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Abstract

We introduce LINGCONV, an interactive
toolkit for paraphrase generation enabling fine-
grained control over 40 specific lexical, syntac-
tic, and discourse linguistic attributes. Users
can directly manipulate target attributes using
sliders, and with automatic imputation for un-
specified attributes, simplifying the control pro-
cess. Our adaptive Quality Control mecha-
nism employs iterative refinement guided by
line search to precisely steer the generation
towards target attributes while preserving se-
mantic meaning, overcoming limitations associ-
ated with fixed control strengths. Applications
of LINGCONV include enhancing text acces-
sibility by adjusting complexity for different
literacy levels, enabling personalized commu-
nication through style adaptation, providing a
valuable tool for linguistics and NLP research,
and facilitating second language learning by
tailoring text complexity. The system is avail-
able at https://mohdelgaar-lingconv.hf.
space, with a demo video at https://youtu.
be/wRBJEJ6EALQ.

1 Introduction

Controllable text generation, the task of produc-
ing text conforming to specified attributes like sen-
timent or formality (Jin et al., 2022), has seen
widespread application in areas such as text simpli-
fication (Lee and Lee, 2023a,b; Vajjala and Lučić,
2018; Zhang and Lapata, 2017; Xu et al., 2015),
toxicity control (Zheng et al., 2023; Zhang and
Song, 2022; Liu et al., 2021), and personalized dia-
logue (Huang et al., 2023b; Niu and Bansal, 2018).
While general large language models (LLMs) can
be prompted to modify text style, achieving reli-
able, fine-grained, and verifiable control over mul-
tiple specific linguistic properties simultaneously
remains a challenge (Shi et al., 2024).

We address this gap by introducing LINGCONV,
an interactive toolkit specifically designed for con-
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Figure 1: System architecture of LINGCONV. The sys-
tem provides three modes of operation: Linguistically-
diverse Paraphrase Generation for creating multiple di-
verse outputs, Complexity-Matched Paraphrasing for
style transfer, and Manual Linguistic Control for fine-
grained attribute adjustment. All modes utilize the Qual-
ity Control mechanism to ensure output quality. The
set of User Tools support the manual specification of
linguistic attributes.

trolled paraphrase generation (CPG) with explicit,
fine-grained manipulation of 40 distinct linguistic
attributes spanning lexical, syntactic, and discourse
dimensions. LINGCONV allows users to generate
paraphrases of a source text that precisely match a
target linguistic style. This capability offers signifi-
cant utility: for accessibility, text can be simplified
or complexified for different reading levels; for
personalization, communication can be tailored to
specific user styles; for linguistics/NLP research,
the system provides a platform for systematically
studying the effects of linguistic variations; and
for education, text complexity can be adjusted for
second language learners.

The system is based on the CPG model described
in Elgaar and Amiri (2025), which builds upon a
T5 encoder-decoder model (Raffel et al., 2020),
integrating the target linguistic attribute vector di-
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rectly into the decoding process. Moreover, its
adaptive Quality Control (QC) mechanism (§ 2.2)
allows the system to iteratively refine the gener-
ation, matching target linguistic attributes while
preserving semantic meaning, even when target
attributes differ significantly from the source or in-
volve complex transformations. Our QC approach
employs gradient-based updates and an adaptive
line search to dynamically adjust control strength.

The system architecture (Figure 1) supports
three distinct modes of operation for different user
needs: linguistically-diverse paraphrase generation,
complexity-matched paraphrasing by example, and
manual slider-based control for precise adjustments.
Furthermore, the system provides tools for facilitat-
ing the manual specification of linguistic attributes
(§ 3).

The system architecture (Figure 1) supports mul-
tiple modes of operation and includes tools to fa-
cilitate attribute specification (§ 3). As linguis-
tic complexity attributes, we consider lexical, syn-
tactic, and discourse psycholinguistic indices (Ap-
pendix A).

While some prior work focused on controlling
syntactic structure through manipulations of parse
trees or AMR graphs (Huang et al., 2023a; Goyal
and Durrett, 2020; Iyyer et al., 2018), LINGCONV

provides control over a set of 40 lexical, syntactic,
and discourse attributes within an interactive frame-
work with an adaptive QC mechanism for precision
and robustness.

