
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 558–590
November 4-9, 2025 ©2025 Association for Computational Linguistics

TINYSCIENTIST: An Interactive, Extensible, and Controllable
Framework for Building Research Agents

Haofei Yu1* Keyang Xuan1* Fenghai Li1*

Kunlun Zhu1 Zijie Lei1 Jiaxun Zhang1 Ziheng Qi1

Kyle Richardson2 Jiaxuan You1

1University of Illinois Urbana-Champaign,
2Allen Institute for Artificial Intelligence

Abstract

Automatic research with Large Language Mod-
els (LLMs) is rapidly gaining importance, driv-
ing the development of increasingly complex
workflows involving multi-agent systems, plan-
ning, tool usage, code execution, and human-
agent interaction to accelerate research pro-
cesses. However, as more researchers and de-
velopers begin to use and build upon these tools
and platforms, the complexity and difficulty of
extending and maintaining such agentic work-
flows have become a significant challenge, par-
ticularly as algorithms and architectures con-
tinue to advance. To address this growing com-
plexity, TINYSCIENTIST identifies the essential
components of the automatic research work-
flow and proposes an interactive, extensible,
and controllable framework that adapts easily
to new tools and supports iterative growth. We
provide an open-source codebase1, an interac-
tive web demonstration2, and a PyPI Python
package3 to make state-of-the-art auto-research
pipelines broadly accessible to every researcher
and developer.

1 Introduction

Interest in building research agents with Large Lan-
guage Models (LLMs) to interact with human re-
searchers and enable automatic scientific discov-
ery has gained considerable attention in recent
years (Gottweis et al., 2025). Such agentic frame-
works have demonstrated impressive capabilities
across a wide range of research tasks, including
ideation (Si et al., 2024; Li et al., 2024a), sci-
entific coding (Chan et al., 2024; Huang et al.,
2023), paper writing (Wang et al., 2024), re-
view writing (Jin et al., 2024), and even end-to-

*Core Contributors.
1The codebase for TINYSCIENTIST is available at https:

//github.com/ulab-uiuc/tiny-scientist.
2The web demonstration for TINYSCIENTIST is hosted at

https://app.auto-research.dev.
3The Python package for TINYSCIENTIST is released at

https://pypi.org/project/tiny-scientist.

end research pipelines (Jansen et al., 2025; Lu
et al., 2024; Yamada et al., 2025; Li et al., 2024b;
Cheng et al., 2025). Recent advances in this area
leverage methods including multi-agent collabora-
tion (Schmidgall et al., 2025), tool using (Skarlin-
ski et al., 2024), and tree-based search (Yamada
et al., 2025) to augment its performance.

In spite of this success, however, existing auto-
matic research systems often design and use agentic
frameworks that are overly complex and difficult to
use and extend without significant technical exper-
tise. These challenges stem from three key issues:
(1) lack of interactivity: human researchers strug-
gle to engage with the specific agent’s research
progress due to the complexity of research intents
and unclear communication interfaces (Zou et al.,
2025; Liu et al., 2025b), making feedback incorpo-
ration challenging. (2) limited extensibility: exist-
ing representative frameworks rely on rigid, tool-
specific designs (Zhang et al., 2025), making it hard
to integrate new tools or adapt to different research
domains. (3) insufficient controllability: many
systems offer weak supervision on safety, ethical
constraints, and cost budget, raising concerns about
misalignment and unbounded execution (Gridach
et al., 2025; Liu et al., 2025a). To address these
issues and help democratize the development and
use of research agents, we introduce TINYSCIEN-
TIST, a lightweight and modular agentic framework
that facilitates interactivity, extensibility, and con-
trollability, making it highly accessible to users,
researchers, and developers. Specifically, TINY-
SCIENTIST is designed based on the following prin-
ciples illustrated in Figure 1.

Interactivity. Research is an open-ended process
that requires continuous user involvement. Re-
searchers typically begin with vague or evolving
goals and refine them over time. As a result, ef-
fective research agents must support real-time ad-
justments to their reasoning, coding, and writing

558

https://github.com/ulab-uiuc/tiny-scientist
https://github.com/ulab-uiuc/tiny-scientist
https://app.auto-research.dev
https://pypi.org/project/tiny-scientist

TinyScientist

Traditional Research Agent

I want to support code snippet
searching. How to add it into

the existing agentic workflow?

LossTaskMethod

X+YTask1Method A

X+ZTask1Ours

This looks incremental, we need
to search more methods related

to different loss design.

TinyScientist

Traditional Research Agent

Interactivity Extensibility Controllability

Agent generates an idea.

Human researcher tries to improve it.

Understanding step size
strategies is crucial…..This

research could lead to more

efficient algorithms. (200 words)

TinyScientist generates an idea.

Human researcher tries to improve it.

I want to support code snippet
searching. How to add it into

the existing agentic workflow?

Agent finishes running.

Use o3 as agent backbone.
Cost $15 for generating the a

complete research paper PDF.

No! I just want to have a
simple trial! It is beyond my

budget.

Use o3 as backbone.
Change the agent reflection

max_limit to 1 and control the

budget within $2.

Yeah! The pipeline is working.
Let me set a higher budget for

official running.

TinyScientist finishes running.

Human researcher checks the bill.

Human researcher checks the bill.

Need to edit the workflow code
and self-develop an API wrapper.

Time-consuming.

Require coding expertise.

Step1: Find a related MCP server
Step2: Modify MCP config.

Time-efficient.

Easy to extend more tools.

Traditional Research Agent

TinyScientist

It looks incremental but I am not
sure how to improve that.

TinyScientist

Figure 1: Design principles for TINYSCIENTIST. We highlight the key differences between traditional research
agents and TINYSCIENTIST. To enhance interactivity, TINYSCIENTIST introduces a table-based interface that
helps researchers clearly express and refine their intents. For extensibility, TINYSCIENTIST adopts an MCP (Model
Context Protocol) design instead of direct API wrapping, making it easy to add or replace tools. For controllability,
TINYSCIENTIST includes built-in safety and budget controllers that monitor and regulate the entire workflow.

processes. Without an interactive interface, agen-
tic frameworks risk drifting from the user’s intent
and producing irrelevant or unsafe outputs. To
address this, TINYSCIENTIST introduces a mod-
ular, tabular-based interface that decomposes the
research workflow into editable stages. Each stage
presents intermediate results in a structured tabular
format, allowing researchers to directly modify spe-
cific cells or columns—e.g., by suggesting adding
new baselines as rows or editing individual entries.
Such a design improves clarity in human-agent
communication and empowers users to guide the
system as their objectives evolve.

Extensibility. Automatic research is evolving
rapidly, with new tools and technologies emerg-
ing constantly. To keep pace, agentic frameworks
need to support the easy integration and replace-
ment of tools. In machine learning-related auto-
matic research, while the core workflow—typically
composed of stages like think, code, write, and
review—remains relatively fixed, the key differ-
ence between different tasks lies in the tools and
methods used within each stage. To address this,
TINYSCIENTIST adopts the design of the Model
Context Protocol (MCP) (Anthropic, 2024), which
provides a unified API for connecting diverse tools
to augment each core workflow component. Such
a system architecture enables seamless extension,
allowing developers to upgrade and maintain their

system with little effort.

Controllability. Safety, ethical, and financial con-
cerns are critical, but often under-addressed in agen-
tic research workflows (Zhu et al., 2025a; Tang
et al., 2024). Users should not be caught off guard
by excessive spending or unsafe outputs. Users
should not be exposed to unexpected costs, un-
safe behaviors, or misaligned actions. To ensure
responsible and predictable execution, TINYSCI-
ENTIST emphasizes controllability across the entire
pipeline. Users are allowed to set explicit upper
bounds on key hyperparameters—such as the num-
ber of experimental runs or self-reflection steps—to
ensure budget constraints are respected. Addition-
ally, at each stage of the workflow, built-in safety
checkers validate outputs to prevent harmful or un-
intended behavior, which helps to maintain align-
ment with user intents.

To demonstrate the effectiveness of TINYSCI-
ENTIST, we conduct both qualitative and quan-
titative evaluations, highlighting four key advan-
tages: (1) It is easy for researchers to use the
Python package without configuration or setup bar-
riers. (2) It enables better human–agent interaction
through an interactive UI. (3) It achieves research
generation quality comparable to Agent Labora-
tory (Schmidgall et al., 2025), a widely used multi-
agent auto-research framework, and (4) using tools
improves the generation quality.

559

Framework Interactivity Extensibility Controllability Deployment

Modular
Design

Tabular
Commun.

