CafGa: Customizing Feature Attributions to Explain Language Models

Alan Boyle Furui Cheng”

Vilém Zouhar

Mennatallah El-Assady

ETH Zurich

Abstract

Feature attribution methods, such as SHAP and
LIME, explain machine learning model predic-
tions by quantifying the influence of each input
component. When applying feature attributions
to explain language models, a basic question is
defining the interpretable components. Tradi-
tional feature attribution methods, commonly
treat individual words as atomic units. This
is highly computationally inefficient for long-
form text and fails to capture semantic informa-
tion that spans multiple words. To address this,
we present CafGa, an interactive tool for gener-
ating and evaluating feature attribution explana-
tions at customizable granularities. CafGa sup-
ports customized segmentation with user inter-
action and visualizes the deletion and insertion
curves for explanation assessments. Through
a user study involving participants of various
expertise, we confirm CafGa’s usefulness, par-
ticularly among LLM practitioners. Explana-
tions created using CafGa were also perceived
as more useful compared to those generated by
two fully automatic baseline methods: Parti-
tionSHAP and MExGen, suggesting the effec-
tiveness of the system.

1 Introduction

Large Language Models (LLMs) continuously
evolve in scale and capabilities across a wide range
of tasks, such as question answering, reasoning,
and text summarization (Kamalloo et al., 2023, in-
ter alia). Meanwhile, their increasing complexity
poses significant challenges in interpretability and
human trust (Sun et al., 2024). Feature attribution
methods, e.g. SHAP (Lundberg and Lee, 2017)
and LIME (Ribeiro et al., 2016), offer a promis-
ing approach to explain LLM behaviors by quan-
tifying the influences of each component in the

*Corresponding author

fCafGa is available as a pip-installable package cafga.

The source code is hosted on https://github.com/explain-
Ilm/CafGa, and a live demo is accessible at cafga.ivia.ch.

461

The journey was long and arduous, but the [incredible

view at the top fliade it SROTth) it.

Figure 1: Feature attribution explanations quantify the
contributions of each component (e.g., words), allowing
users to validate the models’ reasoning.

input. These explanations calibrate users’ trust in
model predictions (Bansal et al., 2021) and offer
useful insights into the prediction shortcuts and
model biases (Du et al., 2021; Ren and Xiong,
2023). Defining interpretable components is a fun-
damental question in generating meaningful fea-
ture attributions (Ribeiro et al., 2016). Traditional
removal-based methods typically treat individual
words as the basic units of interpretation (Figure 1),
but this approach struggles to scale effectively for
long-form text due to computational inefficiency
and the fact that meaningful semantic cues often
span multiple tokens or phrases, such as “made it
worth it” in Figure 1. To address this, we propose
CafGa, an interactive tool that enables users to cre-
ate feature attribution explanations at customized
levels of granularity. The tool offers default options
to segment text at the word, sentence, or paragraph
level, and supports users to further refine these seg-
ments by interactively isolating text spans. CafGa
also provides functionality to evaluate and compare
different segmentation strategies. The system visu-
alizes deletion and insertion curves, showing how
the model’s prediction changes as components are
removed or added based on their attribution rank-
ings, and calculates the area under the perturbation
curve as the fidelity scores.

We conducted a two-stage user study to evalu-
ate the usability and effectiveness of CafGa. In
the first phase, ten participants used CafGa to cre-
ate explanations that helped them understand the
model’s reasoning. Based on self-reported usabil-
ity scores, users with machine learning expertise
generally found the system easy to use and learn,

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 461-470

November 4-9, 2025 ©2025 Association for Computational Linguistics

https://pypi.org/project/cafga
https://github.com/explain-llm/CafGa
https://github.com/explain-llm/CafGa
https://cafga.ivia.ch/

while novice users experienced some difficulty due
to the need to grasp new concepts before effectively
interacting with the tool. Despite this, participants
across all expertise levels reported that CafGa was
helpful in improving their understanding of the
LLM. In the second phase, we invited four ex-
pert users to compare the usefulness of the CafGa-
generated explanations from the first phase with
those produced by two automated baselines: Par-
titionSHAP (Lundberg, 2024) and MExGen (Paes
et al., 2024). In 64% of the comparisons, partici-
pants rated the human-generated explanations as
the most helpful, demonstrating the effectiveness
of the proposed system in supporting meaningful
model interpretation.