LINGCONV offers a range of advanced features
and functionalities to provide users with greater
control and flexibility over the generation process.
Users can choose from three distinct paraphrase
generation strategies: Randomized Paraphrase
Generation, Complexity-Matched Paraphrasing,
and Manual Linguistic Control. Additionally, the
system allows users to select between exact or ap-
proximate linguistic index computation, which is
used in interpolation and the manual setting of lin-
guistic attributes. The system provides the option to
show the intermediate sentences generated during
the quality control process, enhancing transparency
and interpretability.

2 System Architecture

2.1 Model

LINGCONV employs a T5-Base (Raffel et al.,
2020) encoder-decoder model augmented with
a linguistic complexity control approach to per-

form complexity-controlled paraphrase generation.
Given a dataset D = {s, t} of paraphrase source
and target pairs s and t, we compute the linguistic
attributes of the target lt. Thus, the task is to find a
mapping from (s, lt) → t.

First, LINGCONV employs a linguistic embed-
ding layer h(l) = Rk → Rdmodel , where k is
the number of linguistic attributes (represented as
a vector), and dmodel is the input embedding di-
mension of T5. The embeddings for k linguis-
tic attributes are learned jointly with the encoder-
decoder model’s parameters. Linguistic attributes
are injected into the decoding process through
element-wise addition to the embeddings of the
first token of the decoder. The decoder attends to
the linguistic embeddings at each generation step
using self-attention (Vaswani et al., 2017). Through
the training process, the decoder learns to steer
the generation towards the desired target attributes.
The model is trained using cross-entropy loss of
the translation from source to target paraphrases.

2.2 Quality Control
In controlled text generation, achieving precise con-
trol over multiple linguistic attributes while main-
taining text quality presents significant challenges.
Not all combinations of linguistic attributes are fea-
sible (such as having more unique words than total
words), and even valid combinations may be diffi-
cult for the model to achieve in a single generation
step.

To address these challenges, LINGCONV em-
ploys an iterative refinement process. Starting with
an initial generation, the system gradually adjusts
the output to better match the target linguistic at-
tributes while preserving semantic meaning.

This refinement is achieved by computing the
gradient of the linguistic attribute error with respect
to the input embeddings. However, determining
the appropriate update strength (steering factor) is
critical: too small is ineffective, too large degrades
quality. Fixed control strengths, explored in prior
work (Durmus et al., 2024; Yang et al., 2024), are
insufficient here because the norm of our gradient-
based steering vector varies significantly with the
attribute discrepancy.

LINGCONV addresses this through an adaptive
control strength approach that uses line search
to dynamically determine the optimal step size
for each refinement iteration. The quality control
mechanism consists of two key components: 1) An
iterative refinement process that repeatedly updates
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Figure 2: Examples of the three paraphrase generation modes of LINGCONV.

the generation until it matches the target attributes
or further improvement becomes impossible. 2) A
line search algorithm that finds the optimal control
strength for each refinement step while preserving
semantic coherence

The quality control algorithm is illustrated in
Figure 3. The iterative refinement process starts
by generating an initial candidate output based on
the input sentence and target attributes. Figure 4
illustrates this process with examples of interme-
diate outputs generated during refinement. It then
enters a loop where it repeatedly refines the gener-
ation until it closely matches the target attributes,
or further refinement is not possible.

The iterative process (Figure 3) starts with an ini-
tial generation and enters a refinement loop. Each
iteration computes the attribute error and performs
line search to find an optimal update strength (de-
rived from the negative gradient). The process
continues until the MSE between the candidate’s
attributes and the target falls below a threshold τ ,
or until line search fails to find an improvement,
ensuring convergence even for challenging targets.

Backpropagation of the linguistic attribute error
requires differentiable linguistic index computation.
Thus, we pre-train linguistic discriminator (LD)
and a semantic embedding module (SEM).

Start
Generate Prediction

y=M(x, lt)
Compute

L=MSE(ly,lt)

Compute Gradient∇xL

Perform Line
Search to

get x' and y'

Yes

No

SemSim(y′, x) > τ

End

Yes

No

L(ly', ltt) < L(ly,lt)

Replace x with x'

Figure 3: The quality control algorithm flowchart. The
algorithm starts with initial generation and enters a re-
finement loop until no further improvement is possible.
Each iteration computes the attribute error, performs
line search to find optimal update strength, and gener-
ates a new candidate output.

The linguistic discriminator (LD) learns to pre-
dict the linguistic attributes of a sentence, providing
the error signal for attribute control during QC. The
semantic embedding module (SEM) is trained to
predict the probability that the source sentence s
and the generated paraphrase t̂ are semantically
equivalent. Their specific training objectives and
architectures are detailed in Appendix C.
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M
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I already have ended?What should I do if I have
gained some height but I

don’t think so?
What should I do if I want

to increase his height?
What should I do if I want

to increase myself? What should I do when I
want to increase my

height?