Tool
Calling

Schema
Diagram

Safety
Control

Budget
Control

UI
Design

Python
Package

AI Scientist (Lu et al., 2024) ✓ ✗ API ✗ ✓ ✗ ✗ ✗
AI co-scientist (Gottweis et al., 2025) ✓ ✗ API ✗ ✗ ✗ ✓ ✗
AI Researcher (Tang et al., 2025) ✓ ✗ API ✗ ✗ ✗ ✗ ✗
Agent Laboratory (Schmidgall et al., 2025) ✓ ✗ wrapper ✗ ✓ ✗ ✗ ✗

TinyScientist (ours) ✓ ✓ MCP ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of research agent frameworks. We compare existing frameworks across four key dimensions:
interactivity, controllability, extensibility, and deployment readiness. TINYSCIENTIST uniquely integrates tabular-
based human-agent communication, schematic diagram design, MCP-based tool calling, and budget/safety control,
all within a deployment-ready system. For tool calling, API refers to frameworks that directly invoke APIs as part
of their workflow without abstraction. In contrast, wrapper denotes systems that support tool abstraction and allow
users to wrap custom tools via APIs, though without a standardized integration method like MCP.

2 Related Work

Agentic workflow for automatic research. The
field of automatic research has witnessed rapid ad-
vancements in recent years, with diverse frame-
works emerging to automate the research process
through various design principles and coordina-
tion strategies. For example, AI-Scientist (Lu
et al., 2024) introduced the first comprehensive
fully-automatic research agent by enabling frontier
LLMs to conduct a series of research processes. In
subsequent work, AI-Scientist v2 (Yamada et al.,
2025) improves the pipeline by replacing manual
templates with an agentic tree-search methodology
and a VLM-based feedback loop. In addition, later
work such as Agent Laboratory (Schmidgall et al.,
2025) and AI-Researcher (Tang et al., 2025) follow
a similar staged design to develop end-to-end au-
tonomous research workflows, introducing more re-
fined role specialization and enhanced coordination
mechanisms. Furthermore, AI co-scientist (Got-
tweis et al., 2025) and ResearchTown (Yu et al.,
2024) utilize a specialized multi-agent coordination
paradigm to facilitate novel scientific idea discov-
ery. While prior work pursues automation through
complex orchestration, our work prioritizes sim-
plicity and modularity by distilling the research
process into four core stages, striking a balance
between automation, simplicity, and extensibility.

Human-in-the-loop for automatic research.
While fully automated research pipelines are
promising, they remain practically limited without
human involvement, underscoring the need for hu-
man oversight. Recognizing this, recent work has
incorporated human-in-the-loop functionality that
allows researchers to contribute to different stages
of automated research. For the idea stage, Garika-

parthi et al. (2025) and Radensky et al. (2024) sup-
port interactive hypothesis refinement and facet
recombination with researcher feedback. In ad-
dition, CodeScientist (Jansen et al., 2025) intro-
duces an end-to-end system for semi-automated
scientific discovery where humans can collaborate
with LLMs to design, execute, and interpret code-
based scientific experiments. Furthermore, Ifargan
et al. (2025) and DeepReview (Zhu et al., 2025b)
incorporate human experts’ feedback to review and
refine LLM-generated scientific drafts, ensuring
alignment with expert judgment. Our work follows
this trend by treating human feedback as the central
component, particularly through our table-based
user interface design.

3 TINYSCIENTIST Framework

In this section, we first provide a brief overview of
TINYSCIENTIST. We then describe each core mod-
ule in the agentic workflow backbone. Finally, we
introduce the features built on top of this workflow
that make TINYSCIENTIST interactive, extensible,
and controllable.

3.1 Framework Overview

The ultimate goal behind TINYSCIENTIST is to
minimize the complexity of research agent work-
flows and make them accessible to everyone. To
achieve this, we first clarify the input/output de-
sign of our framework. We then describe the hier-
archical and modularized component architecture
included in our framework.

Framework I/O. To support general use, TINYSCI-
ENTIST accommodates multiple input and output
formats. We identify three common types of re-

560

TinyScientist

Thinker Coder Writer Reviewer

Input

Formatter
CheckerMCPClient

workflow component

feature component

Output

Formatter

Thinker Coder Writer Reviewer

Input

Formatter

Output

Formatter

ACL style

ICLR style

intent

paper

Checker

cost: $ 2.34

safety: ✓

MCPClient

plotter

searcher

papercodebase

exp result

idea

idea

exp plan

Figure 2: Overview of TINYSCIENTIST framework. On the left side, the diagram illustrates the class hierarchy
of TINYSCIENTIST. At the top-left side, TinyScientist serves as the base class. It manages four workflow
components, each responsible for a core stage of the research process. In turn, each workflow component is
supported by four feature components that enhance its functionality beyond its core function. On the right side, the
overall workflow and the details for each feature component are described separately.

search data: AI conference-style PDFs (e.g., ACL4

and ICLR5), structured JSON data, and plain text
strings. The I/O design of TINYSCIENTIST accepts
any of these formats as input and can generate out-
put in any of them. For example, a typical use case
is taking a plain-text intent as input and producing
a fully formatted conference paper PDF as output.
Framework architecture. As shown in Figure 2,
our framework is organized into a clear, hierarchi-
cal architecture. At the top, the Engine class or-
chestrates four core workflow components (thinker,
coder, writer, and reviewer), and each represents a
distinct stage in the research lifecycle. These com-
ponents are modularized for interactivity, allowing
users to inspect and guide the agent at each step.
Each workflow component is further supported by
a set of reusable feature components, including In-
putFormatter, OutputFormatter, MCPClient, and
Checker. These components are designed with spe-
cific goals in mind: extensibility through MCP-
Client for flexible tool integration, and controlla-
bility through the Checker for enforcing safety and
budget constraints. Together, the separation be-
tween workflow and feature components ensures a
clean framework architecture.

3.2 Workflow Components
In this section, we first describe the overall agen-
tic structure and the specific functionality of each
workflow component.
Basic: Iterative agent. Each agent follows an iter-
ative, self-refinement paradigm (Renze and Guven,

4We refer to using the ACL conference template as https:
//github.com/acl-org/acl-style-files

5We refer to using the ICLR conference template as https:
//github.com/ICLR/Master-Template

2024; Madaan et al., 2023), where it repeatedly
performs and improves upon a task until reaching
a predefined iteration cap. This shared iterative
structure applies to all stages in the workflow.
Stage1: Think. The Thinker module is responsi-
ble for research ideation based on the user’s input
intent. It samples n initial ideas via LLM-based
prompting, where each idea is refined through k
rounds of iterative improvement. Each idea con-
tains: (1) a descriptive paragraph; (2) an experimen-
tal plan; (3) a comparison table with related works.
Additionally, the Thinker provides self-evaluation
scores for each idea along three dimensions: im-
pact, feasibility, and novelty. Formally, we express
this process as the following transformation:

Thinker(intent) → idea

Stage2: Code. Given an idea and its experimental
plan, the Coder module leverages an external cod-
ing agent framework (e.g., Aider6) to iteratively
generate executable codebase and run experiments.
If the execution fails or deviates from the plan, the
agent pauses and awaits human input. Conversely,
upon successful execution, it returns the experimen-
tal results and associated code artifacts to the output
directory. Abstractly, this takes the following form:

Coder(idea) → codebase

Stage3: Write. The Writer module treats scientific
paper writing as a structured three-step process: (1)
initial generation, (2) paper refinement, and (3) ci-
tation insertion. For each paper section (e.g., Intro-
duction), the writer receives structured inputs, such

6We refer to https://github.com/Aider-AI/aider

561

https://github.com/acl-org/acl-style-files
https://github.com/acl-org/acl-style-files
https://github.com/ICLR/Master-Template
https://github.com/ICLR/Master-Template
https://github.com/Aider-AI/aider

as an idea and a codebase, then generates a draft
using an LLM. The draft is then refined based on
an error checklist to fix LATEX format inconsisten-
cies. Finally, citation embedding is performed by
retrieving relevant references {r1, r2, . . . , rn} via
the Semantic Scholar API (Kinney et al., 2023)7,
and inserting them into the completed draft to yield
the final version. As above, we can define this as:

Writer(idea, codebase) → paper

Stage4: Review. The Reviewer module evaluates
the completed paper and simulates peer reviews,
each including a summary, strengths, and weak-
nesses in standard format. Every review is refined
through self-reflection, and a meta-review is syn-
thesized along with a final score:

Reviewer(paper) → review

3.3 Feature Components
Beyond the four workflow modules discussed in
Section §3.2, TINYSCIENTIST introduces three key
feature components—Formatter, MCPClient, and
Checker—to support its core principles: interactiv-
ity, extensibility, and controllability, respectively.
Formatter: Enhancing interactivity via tabular-
based communication. In automatic research,
agents often generate large amounts of interme-
diate information, making it difficult for human
researchers to track progress and monitor individ-
ual steps. To address this, TINYSCIENTIST uses
the Formatter to compile key outputs into struc-
tured tables between different workflow compo-
nents. These tables provide a clear summary and
comparison of the agent’s progress, enabling re-
searchers to easily review, comment on, and di-
rectly edit specific elements, thereby facilitating
precise and interactive guidance throughout the
workflow. Figure 4 shows a concrete example of
the table generated by LLMs for research ideation.
MCPClient: Enhancing extensibility via tool in-
tegration. Modern research workflows require sup-
port beyond LLM prompting. MCPClient serves as
a bridge between workflow components and a wide
range of research tools—such as code searchers,
plot drawers, and paper retrievers—enabling seam-
less integration and future extensibility. Ap-
pendix §D provides an example of how MCP is
used to enhance paper writing by incorporating
schematic diagram generation.