Input ©
This restaurant is known as a premier location for meat-
lovers. The chef originally worked at a BBQ restaurant where
she became intimately familiar with all things meat. It was on
her first trip to France that she was inspired to specialize in
steak tartare, the restaurant's signature and only dish. The
restaurant offers a few variations, but the customers
appreciate the simplicity.

My favourite food is beef. | particularly love steak, which |
prefer well-done, because | don't want to eat raw meat. |
usually only season the steak with salt, because | appreciate
the simplicity of just letting the beef speak for itself.

Template ©

Below is a description of a restaurant and a customer.
{input}
Do you recommend this restaurant for the customer?

Answer with "yes" or "no".

-

Target Answer

Figure 2: The user creates a task where a model is
asked to decide whether to recommend a restaurant to a
customer.

Operator ©

Contains v

2 System Design

CafGa is an interactive system that includes a task
creation page for defining prediction tasks and cus-
tomizing explanation granularities, and an expla-
nation page that displays explanations and their
evaluation results. The following sections intro-
duce the key features and design.

Define a Prediction Task. CafGa allows users to
define a prediction task by constructing a prompt
and defining an evaluator (Figure 2). To construct

the prompt, users need to complete the template
field with the structure of the prompt and the input
field with the content they wish to explain. We
use the design in ChainForge (Arawjo et al., 2024)
where an evaluator is used to structure the text gen-
erated by the model by transforming the text into
a boolean value based on user-defined rules. To
define the evaluator, users can choose from prede-
fined operators such as Contains, which returns
a boolean value indicating whether the text in-
cludes the specified Target Answer, and Entails,
which assesses whether the text logically entails
the Target Answer. See the full list of operators
in Appendix B.

Customize Text Segmentation. CafGa supports
default options for creating text segments, such
as dividing text by word, sentence, or paragraph.
Users can customize the segmentation through in-
teractions. For example, they could brush to select
a phrase and isolate the selected phrase from the
sentence (Figure 4). The segments may not overlap
to avoid ambiguous attributions.

Calculate and View Feature Attributions.
CafGa uses the KernelSHAP (Lundberg and Lee,
2017) algorithm to sample and compute the fea-
ture attributions. The system generates random
samples by removing text segments in the user-
specified granularities. For each perturbed sam-
ple, the system requests ten responses, which
are converted into Boolean values using the user-
defined evaluator. The estimated probability, e.g.,
P(the answer contains “no”) is computed as
the proportion of responses evaluated as true. Fi-
nally, the system uses a weighted linear regression
model to estimate the Shapley values of each group.
This step runs in the back-end and is hidden from
users. After the calculation, we visualize the expla-
nations using a heatmap with a color-blind friendly
color schema (Figure 3B) accompanied by the task
description (Figure 3A).

Evaluate Explanations. To ensure that the cre-
ated explanations accurately reflect the model’s
decision making and mitigate users’ confirmation
bias, we adapt a commonly used and general fi-
delity metric, Area Over the Perturbation Curve
(Samek et al., 2017). Following Petsiuk et al.
(2018), we employ two variants of the perturba-
tion curve: Deletion and Insertion. Deletion begins
with all the features present and then iteratively re-
moves the highest valued features. Insertion begins

462

p

@® Task Description ®

Template

Example

o

For the food review below answer whether it is positive or
negative. Your answer should be a single word: "positive" or
"negative". Review:

{input}

4

The food took a long time to come out. But, when it finally did

arrive, it was worth the wait. The flavours were rich and the

presentation was incredible. My only problem was that it was

too dry. | would have loved to get more of that sauce.