Figure 4: Two examples of intermediate texts iteratively
generated at inference time using the quality control ap-
proach for text generation. Both examples are generated
using the same source sentence and two different target
attributes. The star indicates the returned value.

3 Features and Functionalities

As shown in Figure 2, LINGCONV offers three
modes for fine-grained attribute adjustment.

The Randomized Paraphrase Generation
mode serves users seeking diverse paraphrases; it
automatically generates multiple linguistically var-
ied paraphrases, discovering stylistic possibilities
without requiring users to specify target attributes.

The Complexity-matched Paraphrasing mode
addresses the need for textual style transfer; users
provide a reference text, and the system generates
a paraphrase of the source that mimics the refer-
ence’s linguistic style, useful for adapting content
to specific audiences or contexts. This also allows
users to define the target linguistic style implicitly
through an example, which can be easier than man-
ually specifying numerous individual attributes.

The Manual Linguistic Control mode offers
fine-grained manipulation; it allows expert users or
those with specific requirements (e.g., researchers
studying linguistic effects) to precisely adjust indi-

vidual linguistic attributes using sliders, providing
maximum control over the output.

Advanced Options allow toggling ex-
act/approximate attribute computation and viewing
intermediate QC steps. An Examples tab provides
150 validation set samples.

The linguistic attributes we use are extracted
from three sources: lexical attributes developed by
Lu (2012), syntactic attributes by Lu (2010), and
a diverse set of semantic, lexical, discourse, and
traditional attributes by Lee and Lee (2023a). A
detailed list of the linguistic attributes used can be
found in Appendix A.

The system implements error handling: Input
validation for text length and content, automatic
correction of invalid linguistic attribute combina-
tions, graceful handling of model prediction fail-
ures, and user feedback for invalid operations.

3.1 Randomized Paraphrase Generation
The Paraphrase Generation feature provides a
straightforward yet powerful way to generate mul-
tiple paraphrases of a given source sentence. Users
begin by inputting the source sentence and indi-
cating the desired number of paraphrases to be
generated. The system then employs its linguistic
attributes sampling and text generation algorithm
to generate a set of distinct paraphrases, each ad-
hering to a unique set of target linguistic attributes.

LINGCONV employs a large-scale repository of
precomputed linguistic index sets. These sets, ex-
tracted from the training dataset, encompass a wide
spectrum of linguistic attributes. By randomly se-
lecting index sets from this collection, the system
ensures that the generated paraphrases carry diverse
linguistic characteristics. Figure 2 shows examples
of paraphrases generated by LINGCONV using dif-
ferent generation modes.

3.2 Complexity-matched Paraphrasing
Given a source sentence and a reference sentence.
The model extracts the linguistic attributes from
the reference. Utilizing these extracted attributes
as a guide, the system generates a paraphrase of the
source sentence that mirrors the linguistic attributes
of the reference. This form of textual style transfer
enables users to seamlessly adapt their content to
match a specific style or level of complexity. It is
a valuable tool for authors, marketers, communi-
cators, and clinicians looking to tailor their text to
distinct audiences or contexts while maintaining
semantic coherence. Figure 2 displays examples
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of using different modes, including complexity-
matched paraphrasing.

3.3 Manual Linguistic Control
The system provides manual control through slid-
ers corresponding to specific linguistic attributes,
with bounds determined through statistical analy-
sis. The interface implements: Attribute Activa-
tion for selective control, Automatic Imputation
for inactive attributes, and Range Constraints to
prevent invalid combinations. Users can activate
specific linguistic attributes of interest and adjust
their values using sliders, which are constrained
by minimum and maximum values to ensure valid
settings.

The Manual Linguistic Control mode provides
a set of tools to increase accessibility for users.
Users can focus solely on activating and adjusting
the specific linguistic attributes of interest. The sys-
tem then automatically imputes reasonable values
for all other inactive attributes (see § 3.4), alleviat-
ing the need to manually specify the entire set of
attributes.