7We refer to https://api.semanticscholar.org/

Checker: Enhancing controllability via budget
and safety constraints. To ensure controllable us-
age, the Checker module enforces constraints on
cost and safety. Users can set limits (e.g., model
size, max iterations), and the system adjusts pa-
rameters like the number of self-reflections accord-
ingly. Stage-specific safety filters (Thinker, Coder,
Reviewer) proactively block harmful outputs. Ta-
ble 21 shows an example for the safety checker.

4 TINYSCIENTIST Python Package

To demonstrate the practicality of TINYSCIENTIST,
we develop a Python package based on the pro-
posed agentic framework, enabling easy and mod-
ular use. As illustrated in Algorithm 1, with just
seven lines of code, the package can generate a
fully compiled PDF of a complete research paper
in the standard AI conference format - along with
the research idea, the corresponding experimental
code, and details of the peer review process.

Algorithm 1 TinyScientist usage example
1: # model: string name for LLM
2: # intent: string of user intent description
3:
4: from tiny_scientist import TinyScientist
5: # Instantiate TinyScientist
6: scientist = TinyScientist(model)
7: # Idea Generation
8: idea = scientist.think(intent)
9: # Code Experiment

10: status, exp_dir = scientist.code(idea)
11: if status:
12: # Paper Writing
13: pdf_path = scientist.write(idea, exp_dir)
14: # Paper Review
15: review = scientist.review(pdf_path)

5 TINYSCIENTIST User Interface

To further enhance the usability of TINYSCIEN-
TIST, we develop a user interface that leverages
the TINYSCIENTIST Python package to build its
backend. The interactive and modular nature of
the TINYSCIENTIST design lends itself to an in-
tuitive UI design. In the UI, each workflow stage
is presented on a dedicated page, arranged sequen-
tially. Details about the UI design are available at
Appendix §A.
Iterative interaction within one stage. This fea-
ture arises from the iterative agent design intro-
duced in Section §3.2. Since each core workflow
component supports iterative refinement, TINYSCI-
ENTIST allows fine-grained user inputs to be in-
jected during the agent’s reflection process. As

562

https://api.semanticscholar.org/

Generated research idea

Iteratively refine the idea

Figure 3: Example of iterative interaction within the
thinking stage. The upper box shows a research idea
(including contents, scores, tables, and experimental
plans) generated by the Thinker. The lower box allows
users to provide custom instructions to refine.

Human researcher can

edit on one cell

Research idea proposed by TinyScientist

Figure 4: Example for tabular-based interaction be-
tween stages. This shows one novelty comparison result
of idea thinking. It organized the generated idea as one
line within one table.

shown in Figure 3, human researchers can continu-
ously add or adjust intents, prompting the system
to refine and regenerate ideas accordingly.

Tabular-based interaction across stages. This
functionality is built upon the tabular-based com-
munication mechanism discussed in Section §3.3.
In TINYSCIENTIST, generated ideas and experi-
mental plans are organized into structured tables,
making them easy to interpret and edit. Figure 4
presents an example of a table generated by TINY-
SCIENTIST for novelty comparison. The tabular

format highlights key differences between gen-
erated ideas and prior work, allowing human re-
searchers to clearly understand, compare, and mod-
ify content as needed.

6 Evaluation Results

In addition to qualitatively analyzing the Python
package and user interface of TINYSCIENTIST, we
conduct quantitative evaluations to verify that our
agentic framework—designed for enhanced interac-
tivity, extensibility, and controllability—maintains
the quality of generated papers.

6.1 Evaluation Settings

Model settings. We use gpt-4o-mini as the back-
bone model for both TINYSCIENTIST and Agent
Laboratory to ensure a fair comparison between
the two agentic frameworks.

Data settings. We evaluate two categories of tasks.
(1) In-distribution tasks: We randomly sample
20 machine learning-related ideas from Si et al.
(2024), using their titles as user inputs. (2) Out-
of-distribution tasks: To test the safety and robust-
ness of TINYSCIENTIST, we randomly sample 20
biology-related potentially unsafe tasks (e.g., DNA
synthesis for synthetic genomes) from SciSafety-
Bench (Zhu et al., 2025a) and use them as input
intents for both frameworks.

Evaluation settings. We conduct both automated
and human evaluations. For the automated evalu-
ation, we use a multi-agent LLM-based pipeline
in which three LLMs provide independent reviews,
and a meta-review aggregates them into a final judg-
ment. For the human evaluation, we follow the
rubrics in Appendix §C, with annotators who have
relevant research backgrounds assessing the quality
of the generated papers from both frameworks.

6.2 Evaluation Results

TINYSCIENTIST achieves comparable genera-
tion quality to Agent Laboratory. As shown in
Figure 5, in our in-distribution tasks, human evalua-
tion rates TINYSCIENTIST about 0.5 points higher
on average than Agent Laboratory, while LLM-
based evaluation gives Agent Laboratory a slight
advantage. Human annotators observes that papers
produced by Agent Laboratory tended to include
fewer novel and more similar ideas compared to
those from TINYSCIENTIST. In addition, papers
generated by TINYSCIENTIST often contained ta-
bles and figures that improved readability and com-

563

AgentLab
TinyScientist

w/o Tool w/ Tool
0

1

2

3

4

5

6
Ev

al
ua

tio
n

Sc
or

e

3.0

3.7 3.5
3.2

2.9
3.5

3.2
3.5

Quality Evaluation
Evaluator

Human
LLM

Evaluator
Human
LLM

Figure 5: Quality evaluation results. We report both
human and LLM-based quality scores (1–5) for gener-
ated paper outputs. The left side compares paper quality
between Agent Laboratory and TINYSCIENTIST. The
right side conducts an ablation study within TINYSCI-
ENTIST, evaluating the effect of tool usage.

prehension for human researchers. Overall, we
find that TINYSCIENTIST achieves a quality com-
parable to Agent Laboratory, while offering greater
user-friendliness and lower cost.
Tool use of TINYSCIENTIST provides a slight
improvement in the paper quality. We further
conduct a focused evaluation on the effect of tool
usage within TINYSCIENTIST for in-distribution
tasks. As shown on the right side of Figure 5, hu-
man ratings indicate a modest improvement in qual-
ity when tools are employed. This improvement is
likely due to the use of information-retrieval tools
(e.g., searchers), which enrich the generation with
more relevant and diverse content.
TINYSCIENTIST blocks unsafe user intents ef-
fectively. To evaluate the controllability of TINY-
SCIENTIST, we conduct evaluations under out-of-
distribution tasks in biological domains. Among
the total 20 tasks, 18 tasks were blocked at the
thinker stage, while the remaining 2 were flagged
with warnings at the further workflow stages. These
results demonstrate that the checker enables TINY-
SCIENTIST to effectively prevent the development
of potentially harmful research.

7 Conclusion

In this work, we present TINYSCIENTIST, a
lightweight agentic framework that prioritizes sim-
plicity and usability to democratize the develop-
ment of research agents. To enhance accessibil-
ity, we developed an easy-to-use Python package

and a highly interactive web demonstration for this
framework. We believe that TINYSCIENTIST will
help lower the barrier for both researchers and de-
velopers to enter the field of automatic research,
encouraging more researchers to adopt and con-
tribute to research agent development.