Target Answer Operator

[positive] [Contains]

Reassign Task Detracting @ D Contributing

~

Perturbation Curve: Deletion

— Example

Example — Example Example

0.9+
0.8+

Difference in Prediction

N

Area under the Curve

1.04
0.9+

0.7
0.6
0.5
0.4+
0.3
0.2
0.1

11
£_] T T T T T T
0 01 02 03 04 05 06 07 0

1.04
.8

T
0. 0.9

Percentage of Pertubation

.

1.0

0.0+

T
Example

Example

Example Example

Figure 3: An overview of CafGa: The user first creates a predictive task (A) and then decides the granularities
for explanations by assigning words into groups and gets an explanation based on the assignments (B). Using the
perturbation curve the user can validate the fidelity of the generated explanation (C).

view at the top:_made it all worth ity

view at the top made it all worth it.

Figure 4: CafGa allows users to interactively segment
text to customize the explanation granularity.

with no features present and iteratively inserts the
highest valued features. In the resulting graph the
x-axis represents the percentage of words added
or removed and the y-axis the difference between
the original prediction f(x) and the perturbed pre-
diction f(x*) when perturbing the top k features.
Importantly, we plot the percentage of words per-
turbed on the x-axis rather than the percentage of
groups to avoid a bias towards large groupings. For
deletion the area under the curve should be large
as the perturbed prediction should quickly diverge
from the original one. For insertion it should be
small as the perturbed prediction should quickly
converge back to the original one. These metrics
are visualized in an intuitive way to users such
that they can follow and compare the computation
exactly (Figure 3C).

Implementation Details. CafGa is implemented
as a web application composed of a front-end and a
back-end communicating via HTTP requests. The
front-end is written in TypeScript and React and
served via Vite. The back-end server uses FastAPI
and Uvicorn. The model used in the back-end can
be chosen by the user from a selection of OpenAl
models. In the implementation of the KernelSHAP
algorithm, we use the sampling strategy and func-
tions from the SHAP library. This implementa-
tion uses 2 * nfeqrures + 2048 as the maximum
number of samples used to approximate the shap-
ley value. In the interactive setting we prioritize
user experience and thus set the number of sam-
ples so that the explanation can be provided in a
reasonable time t,,,4,. Given a rate of API requests
r Ap1, the maximum number of samples is defined
as Ngamples = tmaz - TAPr. We provide a PyPI
package that contains all of the algorithms used
in the back-end. The package also comes with
Jupyter widgets created using AnyWidget (Manz
et al., 2024) that recreate parts of the front-end. A
Jupyter Notebook example is shown in Appendix A.
This in particular allows users to also run CafGa
on their local models.

463

https://react.dev/
https://vitejs.dev/
https://fastapi.tiangolo.com/
https://www.uvicorn.org/
https://platform.openai.com/docs/models
https://platform.openai.com/docs/models
https://shap.readthedocs.io/en/latest/generated/shap.KernelExplainer.html#shap.KernelExplainer

o

This restaurant is known as a premier location for meat-lovers.

Sentence-level Feature Attributions

The chef originally worked at a BBQ restaurant where she

became intimately familiar with all things meat. (It was on her first

trip to France that she was inspired to specialize in steak tartare,

the restaurant's signature and only dish. The restaurant offers a

few variations, but the customers appreciate the simplicity.

My favourite food is beef. I particularly love steak, which | prefer

well-done, because | don't want to eat raw meat. | usually only

season the steak with salt, because | appreciate the simplicity of

just letting the beef speak for itself.

Create
fine-grained
explanations

o

This restaurant is known as a premier location for meat-lovers.

Customized Feature Attributions

The chef originally worked at a BBQ restaurant where she

became intimately familiar with all things meat. It was on her first
trip to France that she was inspired to rmmﬁﬁ%réﬂ

the restaurant's signature and only dish. The restaurant offers

a few variations, but the customers appreciate the simplicity.