To further assist manual setting of linguistic val-
ues, the system offers a set of tools accessible
through the Tools to assist in setting linguistic at-
tributes interface. As illustrated in Figure 1, these
tools include several key functionalities. The Ran-
dom Target generator produces valid target lin-
guistic indices from the training dataset, while the
Impute Missing Values function fills in remaining
attributes to maintain coherence when only a subset
is specified. Users can analyze existing text through
the Computing Linguistic Attributes tool, which
calculates or estimates linguistic attributes of in-
put sentences. The Copying Attributes function-
ality enables streamlined transfer from source to
target, particularly useful for incremental adjust-
ments. Additionally, the Adding and Subtracting
ϵϵϵ feature serves to incrementally increase text com-
plexity and generate controlled variations through
minor perturbations.

3.4 Imputation Process
The imputation of missing linguistic attributes
is performed using the Multiple Imputation by
Chained Equations (MICE) algorithm (Azur et al.,
2011). For each missing linguistic attribute, a
ridge regression model (Golub et al., 1999) with
α = 1000 is fitted using the other variables as
predictors. The missing values are then imputed
based on this model’s predictions. This process is

repeated for up to 1000 iterations for each variable
with missing data, forming a chain of equations
that leads to an iterative refinement process.

MICE models are trained on 1000 diverse at-
tribute vectors selected greedily from the train-
ing data. Missing values are mean-initialized.
MICE is well-suited for linguistic attributes as it
leverages inter-attribute correlations (e.g., counts,
clauses/sentences) via ridge regression, preserving
relationships.

Appendix B.1 shows imputation performance us-
ing standard metrics: Mean Squared Error (MSE),
and Root Mean Square Error (RMSE), and Pear-
son correlation coefficient (ρ). MSE and RMSE
quantify the average magnitude of errors between
imputed and ground-truth attribute values, and ρ
measures the linear relationship between imputed
and true values. Accuracy improves as more at-
tributes are provided, with the best results at 80%
known attributes, though performance remains rea-
sonable even at 20%. See Appendix B for imple-
mentation details.

4 Data and Evaluation

4.1 Data and Experimental Setup

We utilize a combination of three paraphrase and
semantic similarity corpora for training and evalu-
ation: the Microsoft Research Paraphrase Corpus
(MRPC) (Dolan and Brockett, 2005), the Seman-
tic Textual Similarity Benchmark (STS-B) (Cer
et al., 2017), and the Quora Question Pairs dataset 1.
From these datasets, we retain only the positively
labeled pairs, indicating semantic equivalence, re-
sulting in a total corpus of 140,000 sentence pairs
suitable for paraphrase generation. This combined
dataset is randomly partitioned into training (80%),
validation (10%), and testing (10%). The same data
splits are used consistently across all experiments,
and only sequences up to 100 tokens were included
in training.

We train and evaluate eight baselines on the task
of CPG. Three baselines produce paraphrases with
no attribute control, and serve to demonstrate the
quality of outputs in the case of non-controlled
generation. The remaining five baselines are all
recent and strong CPG approaches.

We evaluate our approach against several con-
trolled generation baselines. As control base-
lines, we include a direct Copy of the source

1https://quoradata.quora.com/
First-Quora-Dataset-Release-Question-Pairs
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Model BERTScoreF ↑ MSE(ltltlt)↓ MSE(lslsls)↑ Overall↑
Ref 94.4 9.82 0.96 0.19
Copy 100.0 9.86 0.00 0.33
T5-FT 97.8 9.86 0.29 0.27

Llama3.1-70B 92.8 8.90 2.44 0.26
BOLT 90.4 7.47 1.83 0.21
Fudge 92.5 7.22 3.11 0.37
QCPG 91.4 5.61 3.25 0.41
Lingconv 92.0 3.69 4.39 0.59
Lingconv+QC 91.5 2.89 6.20 0.71

Table 1: Controlled generation performance across evaluation metrics. BERTScore measures the semantic similarity
between the generated paraphrase and the source sentence. Mean squared error (MSE) values reflect how close the
linguistic attributes of the generated paraphrase are to the target (MSE(ltltlt)↓) or source (MSE(lslsls)↑).

sentence and the ground-truth Reference para-
phrase from the dataset. For learned models, we
compare against T5-FT (Raffel et al., 2020), a
vanilla T5 model fine-tuned on our paraphrase
datasets, and Llama3.1-70B (Dubey et al., 2024),
an instruction-tuned language model directed to
generate attribute-controlled paraphrases. We also
evaluate against recent controlled generation ap-
proaches: BOLT (Liu et al., 2023), which learns
logit biases through attribute discriminator loss
minimization; Fudge (Yang and Klein, 2021),
which performs token-level attribute control during
generation; and Quality Controlled Paraphrase
Generation (QCPG) (Bandel et al., 2022), which
uses special character prefixes for attribute control.
Finally, we evaluate our base LINGCONV model
described in §2.1, as well as an enhanced version
incorporating the quality control algorithm (+QC).