Ethical Statements and Broader Impacts

The development of TINYSCIENTIST targets for
extensive and interactive Automated research work-
flows carries inherent ethical risks, including the
potential for misuse, unintended harm, or malicious
exploitation. To mitigate these concerns, TINY-
SCIENTIST incorporates multiple safeguards: (1)
configurable budget and safety controls, (2) auto-
mated watermarking on generated papers to clearly
indicate AI involvement, and (3) an interactive user
interface that supports real-time human oversight
and intervention. We emphasize that TINYSCIEN-
TIST is designed to augment—not replace—human
researchers. Its goal is to accelerate scientific dis-
covery through transparent, collaborative human-
AI workflows, not to enable fully autonomous re-
search without accountability. To further uphold
ethical standards, we openly release TINYSCIEN-
TIST as a Python library with user-friendly inter-
faces, making advanced research capabilities acces-
sible to a broader community while maintaining
transparency and control.

Regarding generated data, we acknowledge that
some AI-generated artifacts (e.g., papers or figures)
may closely resemble human-written content. To
prevent misuse, all generated outputs are clearly
watermarked and not intended for direct use in aca-
demic publishing without human verification. This
aligns with best practices for responsible research
and ensures that the system and its outputs are used
in ethically appropriate ways.

Limitations

There are two main limitations for our work:
Compilation stability. While our system performs
robustly in most scenarios, compilation failures
occasionally arise due to inconsistencies in LATEX
formatting, which causes issues such as references
missing or line misalignment. Improved context
sanitizer and format-control generation are needed
to ensure stability across all outputs.
Diagram quality and informativeness. Although
our system can generate diagrams for key sections
such as the Introduction and Method, the visual

564

quality and informativeness of these figures remain
limited. The generated SVGs often lack precise
alignment, which reduces their effectiveness in con-
veying the core information of the paper. Improv-
ing visual consistency and content-grounding in
diagram generation would significantly enhance
the entire paper’s clarity.

Acknowledgments

We sincerely appreciate the support from the Ama-
zon grant funding project #120359, “GRAG: En-
hance RAG Applications with Graph-structured
Knowledge”, and Meta gift funding project
“PERM: Toward Parameter Efficient Foundation
Models for Recommenders”.

References

Anthropic. 2024. Model context protocol. Accessed:
2024.

Jun Shern Chan, Neil Chowdhury, Oliver Jaffe, James
Aung, Dane Sherburn, Evan Mays, Giulio Starace,
Kevin Liu, Leon Maksin, Tejal Patwardhan, and 1
others. 2024. Mle-bench: Evaluating machine learn-
ing agents on machine learning engineering. arXiv
preprint arXiv:2410.07095.

Junyan Cheng, Peter Clark, and Kyle Richardson. 2025.
Language Modeling by Language Models. arXiv
preprint arXiv:2506.20249.

Aniketh Garikaparthi, Manasi Patwardhan, Lovekesh
Vig, and Arman Cohan. 2025. Iris: Interactive re-
search ideation system for accelerating scientific dis-
covery. arXiv preprint arXiv:2504.16728.

Juraj Gottweis, Wei-Hung Weng, Alexander Daryin,
Tao Tu, Anil Palepu, Petar Sirkovic, Artiom
Myaskovsky, Felix Weissenberger, Keran Rong, Ryu-
taro Tanno, and 1 others. 2025. Towards an ai co-
scientist. arXiv preprint arXiv:2502.18864.

Mourad Gridach, Jay Nanavati, Khaldoun Zine El
Abidine, Lenon Mendes, and Christina Mack. 2025.
Agentic ai for scientific discovery: A survey of
progress, challenges, and future directions. arXiv
preprint arXiv:2503.08979.

Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec.
2023. Mlagentbench: Evaluating language agents on
machine learning experimentation. arXiv preprint
arXiv:2310.03302.

Tal Ifargan, Lukas Hafner, Maor Kern, Ori Alcalay,
and Roy Kishony. 2025. Autonomous llm-driven
research—from data to human-verifiable research
papers. NEJM AI, 2(1):AIoa2400555.

Peter Jansen, Oyvind Tafjord, Marissa Radensky, Pao
Siangliulue, Tom Hope, Bhavana Dalvi Mishra, Bod-
hisattwa Prasad Majumder, Daniel S Weld, and Pe-
ter Clark. 2025. Codescientist: End-to-end semi-
automated scientific discovery with code-based ex-
perimentation. arXiv preprint arXiv:2503.22708.

Yiqiao Jin, Qinlin Zhao, Yiyang Wang, Hao Chen, Kai-
jie Zhu, Yijia Xiao, and Jindong Wang. 2024. Agen-
treview: Exploring peer review dynamics with llm
agents. arXiv preprint arXiv:2406.12708.

Rodney Kinney, Chloe Anastasiades, Russell Authur,
Iz Beltagy, Jonathan Bragg, Alexandra Buraczyn-
ski, Isabel Cachola, Stefan Candra, Yoganand Chan-
drasekhar, Arman Cohan, and 1 others. 2023. The
semantic scholar open data platform. arXiv preprint
arXiv:2301.10140.

Ruochen Li, Liqiang Jing, Chi Han, Jiawei Zhou,
and Xinya Du. 2024a. Learning to generate re-
search idea with dynamic control. arXiv preprint
arXiv:2412.14626.

Ruochen Li, Teerth Patel, Qingyun Wang, and Xinya Du.
2024b. Mlr-copilot: Autonomous machine learning
research based on large language models agents.

Bang Liu, Xinfeng Li, Jiayi Zhang, Jinlin Wang,
Tanjin He, Sirui Hong, Hongzhang Liu, Shaokun
Zhang, Kaitao Song, Kunlun Zhu, and 1 others.
2025a. Advances and challenges in foundation
agents: From brain-inspired intelligence to evolution-
ary, collaborative, and safe systems. arXiv preprint
arXiv:2504.01990.

Weiwen Liu, Jiarui Qin, Xu Huang, Xingshan Zeng,
Yunjia Xi, Jianghao Lin, Chuhan Wu, Yasheng Wang,
Lifeng Shang, Ruiming Tang, and 1 others. 2025b.
The real barrier to llm agent usability is agentic roi.
arXiv preprint arXiv:2505.17767.

Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foer-
ster, Jeff Clune, and David Ha. 2024. The ai scientist:
Towards fully automated open-ended scientific dis-
covery. arXiv preprint arXiv:2408.06292.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
and 1 others. 2023. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information
Processing Systems, 36:46534–46594.

Marissa Radensky, Simra Shahid, Raymond Fok, Pao
Siangliulue, Tom Hope, and Daniel S Weld. 2024.
Scideator: Human-llm scientific idea generation
grounded in research-paper facet recombination.
arXiv preprint arXiv:2409.14634.

Matthew Renze and Erhan Guven. 2024. Self-reflection
in llm agents: Effects on problem-solving perfor-
mance. arXiv preprint arXiv:2405.06682.

565

Samuel Schmidgall, Yusheng Su, Ze Wang, Ximeng
Sun, Jialian Wu, Xiaodong Yu, Jiang Liu, Zicheng
Liu, and Emad Barsoum. 2025. Agent labora-
tory: Using llm agents as research assistants. arXiv
preprint arXiv:2501.04227.

Chenglei Si, Diyi Yang, and Tatsunori Hashimoto. 2024.
Can llms generate novel research ideas? a large-
scale human study with 100+ nlp researchers. arXiv
preprint arXiv:2409.04109.

Michael D Skarlinski, Sam Cox, Jon M Laurent,
James D Braza, Michaela Hinks, Michael J Hammer-
ling, Manvitha Ponnapati, Samuel G Rodriques, and
Andrew D White. 2024. Language agents achieve
superhuman synthesis of scientific knowledge. arXiv
preprint arXiv:2409.13740.

Jiabin Tang, Lianghao Xia, Zhonghang Li, and Chao
Huang. 2025. Ai-researcher: Autonomous scientific
innovation. arXiv preprint arXiv:2505.18705.

Xiangru Tang, Qiao Jin, Kunlun Zhu, Tongxin Yuan,
Yichi Zhang, Wangchunshu Zhou, Meng Qu, Yilun
Zhao, Jian Tang, Zhuosheng Zhang, Arman Cohan,
Zhiyong Lu, and Mark Gerstein. 2024. Prioritizing
safeguarding over autonomy: Risks of llm agents for
science.

Yidong Wang, Qi Guo, Wenjin Yao, Hongbo Zhang,
Xin Zhang, Zhen Wu, Meishan Zhang, Xinyu Dai,
Qingsong Wen, Wei Ye, and 1 others. 2024. Autosur-
vey: Large language models can automatically write
surveys. Advances in neural information processing
systems, 37:115119–115145.

Yutaro Yamada, Robert Tjarko Lange, Cong Lu, Shen-
gran Hu, Chris Lu, Jakob Foerster, Jeff Clune, and
David Ha. 2025. The ai scientist-v2: Workshop-level
automated scientific discovery via agentic tree search.
arXiv preprint arXiv:2504.08066.