My favourite food is beef. | particularly love steak, which |

prefer well-done, because | don't want to eat raw meat. | usually

only season the steak with salt, because | appreciate the

simplicity of just letting the beef speak for itself.

Figure 5: The user first used the sentence preset (A). The resulting explanation gives a rough overview of the
model’s reasoning. The user specifically assigned all relevant parts into separate groups (B). In (B), one can now
clearly see the reason: tartare is the restaurant’s sole signature dish, but the customer does not want to eat raw meat.

3 A Worked-out Example

We introduce a use case in understanding GPT4o-
mini’s predictions in multi-hop reasoning. In this
task, the model needs to decide whether to recom-
mend the restaurant to a customer based on the
restaurant’s review and the customer’s preferences.
The model makes a correct prediction that does
not recommend the restaurant. The user, an LLM
developer, wanted to understand if the model fol-
lowed the correct reasoning behind this decision.

The user first defined the task (see Figure 2) and
used a preset that calculates sentence-level attri-
butions. From the results (see Figure 5 A), the
user noticed that the two sentences with the highest
attribution include the necessary information for
making this decision — the restaurant only serves
steak tartare, while the customer doesn’t like raw
meat (see highlighted parts in Figure 5 B). The user
found this explanation unsatisfactory and wanted to
know if the model specifically captured the key in-
formation that steak tartare is the only dish served
in these sentences.

So the user then manually separated the sentence
into segments, like specialize in steak tartare, sig-
nature and only dish, to get a more precise expla-
nation. The new explanation, with a higher fidelity
(from 0.77 to 0.96) suggests that all the necessary
information is well-captured by the model and has
high contributions to the prediction. From this two-
stage exploration, the user confirmed that the model
follows the correct reasoning in this decision.

4 User Study

To evaluate the usability of CafGa, we conducted
a two-stage user study in which participants cre-

ated and assessed explanations. In the first stage,
participants used CafGa to generate customized ex-
planations and then provided feedback on the tool’s
usability. In the second stage, experts compared
these participant-generated explanations with those
produced by existing fully automatic methods to
assess the quality of the generated explanations.

4.1 Setup

We now describe the two parts of the user study.

Creating explanations. For the first stage we
recruited ten participants: six users who had ex-
perience working with machine learning, noted as
experts and four novice users. None of the par-
ticipants had any prior experience working with
attribution-based explanations.

At the beginning of the study, the participants
were shown a video that explained the concepts
behind CafGa and their role in this part of the study.
The video also showed an example task that the
participants could work through while following
the video. After viewing the video participants
were encouraged to ask questions. The participants
then created explanations for five types of tasks
of increasing complexity. The tasks were local
question answering taken from SQuAD (Rajpurkar
et al., 2016), sentiment analysis on reviews taken
from the YELP academic dataset (YELP, 2015), a
few-shot prompt engineering task inspired by Ten-
ney et al. (2024), multi-hop reasoning taken from
HotpotQA (Yang et al., 2018) and long-form text
comprehension taken from BARQA (Hou, 2020)
(see Appendix C for details). For each task type
there were five tasks except for prompt-engineering
and long-form text comprehension, which each had
three tasks. The given task for each type was se-

464

lected at random. Once participants had created an
explanation for each type of task, they filled out a
survey rating the usability and usefulness of CafGa.

Comparing explanations. In the second stage,
we recruited four expert participants who all stud-
ied machine learning and currently work with Al
The participants were again shown a video that ex-
plained the concepts behind CafGa and their role in
this part of the study. The participants were asked
to choose the most helpful explanations among 10
groups. Each group contained three feature attribu-
tions: a human-created explanation from the first
stage of the study, one created by MExGen (Paes
et al., 2024), and one created by PartitionSHAP
(Lundberg, 2024). We choose MExGen because it
provides a good baseline of what static granulari-
ties can achieve and PartitionSHAP because it is
often cited as a comparison (Amara et al., 2024;
Paes et al., 2024; Mosca et al., 2022) and is rec-
ommended as an efficient method by Mosca et al.
(2022). Unlike most methods they also scale to
long inputs like those in BARQA. Participants were
asked to select the most helpful explanation — the
one that best informed them of the model’s decision
logic and correctness — among the three.