We evaluate the quality of generation using the
following four automatic metrics of text generation.
BERTScoreF (Zhang et al., 2020) measures the
semantic similarity between the generation and the
source sentence; F refers to the reference-free met-
ric (Shen et al., 2022). MSE(lt) is the error in the
attributes of the generation compared to the target
attributes. MSE metrics are evaluated on the nor-
malized attribute values to equalize the scale across
attributes. MSE(ls) is the distance between the at-
tributes of the generation and the source attributes.
This measures the bias of CPG methods towards
the style of the source sentence, and their ability
to generate a paraphrase with significantly differ-
ent linguistic attributes from the source. Overall
score normalizes each of the other three metrics to
the range [0,1], such that a higher value is better,
and computes the average. The overall score high-
lights the approach with the best trade-off between
semantic similarity and accurate attribute control
ability.

4.2 Results

Results in Table 1 show that the attribute control of
LINGCONV is 34% more accurate than the second-
best baseline, while being comparable in semantic
equivalence. The addition of QC results in a further
14% decrease in attribute error. We attribute this
higher performance to the effective use of linguis-
tic complexity attributes in the decoding phase of
LINGCONV.

Figure 4 presents examples of intermediate text
outputs generated at inference time during the inter-
polation process for quality control of the generated
texts. These results provide a clear illustration of
the step-by-step generation process that progres-
sively moves towards generating target sentences
that meet desired levels of linguistic complexity.

5 Conclusion

We developed a new text conversion system, LING-
CONV, which offers comprehensive features for
complexity-controlled text generation. Through
the careful integration of linguistic attributes and
model architecture, LINGCONV provides users
with the tools to generate text that adheres to both
specific and diverse linguistic complexity levels.

The system’s evaluation against recent con-
trolled generation baselines and the vanilla T5
model verifies its reliability and effectiveness. The
iterative refinement process with adaptive control
strength enhances the system’s ability to improve
the generation process, ensuring high-quality out-
puts that closely match the desired linguistic at-
tributes while maintaining semantic coherence. A
current limitation is the system’s focus on sentence-
level paraphrasing, stemming from training on se-
quences up to 100 tokens; extending LINGCONV

to effectively handle paragraph-level or longer doc-
ument processing remains future work.
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Lexical Attributes
Sophisticated Words
Unique Lexical Words
Sophisticated Lexical Words
Total Words
Sophisticated Word Count
Total lexical words
Total sophisticated lexical words
Lexical Sophistication
Verb Sophistication
Unique Word Ratio
Unique Verb Ratio
Unique Adjective Ratio
Unique Adverb Ratio
Age of Acquisition Score

Syntactic Attributes
Sentence Count
Verb Phrases
Clause Count
T-unit Count
Complex T-units
Dependent Clauses
Complex Nominals
Stop Words
Character Count
Words per Sentence
Characters per Sentence
Characters per Word
Syllables per Sentence
Coordinating Conjunctions
Noun Count
Numeral Count
Proper Nouns
Subordinating Conjunctions
Readability Level
Reading Time

Discourse Attributes
NORP Entities
GPE Entities
Law Entities
Money Entities
Ordinal Entities

Table 2: List of linguistic attribute names controlled by
LINGCONV.

A Linguistic Attributes

Table 2 is a list of the linguistic attributes controlled
by LINGCONV.

Index Descriptions Below we provide brief de-
scriptions for a selection of the linguistic indices
controlled by LINGCONV.

• Lexical Words: Content-bearing parts of
speech, specifically nouns, verbs, adjectives,
and adverbs.

• Sophisticated Words: Words considered less
common in general usage, which we define as
the 2,000 least frequent words in the American
National Corpus.

Given Attributes MSE RMSE ρ

20% 0.842 0.917 0.763
40% 0.625 0.791 0.851
60% 0.413 0.643 0.912
80% 0.286 0.535 0.945

Table 3: Performance of the MICE imputation algorithm
with varying percentages of given attributes. Lower
values are better for MSE, and RMSE, and higher values
are better for ρ.

• Age of Acquisition: The typical age at which
a word is learned and integrated into a per-
son’s vocabulary.

• T-unit: A minimal unit of syntax, consisting
of one main clause and all associated subordi-
nate clauses.

