optuna: A next-
generation hyperparameter optimization framework.
Optuna Documentation. Accessed: 2025-07-01.

Sajid Ali, Tamer Abuhmed, Shaker El-Sappagh, Khan
Muhammad, Jose M Alonso-Moral, Roberto Con-
falonieri, Riccardo Guidotti, Javier Del Ser, Natalia
Díaz-Rodríguez, and Francisco Herrera. 2023. Ex-
plainable artificial intelligence (xai): What we know
and what is left to attain trustworthy artificial intelli-
gence. Information fusion, 99:101805.

David Alvarez-Melis and Tommi S Jaakkola. 2018. On
the robustness of interpretability methods. arXiv
preprint arXiv:1806.08049.

Pepa Atanasova, Jakob Grue Simonsen, Christina Li-
oma, and Isabelle Augenstein. 2020. Generating fact
checking explanations. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 7352–7364, Online. Association
for Computational Linguistics.

Giuseppe Attanasio, Eliana Pastor, Chiara Di Bonaven-
tura, and Debora Nozza. 2023. ferret: a framework
for benchmarking explainers on transformers. In
Proceedings of the 17th Conference of the European
Chapter of the Association for Computational Lin-
guistics: System Demonstrations. Association for
Computational Linguistics.

Sebastian Bach, Alexander Binder, Grégoire Montavon,
Frederick Klauschen, Klaus-Robert Müller, and Wo-
jciech Samek. 2015. On pixel-wise explanations
for non-linear classifier decisions by layer-wise rele-
vance propagation. PloS one, 10(7):e0130140.

Oana-Maria Camburu, Tim Rocktäschel, Thomas
Lukasiewicz, and Phil Blunsom. 2018. e-snli: Natu-
ral language inference with natural language expla-
nations. Advances in Neural Information Processing
Systems, 31.

Robin Cugny, Julien Aligon, Max Chevalier, Geoffrey
Roman Jimenez, and Olivier Teste. 2022. Autoxai: A
framework to automatically select the most adapted
xai solution. In Proceedings of the 31st ACM Inter-
national Conference on Information & Knowledge
Management, CIKM ’22, page 315–324, New York,
NY, USA. Association for Computing Machinery.

Jay DeYoung, Sarthak Jain, Nazneen Fatema Rajani,
Eric Lehman, Caiming Xiong, Richard Socher, and
Byron C Wallace. 2020. Eraser: A benchmark to
evaluate rationalized nlp models. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 4443–4458.

Matthias Feurer and Frank Hutter. 2019. Hyperparame-
ter optimization. Springer International Publishing.

Xin He, Kaiyong Zhao, and Xiaowen Chu. 2021. Au-
toml: A survey of the state-of-the-art. Knowledge-
based systems, 212:106622.

Anna Hedström, Leander Weber, Daniel Krakowczyk,
Dilyara Bareeva, Franz Motzkus, Wojciech Samek,
Sebastian Lapuschkin, and Marina M-C Höhne. 2023.
Quantus: An explainable ai toolkit for responsi-
ble evaluation of neural network explanations and

640

https://doi.org/10.3030/101079164
https://doi.org/10.3030/101136646
https://optuna.readthedocs.io/en/stable/reference/optuna.html
https://optuna.readthedocs.io/en/stable/reference/optuna.html
https://doi.org/10.18653/v1/2020.acl-main.656
https://doi.org/10.18653/v1/2020.acl-main.656
https://doi.org/10.1145/3511808.3557247
https://doi.org/10.1145/3511808.3557247
https://doi.org/10.1145/3511808.3557247


beyond. Journal of Machine Learning Research,
24(34):1–11.

Ashkan Kazemi, Kiran Garimella, Devin Gaffney, and
Scott A. Hale. 2021. Claim matching beyond En-
glish to scale global fact-checking. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 4504–4517, Online.
Association for Computational Linguistics.

Sebastian Lapuschkin, Stephan Wäldchen, Alexander
Binder, Grégoire Montavon, Wojciech Samek, and
Klaus-Robert Müller. 2019. Unmasking clever hans
predictors and assessing what machines really learn.
Nature communications, 10(1):1096.

Tao Lei, Regina Barzilay, and Tommi Jaakkola. 2016.
Rationalizing neural predictions. In Proceedings of
the 2016 Conference on Empirical Methods in Nat-
ural Language Processing, pages 107–117, Austin,
Texas. Association for Computational Linguistics.

Scott M Lundberg and Su-In Lee. 2017. A unified ap-
proach to interpreting model predictions. Advances
in neural information processing systems, 30.

Aniek F Markus, Jan A Kors, and Peter R Rijnbeek.
2021. The role of explainability in creating trustwor-
thy artificial intelligence for health care: a compre-
hensive survey of the terminology, design choices,
and evaluation strategies. Journal of biomedical in-
formatics, 113:103655.

Sina Mohseni, Niloofar Zarei, and Eric D Ragan. 2021.
A multidisciplinary survey and framework for de-
sign and evaluation of explainable ai systems. ACM
Transactions on Interactive Intelligent Systems (TiiS),
11(3-4):1–45.

Meike Nauta, Jan Trienes, Shreyasi Pathak, Elisa
Nguyen, Michelle Peters, Yasmin Schmitt, Jörg
Schlötterer, Maurice Van Keulen, and Christin Seifert.
2023. From anecdotal evidence to quantitative eval-
uation methods: A systematic review on evaluating
explainable ai. ACM Computing Surveys, 55(13s):1–
42.