4.2 Study Results

From the usability survey results (Table 1), we ob-
served that the experts could use the system well.
They generally found the system easy to learn and
easy to use. In comparison, non-expert users faced
more challenges in learning the system, primarily
due to difficulties in quickly understanding the un-
derlying concepts of CafGa. However, after getting
familiar with the system, both groups of partici-
pants reported that the system is helpful in support-
ing them in understanding the LLM.

From the comparative study results (Table 2), we
find that the explanations made by humans were
generally preferred, with MExGen outperforming
PartitionSHAP. We see that in total, the explana-
tions created by humans were preferred 64% of
the time over MExGen and PartitionSHAP. This
demonstrates that CafGa is effective in supporting
meaningful model interpretation.

Task-level preferences (Table 2) show that
human-customized explanations performed espe-
cially well on the HotpotQA task. This is likely be-
cause the input text in these tasks typically contains
multiple facts, often expressed through distinct
clauses and phrases. The participants can make

Statement Non-experts Experts
The system is easy to use. 30 4 50 _.l
The system is easy to learn. 35 M. 52 .
The system is enjoyable touse. 3.5 - 5.8 Jl
The various functions in the 5.0 &L 5.5 _alma
system are well integrated.

The system is helpful in under- 6.3 _|h 58 _ [ka
standing the LLM.

I would like to use this system 3.3 Y IS

frequently.

Table 1: After-task survey results. Participants were
asked to rate the statements on a scale from 1 (strongly
disagree) to 7 (strongly agree) with 4 (neutral). For each
statement, we show the distribution and average.

Human MExGen PartitionSHAP
SQuAD 63% 38% 0%
YELP 67% 33% 0%
Prompt 50% 0% 50%
HotpotQA 75% 25% 0%
BARQA 63% 38% 0%
Average 64% 28% 8%

Table 2: Preference win-rate for generated explanations
across tasks.

semantic segmentations to the input text, while au-
tomatic methods create unreasonable n-grams that
do not align with human intuitions.

5 Related Work

In this section we discuss related work on creating
feature attributions at interpretable granularities
and existing user interfaces.

5.1 Interpretable Feature Attributions

Recent work in attribution-based explanations has
focused on creating attributions at granularities be-
yond the word level. This approach can not only
improve computational efficiency, but also make
for more interpretable explanations.

Early work in this direction focuses on finding
specific decompositions of the neural network to
get contextual attributions in addition to token-
level attributions (Murdoch et al., 2018; Singh
et al., 2019; Jin et al., 2019). However, given that
there are now many settings where one does not
have access to the model’s internal structure, such
model-specific methods may no longer be applica-
ble. Thus, there has been a shift towards model-
agnostic methods that do not rely on the model’s

465

internal structure.

Chen et al. (2020) present a model-agnostic ap-
proach that iteratively splits the input sequence into
smaller groups generating an attribution for each
group. This hierarchical approach in particular al-
lows users to validate whether the model can reason
about the compositional nature of language.

Ju et al. (2023) further improve on this by ad-
dressing the limitation that the spans of grouped
features must be contiguous. This is important
because modern NLP architectures can model long-
range non-contiguous dependencies in the input.
However, both of these methods struggle to scale
to large input sequences.

Paes et al. (2024) accordingly propose a method
in which they first group the input at the coarsest
granularity (e.g., paragraphs) and then iteratively
refine the granularity only for the highest attributed
group. This approach allows them to greatly reduce
the computation time, but it can fail to precisely
pinpoint the important parts of the input that are
in the groups which do not get the highest attri-
bution score. It also relies on the assumption that
the fixed granularities used for the explanation are
interpretable.