• Complex Nominals: A category of syntac-
tic structures including: (i) nouns modified
by elements such as adjectives, possessives,
prepositional phrases, relative clauses, partici-
ples, or appositives; (ii) nominal clauses; and
(iii) gerunds or infinitives serving as the sub-
ject.

• Readability Level: An estimate of the U.S.
grade level required for a reader to compre-
hend a text, based on the Automated Readabil-
ity Index.

• GPE (Geopolitical) Entity: Named coun-
tries, cities, and states.

• NORP Entity: Named nationalities, as well
as religious and political groups.

Further details on these attributes can be found in
the original works of Lu (2012), Lu (2010), and
Lee and Lee (2023a).

B Imputation of missing values

Imputation of missing values is performed using
the Multiple Imputation by Chained Equations
(MICE) algorithm (Azur et al., 2011). For each
missing linguistic attribute, a regression model is
fitted using the other variables. The missing values
are then imputed based on this model. This pro-
cess is repeated for t iterations for each variable
with missing data, forming a chain of equations
that leads to an iterative refinement process. We
use a ridge regression (Golub et al., 1999) linear
model as the estimator.
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The regression models are fitted using a training
set consisting of N ground-truth linguistic attribute
vectors (described below), coming from the train-
ing data of LINGCONV. Before the initial iteration
of MICE, and to allow for predicting a missing
attribute as a function of all other attributes, the
missing values are initialized using the mean value
for the attribute.

MICE provides a solution to handle missing data
by leveraging the relationships among variables.
In linguistic attributes, there are fixed relations be-
tween many of the attributes. Two examples are:
any lexical count cannot be larger than the total
number of words, and the number of clauses can-
not be larger than the number of sentences in the
text. By using linear regression models within the
MICE framework, it ensures that the linear rela-
tionship assumption is maintained.

B.1 Performance of the MICE imputation
algorithm

Table 3 shows the performance of the MICE impu-
tation algorithm with varying percentages of given
attributes. Lower values are better for MSE, and
RMSE, and higher values are better for ρ.

B.2 The stored set of linguistic attributes
vectors

The stored set of linguistic attributes vectors is
selected from the training data using a greedy algo-
rithm that maximizes the distance between the se-
lected normalized linguistic attribute vectors. The
idea is to select a subset of data points that are most
representative of the entire dataset. We start by
computing pairwise Euclidean distances between
all points in the original dataset. Then, we select
the next data point with the maximum average dis-
tance from already chosen points, ensuring that the
selected subset is diverse. We set N = 1000, while
the full training dataset of LINGCONV contains
over 250k samples. To apply the MICE algorithm,
we concatenate this representative subset with the
vector of missing values, and perform the impu-
tation. This subset also serves as a bank of valid
linguistic attribute vectors, from which we sample
random targets.

B.3 Adding or Subtracting Complexity

This feature allows users to increase or decrease
the overall complexity of the target attributes. To
ensure the linguistic attributes remain valid, any
changes must be proportionally scaled according

to their linear relation. We derive a set of attribute
ratios from the training data to guide this process.

During the modification, we randomly select
a scaling factor between 0.5 and 4. This fac-
tor adjusts the attribute ratios before applying the
changes to the attributes. For example, if the num-
ber of sentences is increased by 1.0, the total num-
ber of words increases by 9.0 on average, while
other attributes increase proportionally according
to their linear relations.

C Training of Auxiliary Modules

The linguistic discriminator (LD) takes a tokenized
sentence as input and is trained to minimize the
MSE between the predicted attributes and the
ground-truth attributes of the sentence. The ob-
jective is formulated as:

ℓdisc(x) = ∥LD(x)− lx∥22, (1)

where x is the input sentence and lx are its ground-
truth linguistic attributes.

To ensure that the generated text remains se-
mantically coherent with the source, the semantic
embedding module (SEM) takes the source sen-
tence s and the generated sentence t̂ as input. It is
trained using a contrastive objective to minimize
the distance between embeddings of semantically
equivalent pairs while maximizing the distance for
non-equivalent pairs:

ℓsem(s, t̂) = − log
SE(s, t̂)∑

t′∈N (s)

SE(s, t′)
, (2)

where N (s) represents the set of negative (non-
paraphrase) examples for source s within the mini-
batch. Both LD and SEM typically utilize archi-
tectures based on pre-trained encoders like T5, fol-
lowed by appropriate projection layers for their
respective tasks.
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