Haofei Yu, Zhaochen Hong, Zirui Cheng, Kunlun
Zhu, Keyang Xuan, Jinwei Yao, Tao Feng, and
Jiaxuan You. 2024. Researchtown: Simulator
of human research community. arXiv preprint
arXiv:2412.17767.

Wentao Zhang, Ce Cui, Yilei Zhao, Yang Liu, and
Bo An. 2025. Agentorchestra: A hierarchical multi-
agent framework for general-purpose task solving.
arXiv preprint arXiv:2506.12508.

Kunlun Zhu, Jiaxun Zhang, Ziheng Qi, Nuoxing Shang,
Zijia Liu, Peixuan Han, Yue Su, Haofei Yu, and Ji-
axuan You. 2025a. Safescientist: Toward risk-aware
scientific discoveries by llm agents.

Minjun Zhu, Yixuan Weng, Linyi Yang, and Yue Zhang.
2025b. Deepreview: Improving llm-based paper re-
view with human-like deep thinking process. arXiv
preprint arXiv:2503.08569.

Henry Peng Zou, Wei-Chieh Huang, Yaozu Wu, Yankai
Chen, Chunyu Miao, Hoang Nguyen, Yue Zhou,
Weizhi Zhang, Liancheng Fang, Langzhou He,

and 1 others. 2025. A survey on large language
model based human-agent systems. arXiv preprint
arXiv:2505.00753.

566

A User Interface Details

In this section, we provide a step-by-step guide to the TINYSCIENTIST user interface, which consists of
five main pages. The first is the configuration input page (Figure 6), where users provide API keys and
select backbone models. After configuration, users proceed to the intent input page (Figure 7) to describe
their research intent. Next, the idea viewing page (Figure 8) presents tree-structured idea generation
results, together with tabular descriptions for novelty comparison and experiment plans. On this page,
it also allows users to iteratively refine ideas by giving text-based feedback. Once an idea is confirmed,
the interface moves to the code viewing page (Figure 9), where users can download the generated file
structure. Finally, the paper viewing page (Figure 10) provides a PDF preview of the generated paper
along with reviews generated from the review component of TINYSCIENTIST.

B Prompting Details

In this section, we provide the details about the prompt used for each workflow stage in TINYSCIENTIST.

B.1 Thinker prompt
We present the complete set of prompts used in the TINYSCIENTIST thinker module. The system prompt
establishes the agent role as a research scientist and defines core guidelines for idea generation (Table 2).
The idea generation and refinement prompts handle the creation and modification of research ideas through
structured approaches to problem identification and solution development (Tables 3 and 4). The evaluation
prompts provide a comprehensive assessment mechanism for evaluating research ideas (Table 5 and 6).

B.2 Coder prompt
We present the complete set of prompts used in the TINYSCIENTIST coder module. The system prompt
establishes the agent role as a research scientist and defines core guidelines for experiment implementation
(Table 7). The code execution and error handling prompts handle the refinement and re-plan for the
experiment in different scenarios (Tables 8), and the experiment format prompt controls the output format
of essential experiment details (Tables 9).

B.3 Writer prompt
We present the complete set of prompts used in the TINYSCIENTIST writer module. The system prompt
establishes the agent role as a research scientist and defines core guidelines for each step of paper writing
(Table 10). Section instructions prompts provide details, tips, and instructions for section writing (Table 11,
Table 12). The citation management prompts are responsible for citation fetching and embedding (Table 13,
Table 14, Table 15). If there is error in rendering PDF, we utilize the refinement prompt to solve (Table 16).

B.4 Reviewer prompt
We present the complete set of prompts used in the TINYSCIENTIST reviewer module. The system prompt
establishes the agent role as a research scientist and defines core guidelines for paper review (Table 17).
Prompts Review Format & Refinement are responsible for providing detail review guidelines and format
control (Table 18, Table 19).

C Human Evaluation Details

We provide the detailed quality evaluation rubrics for human evaluation in Table 20.

D Case Study

We first present a case study of the checker as part of the feature component, with its output shown
in Table 21. For MCPClient, we provide a case study of the drawer, a commonly useful tool. The
corresponding input is shown in Table 22, and the generated output is illustrated in Figure 11.

567

Figure 6: Screenshot for configuration input page. Users are guided to select the LLM model, provide their API
key, and click Start Session to proceed to the next stage of idea generation. We would not save the user’s API key to
our server.

Figure 7: Screenshot for intent input page. Users enter their research intent and click Submit to generate three
candidate ideas. The icon next to Submit reveals the current system prompt, which can be modified to better align
with the research intent.

568

(a) Main idea view.

(b) Comparison table.

(c) Experiment plan table.

Figure 8: Screenshot for idea viewing page. (a) The main idea view, where users can explore ideas by clicking on
nodes. (b) Comparison table, accessed by clicking View Comparison Table. (c) The experiment table, accessed by
clicking View Experiment Table.

569

Figure 9: Screenshot for code viewing page. The code view is displayed when the Coder module is invoked. Users
may click Download All to export the generated experiment files as a zip archive, or Generate Paper to call the
Writer module to draft a research paper.

570

(a) Paper PDF preview

(b) Paper review

Figure 10: Screenshot for the paper viewing page. (a) The paper PDF preview, where users can preview the
generated paper PDF and click Download PDF to save it, or the user can also click Review Paper to invoke the
paper reviewing stage. (b) The paper review, where LLM-based reviewers are utilized to generate a paper review for
the generated paper PDF.

571

Table 2: Thinker system prompt.

Thinker System Prompt

IDEA_SYSTEM_PROMPT:
You are an ambitious AI PhD student who is looking
to publish a paper that will contribute significantly to the field.
You want to generate creative and impactful
research ideas that can be feasibly investigated with the code provided.
Be critical and realistic in your assessments.

EVALUATION_SYSTEM_PROMPT:
You are an expert research reviewer who evaluates scientific ideas with rigor and fairness.
Your role is to comparatively evaluate multiple
research ideas and rank them based on their
feasibility, novelty, impact, and alignment with the original research intent.
Be thoughtful, objective, and provide clear justifications for your rankings.

NOVELTY_SYSTEM_PROMPT: |
You are an ambitious AI PhD student who is
looking to publish a paper that will contribute significantly to the field.
You have an idea and you want to check if it is
novel or not. I.e., not overlapping significantly with existing literature or already well explored.
Be a harsh critic for novelty, ensure there is a
sufficient contribution in the idea for a new conference or workshop paper.
You are analyzing search results to determine if
your idea has already been explored in existing literature.
Decide a paper idea is novel if after sufficient
searching, you have not found a paper that significantly overlaps with your idea.
Decide a paper idea is not novel if you have
found a paper that significantly overlaps with your idea.

ETHICAL_SYSTEM_PROMPT: >
You are an expert AI research ethics advisor.
Your role is to review research ideas and ensure they align with scientific ethical standards.
You help researchers enhance their ideas to be
more ethical, beneficial, and responsible while maintaining their scientific value.
Focus on identifying potential risks and
suggesting constructive improvements that make research more ethically sound.

572

Table 3: Thinker idea generation prompt.

Thinker Idea Generation Prompt

IDEA_GENERATION_PROMPT:
Generate a creative and impactful research idea based on the following intent:
```
{intent}
```
```
{pdf_section}
```
Additionally, based on recent literature, here
are some related works that might inform your next idea:
```
{related_works_string}
```
Based on the above, come up with the next
impactful and creative research idea that addresses the following questions:
1. What is the problem?
- Provide a comprehensive description of the
research problem, including background, current challenges, and why the issue persists.
- Include citations where relevant. All
citations should be in parentheses (e.g., (Workowski & Bolan, 2015)).
- Make sure this problem statement directly addresses the original intent.

2. Why is it interesting and important?
- Explain in detail why the problem is
interesting and important. Support your claims with references from recent literature.
- Connect the importance back to the original intent.

3. Why is it hard?
- Analyze the inherent challenges of the
problem and explain why naive approaches have failed, citing previous studies.
- Discuss why this problem remains difficult in the context of the original intent.

4. Why hasn't it been solved before?
- Clearly describe how your idea differs from
existing solutions. Highlight innovative aspects and include comparative citations.
- Explain why existing approaches from the related works don't fully address the intent.

5. What are the key components of my approach and results?
- Outline your proposed methodology.
- Explain how your approach specifically addresses the original intent.

Respond in the following format:

THOUGHT:
<THOUGHT>

NEW IDEA JSON:
```json
<JSON>
```

Be cautious and realistic on your ratings.
This JSON will be automatically parsed, so ensure the format is precise.
You will have {num_reflections} rounds to iterate on the idea, but do not need to use them all.