Cheng et al. (2025) emphasize the importance of
the human understanding of language in creating
explanations. They thus group the features in the
input by use of a syntactic tree allowing them to
make semantically meaningful groups.

Despite research into improving explanations by
attributing features at differing granularities, little
work has been done to directly involve humans
in the creation of such explanations. We close
this gap by empowering users to customize the
attributions in a way that best suits their needs,
while still informing them of the fidelity of the
created explanations to stay aligned with the model.

5.2 LLM Explanation Interfaces

Recent research has focused on helping users gain a
deeper understanding of LLMs through interactive
visual interfaces.

Many of these interfaces target specific neural
networks and explain the model by visualizing the
architecture and the model’s inner computations
(Zeiler and Fergus, 2013; Ming et al., 2017; Stro-
belt et al., 2016, 2018).

However, as it may not always be possible to
access the model’s internal structure, there has also
been a rise in model-agnostic LLM interfaces (Cos-

cia and Endert, 2024; Cheng et al., 2024; Arawjo
et al., 2024; Kahng et al., 2024). Many of these
tools allow users to investigate what a model will
answer, but they do not provide users with precise
tools to explain why a model answers that way.

LLM Checkup (Wang et al., 2024) allows users
to explore the model’s reasoning by chatting with
the model. This approach relies on model self-
explanation, however, which can be misleading as
the explanations often lack fidelity (Madsen et al.,
2024; Turpin et al., 2023).

Closely related to our work, Cheng et al. (2025)
analyze the LLM’s predictions by perturbing the
input with meaningful counterfactuals. They use
a syntactic tree to define semantically meaningful
segments in the input which can be ablated in a per-
turbation. This allows users to perform an analysis
similar to attribution-based explanation, as they can
test which of the defined segments are relevant for
the model’s prediction.

Tenney et al. (2024) also present an interface
where users can choose the granularity of feature
attribution. However, their tool relies on model-
specific methods limiting its applicability and only
allows users to specify the features at fixed granu-
larities or by use of a regex, which means customiz-
ing explanations is largely not possible.

We further emphasize the need for users to en-
abled to fully customize the explanation rather than
just choosing from a limited set of options. Our
model-agnostic approach also makes our system
more broadly applicable and the use of the fidelity
metric allows users to make certain that their cus-
tom explanations have high fidelity.

6 Conclusion

We introduce CafGa, a tool that enables users to
generate explanations at arbitrary granularities by
grouping words in a customized manner. We ar-
gue that using CafGa users can create more inter-
pretable explanations. CafGa also provides users
with a fidelity metric to ensure that the created
explanations still align with the model’s decision
making. Through a case study and a user study, we
demonstrate CafGa’s usability and effectiveness,
finding that users successfully created explanations
that were preferred over automatic methods. This
highlights the value of human involvement in cre-
ating interpretable explanations.

466

Limitations

Our user study was limited by a small sample size
due to the constrained number of available partic-
ipants. In future work, we would like to conduct
a larger-scale evaluation. In particular, we believe
that evaluating the practical use of CafGa in real-
world, non-laboratory settings would provide valu-
able insights and offer a more accurate assessment
of its usability and effectiveness.

Approximating the Shapley value involves a
trade-off between speed and accuracy. Using
fewer groups increases computational efficiency
but risks obscuring important information within
those groups. Conversely, creating many word
groups improves fidelity but substantially reduces
speed. Providing users with appropriate guidance
in balancing this trade-off and thereby determining
a suitable number of groups remains an important
direction for future investigation.

We use deletion and insertion as fidelity met-
rics which are the most common fidelity metrics
for attribution-based explanations and can be intu-
itively visualized for users. However, these met-
rics introduce a degree of circularity as both the
explanation and the evaluation are based on per-
turbation. Their applicability also becomes ques-
tionable when features represent groups rather than
atomic units (i.e., words). To mitigate this, we plot
the results with respect to atomic units rather than
grouped features. Nonetheless, further research is
needed to develop more reliable fidelity metrics.