Qiwei Peng, Robert Moro, Michal Gregor, Ivan Srba,
Simon Ostermann, Marian Simko, Juraj Podroužek,
Matúš Mesarčík, Jaroslav Kopčan, and Anders Sø-
gaard. 2025. Semeval-2025 task 7: Multilingual
and crosslingual fact-checked claim retrieval. arXiv
preprint arXiv:2505.10740.

Matúš Pikuliak, Ivan Srba, Robert Moro, Timo Hro-
madka, Timotej Smoleň, Martin Melišek, Ivan
Vykopal, Jakub Simko, Juraj Podroužek, and Maria
Bielikova. 2023. Multilingual previously fact-
checked claim retrieval. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 16477–16500, Singapore.
Association for Computational Linguistics.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. " why should i trust you?" explaining
the predictions of any classifier. In Proceedings of
the 22nd ACM SIGKDD international conference on
knowledge discovery and data mining, pages 1135–
1144.

Anders Søgaard. 2021. Explainable natural language
processing. Morgan & Claypool Publishers.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017.
Axiomatic attribution for deep networks. In Interna-
tional conference on machine learning, pages 3319–
3328. PMLR.

Chris Thornton, Frank Hutter, Holger H Hoos, and
Kevin Leyton-Brown. 2013. Auto-weka: Combined
selection and hyperparameter optimization of classi-
fication algorithms. In Proceedings of the 19th ACM
SIGKDD international conference on Knowledge dis-
covery and data mining, pages 847–855.

Nguyen Vo and Kyumin Lee. 2020. Where are the
facts? searching for fact-checked information to alle-
viate the spread of fake news. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 7717–7731,
Online. Association for Computational Linguistics.

Matthew D Zeiler and Rob Fergus. 2014. Visualiz-
ing and understanding convolutional networks. In
Computer Vision–ECCV 2014: 13th European Con-
ference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part I 13, pages 818–833. Springer.

Yao Zhou, Haonan Wang, Jingrui He, and Haixun Wang.
2021. From intrinsic to counterfactual: On the ex-
plainability of contextualized recommender systems.
arXiv preprint arXiv:2110.14844.

Appendix: Method Hyperparameters

Methods Hyperparameters
Occlusion sliding_window_shapes:(5, 1024), strides:(1,

1024)
Gradient Shap stdevs:0.1, n_samples:15
Saliency abs: True
GAE_Explain
Lime n_samples:90 ,similar-

ity_func:{’function_name’:
’get_exp_kernel_similarity_function’,
’parameters’: {’distance_mode’: ’eu-
clidean’, ’kernel_width’: 750}}, inter-
pretable_model:{’function_name’: ’SkLearn-
Lasso’, ’parameters’: {’alpha’: 1e-10}}

Feature Ablation
Occlusion_word_level regex_condition: ".,!?;:. . . "
Kernel Shap n_samples:90
Guided Backprop
Input X Gradient
ConservativeLRP

Table 7: Complete list of method hyperparameters

641

https://doi.org/10.18653/v1/2021.acl-long.347
https://doi.org/10.18653/v1/2021.acl-long.347
https://doi.org/10.18653/v1/D16-1011
https://doi.org/10.18653/v1/2023.emnlp-main.1027
https://doi.org/10.18653/v1/2023.emnlp-main.1027
https://doi.org/10.18653/v1/2020.emnlp-main.621
https://doi.org/10.18653/v1/2020.emnlp-main.621
https://doi.org/10.18653/v1/2020.emnlp-main.621


model_param:
Lime:
similarity_func:
function_name:
- captum.attr._core.lime.

get_exp_kernel_similarity_function
parameters:
distance_mode: ["cosine", "euclidean"]
kernel_width: [450, 750]

interpretable_model:
function_name:
- captum._utils.models.linear_model.

SkLearnLasso
parameters:
alpha: [1e-19, 1e-25]

GAE_Explain:
implemented_method: true
layers:
module_path_expressions:
- "hf_transformer.encoder.layer.*.

attention.self.dropout"
ConservativeLRP:
implemented_method: true
layers:
store_A_path_expressions:
- "hf_transformer.embeddings"

attent_path_expressions:
- "hf_transformer.encoder.layer.*.

attention.self.dropout"
norm_layer_path_expressions:
- "hf_transformer.embeddings.LayerNorm"
- "hf_transformer.encoder.layer.*.

attention.output.LayerNorm"
- "hf_transformer.encoder.layer.*.output.

LayerNorm"
Occlusion_word_level:
implemented_method: true

Figure 6: Configuration block specifying the model
parameters for hyperoptimization and evaluation of ex-
planations

method_param:
Lime:
parameters:
n_samples: [80, 90]

token_groups_for_feature_mask: true
Saliency:
parameters:
abs: [true, false]

Occlusion:
parameters:
sliding_window_shapes:
- [3, 1024]
- [5, 1024]

strides:
- [1, 1024]
- [1, 512]

compute_baseline: true
Gradient Shap:
parameters:
stdevs: [0.1, 0.9]
n_samples: [10, 15]

compute_baseline: true
Kernel Shap:
parameters:
n_samples: [80, 90]

compute_baseline: true
Feature Ablation:
token_groups_for_feature_mask: true
compute_baseline: true

Occlusion_word_level:
parameters:
regex_condition:
- ""
- ".,!?;:"

Integrated Gradients:
parameters:
n_steps: [60, 40]

Figure 7: Configuration block specifying the method
parameters for hyper-optimization and evaluation of
explanations

642