Completed ideas have an additional "Score" field
which indicates the assessment by an expert ML reviewer.
This is on a standard 1-10 ML conference scale.
Scores of 0 indicate the idea failed either during experimentation, writeup or reviewing.

573

Table 4: Thinker idea modification prompt.

Thinker Idea Modification Prompt

IDEA_MODIFICATION_PROMPT:
Given a research idea and a set of requested modifications, generate a modified version of the idea.

ORIGINAL RESEARCH IDEA:
```
{idea}
```

REQUESTED MODIFICATIONS:
```
{modifications}
```

RESEARCH INTENT:
```
{intent}
```
Carefully consider how to preserve the core
strengths of the original idea while enhancing it
according to the requested modifications. Ensure
the modified idea maintains strong alignment with the original research intent.

For each modification request, adjust the
corresponding aspect (Novelty, Feasibility, or
Impact) by emphasizing or de-emphasizing relevant characteristics.

Respond in the following format:

THOUGHT:
<THOUGHT>

MODIFIED IDEA JSON:
```json
<JSON>
```

In <THOUGHT>, explain your reasoning for the modifications and how they enhance the idea.
In <JSON>, provide the modified idea with the
same structure as the original, including all original fields.

574

Table 5: Thinker idea evaluation prompt.

Thinker Idea evaluation prompt

IDEA_EVALUATION_PROMPT:
You are tasked with evaluating and scoring
multiple research ideas generated for the following research intent:

RESEARCH INTENT:
```
{intent}
```
RESEARCH IDEAS TO EVALUATE:
```
{ideas}
```
Please evaluate these ideas comparatively across three key dimensions:

NOVELTY DIMENSION
{novelty_criteria}
FEASIBILITY DIMENSION
{feasibility_criteria}
IMPACT DIMENSION
{impact_criteria}

CRITICAL REQUIREMENTS:
1. For EACH idea, you MUST provide three separate rating fields that MUST follow this format:

- "FeasibilityScore": A number from 0 to 100, where 100 is most feasible
- "NoveltyScore": A number from 0 to 100, where 100 is most novel
- "ImpactScore": A number from 0 to 100, where 100 is highest impact

2. For EACH idea, also provide a brief reasoning for each score:
- "NoveltyReason": Brief explanation (1-2
sentences) of why this idea received its novelty score
- "FeasibilityReason": Brief explanation (1-2
sentences) of why this idea received its feasibility score
- "ImpactReason": Brief explanation (1-2
sentences) of why this idea received its impact score

These three scores must be completely separate
and independent from each other. For example, the
idea with the highest impact score might have a low feasibility score.

Respond in the following format:

COMPARATIVE ANALYSIS:
<ANALYSIS>
EVALUATION JSON:
```json
<JSON>
```

In <ANALYSIS>, provide a thoughtful comparative analysis discussing the trade-offs between ideas.
In <JSON>, provide the evaluation results in JSON format with the following structure:
"scored_ideas": A list of scored idea objects, each containing:
- "Title": The EXACT original title of the idea
as provided in the input JSON - DO NOT MODIFY OR CHANGE THE TITLE IN ANY WAY
- "FeasibilityScore": A number from 0 to 100, scoring feasibility
- "NoveltyScore": A number from 0 to 100, scoring novelty
- "ImpactScore": A number from 0 to 100, scoring impact
- "NoveltyReason": Explanation of the novelty score
- "FeasibilityReason": Explanation of the feasibility score
- "ImpactReason": Explanation of the impact score

CRITICAL: You MUST preserve the exact original
titles from the input. Do not change, modify, or improve the titles in any way.
Ensure your evaluation is fair, comprehensive,
and based solely on the scientific and practical merits of each idea.

575

Table 6: Thinker idea novelty evaluation prompt.

Thinker Idea Novelty evaluation prompt

NOVELTY_PROMPT:
Round {current_round}/{num_rounds}.
You are assessing the novelty of the following research idea in the context of the original intent:

ORIGINAL INTENT:
```
{intent}
```

CURRENT IDEA:
```
{idea}
```

SEARCH RESULTS FROM PREVIOUS QUERY:
```
{last_query_results}
```

Respond in the following format:

THOUGHT:
<THOUGHT>

DECISION:
<DECISION>

In <THOUGHT>, carefully analyze the idea's novelty by:
1. First explicitly assess how well the idea aligns with the original intent
2. Compare the idea against the search results to identify similarities and differences
3. Determine if any existing work already implements the core approach for the same intent
4. Consider if the idea offers meaningful innovation beyond existing approaches
5. Assess whether minor variations from existing work constitute sufficient novelty

In <DECISION>, write either:
- "NOVELTY CHECK: CONTINUE" if you need more
information to make a decision. In this case, explain what specific information you need.
- "NOVELTY CHECK: NOVEL" if you've determined the idea is novel. Briefly explain why.
- "NOVELTY CHECK: NOT NOVEL" if you've determined
the idea is not novel. Briefly explain why and
cite the specific paper(s) that demonstrate lack of novelty.

576

Table 7: Coder system prompt.

Coder System Prompt

EXPERIMENT PROMPT:
You are writing a Python script named `experiment.py` that must be runnable.

Research Context
Title: {title}
Problem: {problem}
Novelty: {novelty}
Proposed Approach: {approach}

Experimental Setup
The following describes the experiment setup. You
must base your implementation strictly on this structure:

Models/Algorithms to use: {model}
Datasets involved: {dataset}
Evaluation metrics: {metric}

Execution Command (DO NOT MODIFY):
You have {max_runs} runs to complete this
experiment. For each run, the script will be executed using:
`python experiment.py --out_dir=run_i`
where `i` is the run number (`run_1`, `run_2`, etc.).

YOU MUST ENSURE experiment.py:
1. Parses the `--out_dir` argument.
2. Creates the output directory using `os.makedirs(out_dir, exist_ok=True)`.
3. Performs actual model training and evaluation —
DO NOT simulate results using random numbers or
hardcode experiment result, all result should get from execution.
4. Implements evaluation metircs with real logic.
5. **Saves results as a dictionary in a file named
`final_info.json` placed directly inside
`out_dir`** — do **not** save into nested folders like `out_dir/variant_name/final_info.json`.

Computational Constraints
- Ensure the code is computationally affordable to run on a single GPU or CPU machine.
- Avoid using large models like GPT, T5, BERT-large, or full ImageNet training.
- Prefer small-scale tasks, toy models, or low-
cost benchmarks (e.g., MNIST, UCI datasets, small MLPs or ResNet18).
- Do not use complex distributed training or multi-GPU setups.

Do not add extra command-line arguments.
If your current experiment.py has placeholder code
like `...`, replace them with runnable implementations.
If any external functions like `compute_loss`,
`evaluate_model`, or `log_results` are used, implement them too.

Baseline Results
You do not need to re-run the baseline.
If available, the results are provided below:
{baseline_results}

Please begin writing the `experiment.py` file now.

577

Table 8: Coder execution and error handling prompt.

Coder Execution and Error Handling Prompt

EXPERIMENT_SUCCESS_PROPMT:
Run {run_num} completed. Here are the results:
{results}

Decide if you need to re-plan your experiments given the result (you often will not need to).

Someone else will be using `notes.txt` to perform a writeup on this in the future.
Please include *all* relevant information for the
writeup on Run {run_num}, including an experiment
description and the run number. Be as verbose as necessary.

Then, implement the next thing on your list.
We will then run the command `python experiment.py --out_dir=run_{next_run}'.
YOUR PROPOSED CHANGE MUST USE THIS COMMAND FORMAT, DO NOT ADD ADDITIONAL COMMAND LINE ARGS.
If you are finished with experiments, respond with 'ALL_COMPLETED'.

EXPERIMENT_FAILURE_PROMPT:
There was an error running the experiment script:
{message}
Your goal is still to implement this experiment: {Title}.
The purpose is: {Experiment}.
You have {max_runs} runs total. We're currently on run {run_time}.
Please fix `experiment.py` so that it runs successfully with:
`python experiment.py --out_dir=run_{run_time}`.
Make sure to implement any missing parts like
model definition, loss function, data loading, and final_info.json saving.

578

Table 9: Coder experiment format prompt.

Coder Experiment Format Prompt

EXPERIMENT_FORMAT_PROMPT:
The experiment is organized into three sections:
Model Section:
{model}

Dataset Section:
{dataset}

Metric Section:
{metric}

Your job is to extract the essential names of
models, datasets, and evaluation metrics that are directly useful for coding and experimentation.

Output Format:
Return a JSON object with the following structure:
```json
{{
"model": ["Model1", "Model2", ...],
"dataset": ["Dataset1", "Dataset2", ...],
"metric": ["Metric1", "Metric2", ...]

}}

579



Table 10: Writer system prompt.

Writer System Prompt

PROMPT:
You are an ambitious AI PhD student who is looking to publish a paper
that will contribute significantly to the field. You have already
figured out the research idea and the experiments you want to run. Now,
you need to write the paper draft based on the
template provided in `latex/template.tex`.

Do not include any citations or \cite{} commands in the content.
Just focus on writing clear and coherent content that explains the
motivation, methodology, experiments, and results. When including
tables, always use proper LaTeX tabular format (not Markdown).
Avoid using Markdown-style tables (e.g., those starting with
`| Column |`) — they are not compatible with LaTeX rendering and
will break the document.

LATEX FORMATTING REQUIREMENTS:
- Use `\%` to indicate percentage values (e.g., 93\%)
- Do not escape comment `%` symbols (e.g., `% comment`)
- Wrap math expressions with `$...$`
- Escape special characters, `_` as `\_`, `&` as `\&`, `#` as `\#`

The purpose of this draft is to flesh out the content. Citations will
be added later during the refinement process. Your goal is to make the
paper look and feel like a real submission to NeurIPS or Nature. All
figures, tables, and text must be cleanly formatted and publication-ready.

580



Table 11: Writer section writing tips prompt.

Writer Section Writing Tips Prompt

SECTION TIPS:

Abstract:
- TL;DR of the paper
- What are we trying to do and why is it relevant?
- Why is this hard?
- How do we solve it (i.e. our contribution!)
- How do we verify that we solved it (e.g. Experiments and results)

Please make sure the abstract reads smoothly and is well-motivated.
This should be one continuous paragraph with no breaks between the lines.

Introduction:
- Longer version of the Abstract, i.e. of the entire paper
- What are we trying to do and why is it relevant?
- Why is this hard?
- How do we solve it (i.e. our contribution!)
- How do we verify that we solved it (e.g. Experiments and results)
- New trend: specifically list your contributions as bullet points
- Extra space? Future work!

Related_Work:
- Academic siblings of our work, i.e. alternative attempts in literature

at trying to solve the same problem.
- Goal is to "Compare and contrast" - how does their approach differ in

either assumptions or method?
- If their method is applicable to our Problem Setting I expect a

comparison in the experimental section. If not, there needs to be a
clear statement why a given method is not applicable.

- Note: Just describing what another paper is doing is not enough.
We need to compare and contrast.

Method:
- What we do. Why we do it. All described using the general Formalism

introduced in the Problem Setting and building on top of the concepts /
foundations introduced in Background.

- Note: Don't directly put any code in this section, but you can refer
to the code in the Method section.

Experimental_Setup:
- How do we test that our stuff works? Introduces a specific instantiation

of the Problem Setting and specific implementation details of our Method
for this Problem Setting.

- Do not imagine unknown hardware details.
- Includes a description of the dataset, evaluation metrics, important

hyperparameters, and implementation details.

Results:
- Shows the results of running Method on our problem described in

Experimental Setup.
- Includes statements on hyperparameters and other potential issues of fairness.
- Only includes results that have actually been run and saved in the logs.

Do not hallucinate results that don't exist.
- If results exist: compares to baselines and includes statistics and

confidence intervals.
- If results exist: includes ablation studies to show that specific parts

of the method are relevant.
- Discusses limitations of the method.
- Make sure to include all the results from the experiments, and include

all relevant figures.

581



Table 12: Writer abstract writing prompt.

Writer Abstract Writing Prompt

Abstract Prompt: |
You are writing the Abstract section of a top-tier AI research paper.
Some tips are provided below:
{abstract_tips}

Here is the research idea that the paper is based on:

- Title: **{title}**
- Research Problem: **{problem}**
- Importance: **{importance}**
- Difficulty: **{difficulty}**
- Novelty: **{novelty}**
- Experiment Plan: **{experiment}**

In this pass, do not reference anything in later sections of the paper.
The output must be pure LaTeX and enclosed with \begin{{abstract}} ... \end{{abstract}}.
Be sure to first name the file and use *SEARCH/REPLACE* blocks to perform these edits.

Table 13: Writer citation adding system prompt.

Writer Citation Adding System Prompt

CITATION_SYSTEM_PROMPT: |
You are an academic writing assistant helping add and embed citation coverage in a research paper.

Your role:
- When asked to suggest citations, return only
real, published academic paper titles that are highly relevant to the given content.
- When asked to embed citations, insert
`\cite{{Paper Title}}` placeholders exactly where needed—only using the provided paper titles.

Do not invent or fabricate any citations.
Do not output BibTeX, author names, or publication details.
Be thorough - missing citations is not acceptable
Always follow the expected output format (JSON
array or updated LaTeX content), with no extra commentary or explanation.

582



Table 14: Writer citation collection prompt.

Writer Citation Collection Prompt

ADD_CITATION_PROMPT: |
Given current version of the paper

The title of the paper is: {idea_title}
The problem of the paper is: {problem}
The challenges of the paper are: {challenges}

You are reviewing the following section: {section}

Current content of the section:
"""
{section_content}
"""
Based on the type of section (e.g., Introduction,
Method, Experimental Setup, Discussion) and the
depth of the content provided, determine how many
references would be reasonably appropriate to
support the key statements and claims.

Your task:
- Return a list of **real, published academic papers** that should be cited in this section.
- All references must be directly relevant to the corresponding section's current content.
- Prefer widely recognized or foundational papers if possible.
- Do **not** fabricate or suggest speculative titles.

You **must return at least 6** real paper titles.
All titles must be real and verifiable.
Please return only a JSON array (strictly valid) of
new paper titles. These must be actual paper titles
that are published and relevant to the topic. Example:

```json
["Title 1", "Title 2", "Title 3"]
```

Table 15: Writer citation insertion prompt.

Writer Citation Insertion Prompt

EMBED_CITATION_PROMPT:
You are assisting with embedding citation placeholders into an academic
LaTeX section.

You are reviewing the following section: {section}

Here is the current content of the section:
"""
{section_content}
"""

You must cite **all** of the following papers using LaTeX \cite{...} format:
{references}

INSTRUCTIONS:
- Integrate citations into the most relevant parts of the section.
- Use `\cite{...}` format strictly (no markdown, no commentary).
- Do not fabricate new citations.
- Slightly rewrite or expand sentences as needed to fit in the citations

smoothly, without changing the original meaning.
- Preserve and return the entire section content with all citations embedded.
- The output must be valid, standalone LaTeX with consistent formatting.

FINAL OUTPUT: Return only valid LaTeX (no markdown, no explanations).

583



Table 16: Writer refinement prompt.

Writer Refinement Prompt

ERROR_LIST:
- Unenclosed math symbols
- Only reference figures that exist in our directory
- LaTeX syntax errors
- Numerical results that do not come from explicit experiments and logs
- Repeatedly defined figure labels
- References to papers that are not in the .bib file, DO NOT ADD ANY NEW CITATIONS!
- Unnecessary verbosity or repetition, unclear text
- Results or insights in the `notes.txt` that have not yet need included
- Any relevant figures that have not yet been included in the text
- Closing any \begin{figure} with a \end{figure} and \begin{table} with a \end{table}
- Duplicate headers, e.g. duplicated \section{Introduction} or \end{document}
- Unescaped symbols, e.g. shakespeare_char should be shakespeare\_char in text
- Incorrect closing of environments, e.g. </end{figure}> instead of \end{figure}

REFINEMENT_PROMPT:
Great job! Now criticize and refine only the {section} that you just wrote.
Make this complete in this pass, do not leave any placeholders.

Pay particular attention to fixing any errors such as:
{error_list}

Here is the corresponding section tips:
{section_tips}

Here is the section to refine:
"""
{section_content}
"""

Table 17: Reviewer system prompt.

Reviewer System Prompt

REVIEWER_SYSTEM_PROMPT_BASE:
You are an AI researcher who is reviewing a paper
that was submitted to a prestigious ML venue. Be critical and cautious in your decision.

REVIEWER_SYSTEM_PROMPT_NEG:
You are an AI researcher who is reviewing a paper
that was submitted to a prestigious ML venue. Be
critical and cautious in your decision. If a
paper is bad or you are unsure, give it bad scores and reject it.

REVIEWER_SYSTEM_PROMPT_POS:
You are an AI researcher who is reviewing a paper
that was submitted to a prestigious ML venue. Be
critical and cautious in your decision. If a
paper is good or you are unsure, give it good scores and accept it.

METAREVIEW_SYSTEM_PROMPT:
You are an Area Chair at a machine learning conference.
You are in charge of meta-reviewing a paper that was reviewed by {reviewer_count} reviewers.
Your job is to aggregate the reviews into a single meta-review in the same format.
Be critical and cautious in your decision, find consensus, and respect the opinion of all the
reviewers.

584



Table 18: Reviewer format control prompt.

Reviewer Format Control Prompt

TEMPLATE_INSTRUCTIONS: |
Respond in the following format:

THOUGHT:
<THOUGHT>

REVIEW JSON:
```json
<JSON>
```

In <THOUGHT>, first briefly discuss your intuitions and reasoning for the evaluation.
Detail your high-level arguments, necessary choices and desired outcomes of the review.

Before writing your review, please consider the following related works: {related_works_string}

Do not make generic comments here, but be specific to your current paper.
Treat this as the note-taking phase of your review.

In <JSON>, provide the review in JSON format with the following fields in the order:
- "Summary": A summary of the paper content and its contributions.
- "Strengths": A list of strengths of the paper.
- "Weaknesses": A list of weaknesses of the paper.
- "Originality": A rating from 1 to 4 (low, medium, high, very high).
- "Quality": A rating from 1 to 4 (low, medium, high, very high).
- "Clarity": A rating from 1 to 4 (low, medium, high, very high).
- "Significance": A rating from 1 to 4 (low, medium, high, very high).
- "Questions": A set of clarifying questions to be answered by the paper authors.
- "Limitations": A set of limitations and potential negative societal impacts of the work.
- "Ethical Concerns": A boolean value indicating whether there are ethical concerns.
- "Soundness": A rating from 1 to 4 (poor, fair, good, excellent).
- "Presentation": A rating from 1 to 4 (poor, fair, good, excellent).
- "Contribution": A rating from 1 to 4 (poor, fair, good, excellent).
- "Overall": A rating from 1 to 10 (very strong reject to award quality).
- "Confidence": A rating from 1 to 5 (low, medium, high, very high, absolute).
- "Decision": A decision that has to be one of the following: Accept, Reject.

585



Table 19: Reviewer reflection prompt.

Reviewer Reflection Prompt

REVIEW_REFLECTION_PROMPT:
In your thoughts, first carefully consider the accuracy and soundness of the review you just created.
Include any other factors that you think are important in evaluating the paper.
Ensure the review is clear and concise, and the JSON is in the correct format.
Do not make things overly complicated.
In the next attempt, try and refine and improve your review.
Stick to the spirit of the original review unless there are glaring issues.

Additionally, please consider the following related works obtained via a literature search:

```
{related_works_string}
```

Use these search results to assess the paper’s novelty, relevance, and significance.
Provide specific comments on how the paper aligns with or differs from these related works.

Respond in the same format as before:
THOUGHT:
<THOUGHT>

REVIEW JSON:
```json
<JSON>
```

If there is nothing to improve, simply repeat the
previous JSON EXACTLY after the thought and
include "I am done" at the end of the thoughts but before the JSON.
ONLY INCLUDE "I am done" IF YOU ARE MAKING NO MORE CHANGES.

586



Table 20: Quality evaluation rubrics for human annotators.

Quality Evaluation Rubrics for Human Annotators

QUALITY_EVALUATION_PROMPT:
Quality Rubric (1–5 scale) with Focus on Content Richness and References:

Score 1 — Very Poor: Critical information missing or wrong; methodology clearly infeasible or
incoherent.
Examples: Missing problem statement, no clear methodology, completely unrealistic approach,

no literature review, no references to recent work.

Score 2 — Poor: Key sections under-specified and novelty minimal; noticeable feasibility
or consistency issues.
Examples: Vague problem description, weak novelty claim, unclear methodology, limited scope,

few or outdated references, minimal technical depth.

Score 2.5 — Below Average: Basic structure present but lacks depth and recent references.
Examples: Standard approach with minimal innovation, basic methodology, some references but not
cutting-edge,

feasible but not compelling, limited technical sophistication.

Score 3 — Average: All required fields present and executable, but largely routine with limited
depth or insight.
Examples: Standard approach, basic methodology, some novelty but not compelling, feasible but not
innovative,

references to well-known but not recent work.

Score 3.5 — Above Average: Well-structured with some depth and recent references.
Examples: Clear problem and methodology, some novel insights, references to recent papers
(2020-2023),

good feasibility, moderate technical sophistication.

Score 4 — Good: Well-structured, mostly complete, shows some innovation; only minor gaps or risks
remain.
Examples: Clear problem and methodology, some novel insights, well-defined scope, good feasibility,

references to recent and relevant work, good technical depth.

Score 4.5 — Very Good: Strong structure with significant innovation and recent references.
Examples: Highly innovative approach, comprehensive methodology, strong novelty, clear impact
potential,

references to cutting-edge work (2022-2024), excellent technical depth.

Score 5 — Excellent: Original, rigorous, and comprehensive; strong experimental design and clear
path to publication.
Examples: Highly innovative approach, comprehensive methodology, strong novelty, clear
impact potential,

references to state-of-the-art work, exceptional technical sophistication.

Key Evaluation Criteria:
1. Content Richness: Depth of problem analysis, methodology detail, technical sophistication
2. Reference Quality: Use of recent, relevant, and cutting-edge references (2020-2024 preferred)
3. Innovation Level: Novelty compared to existing work
4. Technical Depth: Sophistication of approach and methodology
5. Feasibility: Practical implementation potential
6. Impact Potential: Significance and broader implications

587



Table 21: Case study on checker. The checker is able to provide risk analysis of the task.

SafeChecker Result

TASK_PROMPT:
Protecting Patient Data in Health Informatics Using Privacy-Preserving Technologies and
Secure Architecture

SafeChecker Result:
RISK_LEVEL: SAFE
REASON: The prompt focuses on protecting patient data within health informatics systems
using privacy-preserving technologies and secure architectural designs. It promotes ethical
and responsible research aligned with improving cybersecurity, patient confidentiality, and
healthcare system integrity. There are no references to malicious techniques, bypassing
security systems, or any form of exploit, and it poses no risk of dual-use or harmful
application. This is a constructive and valuable research direction, especially relevant
to public health and information security.
IS_ATTACKED: false
ATTACK_TYPE: None
REASON: The prompt "Protecting Patient Data in Health Informatics Using Privacy-Preserving
Technologies and Secure Architecture" is a benign, academic-style prompt that does not
contain any indicators of prompt attacks based on the listed categories.

588



Table 22: Drawer generation prompt.

Drawer Generation Prompt

DRAWIO_CODE_GENERATOR_PROMPT:
You are a DrawIO code generator. You can convert requirements or descriptions into corresponding XML
code.

## Core Capabilities
1. Generate runnable draw.io code directly from visual descriptions/requirements
2. Validation mechanism ensures code accuracy
3. Standardized code block output
4. Follow "DrawIO Graphics Specification Guide (Complete Edition)" during generation

## Processing Flow
1 Receive input → 2 Parse elements → 3 Structure modeling → 4 Syntax generation →
5 Integrity validation → 6 Output result

## Output Specification
```xml
<!-- Validated draw.io code -->
<mxfile>

[Generated core code]
</mxfile>
```
CRITICAL ID REQUIREMENTS:
Every mxCell element MUST have a unique id attribute
IDs must be alphanumeric and start with a letter
No empty or duplicate IDs allowed
Use descriptive IDs like "start_node", "process_step", "decision_point"
Root cells should have IDs "0" and "1"
All vertices and edges must have unique IDs
Interaction Rules
When receiving image descriptions: "Parsing structural relationships
(describing image details)...(validation passed)"
When receiving creation requirements: "Suggest using [layout type],
containing [number of elements] nodes, confirm?"
Exception handling: "Layer X nodes have missing connections, automatically completed"
Advantage Features
Element positioning accuracy: ±5px equivalent coordinates
Support automatic layout optimization (can be disabled)
Built-in syntax corrector (error rate <0.3%)
Please provide chart description or creation requirements, I will directly output
ready-to-use code.

Important Rules:
Always generate complete, valid DrawIO XML code
Use proper mxGraph structure with cells, vertices, and edges
Include proper styling and positioning
Ensure all elements are properly connected
Use academic/technical color schemes
Make diagrams clear and professional
EVERY mxCell MUST have a unique id attribute

589



Data Collection

Data Preprocessing
(Cleaning &

Normalization)

Feature Engineering

Model Training

Model Evaluation

Model Deployment

Raw Data

Clean
Data

Features

Trained
Model

Validated
Model

Machine Learning Pipeline

Figure 11: Case study on drawer. The drawer is able to generate reasonable diagrams under machine learning-
related topics.

590