Ethics Statement

The participants were sourced from a pool of aca-
demic labs, which work on reciprocal basis instead
of monetary rewards.

References

Kenza Amara, Rita Sevastjanova, and Mennatallah El-
Assady. 2024. SyntaxShap: Syntax-aware explain-
ability method for text generation. In Findings of
the Association for Computational Linguistics: ACL
2024, pages 4551-4566. Association for Computa-
tional Linguistics.

Ian Arawjo, Chelse Swoopes, Priyan Vaithilingam, Mar-
tin Wattenberg, and Elena L. Glassman. 2024. Chain-
forge: A visual toolkit for prompt engineering and
LLM hypothesis testing. In Proceedings of the CHI
Conference on Human Factors in Computing Systems,
CHI *24, page 1-18. ACM.

Gagan Bansal, Tongshuang Wu, Joyce Zhou, Ray-
mond Fok, Besmira Nushi, Ece Kamar, Marco Tulio
Ribeiro, and Daniel Weld. 2021. Does the whole
exceed its parts? the effect of ai explanations on
complementary team performance. In Proceedings
of the 2021 CHI Conference on Human Factors in
Computing Systems, CHI *21, New York, NY, USA.
Association for Computing Machinery.

Hanjie Chen, Guangtao Zheng, and Yangfeng Ji. 2020.
Generating hierarchical explanations on text classifi-
cation via feature interaction detection. In Proceed-
ings of the 58th Annual Meeting of the Association
Jfor Computational Linguistics, pages 5578-5593. As-
sociation for Computational Linguistics.

Furui Cheng, Vilém Zouhar, Robin Shing Moon Chan,
Daniel Furst, Hendrik Strobelt, and Mennatallah El-
Assady. 2025. Understanding large language model
behaviors through interactive counterfactual genera-
tion and analysis. IEEE Transactions on Visualiza-
tion and Computer Graphics.

Furui Cheng, Vilém Zouhar, Simran Arora, Mrin-
maya Sachan, Hendrik Strobelt, and Mennatallah
El-Assady. 2024. RELIC: Investigating large lan-
guage model responses using self-consistency. In
Proceedings of the 2024 CHI conference on human
factors in computing systems.

Adam Coscia and Alex Endert. 2024. KnowledgeVIS:
Interpreting language models by comparing fill-in-
the-blank prompts. IEEE Transactions on Visualiza-
tion and Computer Graphics, 30(9):6520—6532.

Mengnan Du, Varun Manjunatha, Rajiv Jain, Ruchi
Deshpande, Franck Dernoncourt, Jiuxiang Gu, Tong
Sun, and Xia Hu. 2021. Towards interpreting and
mitigating shortcut learning behavior of NLU models.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 915-929. Association for Computational Lin-
guistics.

Yufang Hou. 2020. Bridging anaphora resolution as
question answering. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 1428-1438. Association for Com-
putational Linguistics.

Xisen Jin, Junyi Du, Zhongyu Wei, Xiangyang Xue, and
Xiang Ren. 2019. Towards hierarchical importance
attribution: Explaining compositional semantics for
neural sequence models. CoRR, abs/1911.06194.

Yiming Ju, Yuanzhe Zhang, Kang Liu, and Jun Zhao.
2023. A hierarchical explanation generation method
based on feature interaction detection. In Findings of
the Association for Computational Linguistics: ACL
2023, pages 12600-12611. Association for Computa-
tional Linguistics.

Minsuk Kahng, Ian Tenney, Mahima Pushkarna,
Michael Xieyang Liu, James Wexler, Emily Reif,

467

https://doi.org/10.18653/v1/2024.findings-acl.270
https://doi.org/10.18653/v1/2024.findings-acl.270
https://doi.org/10.1145/3613904.3642016
https://doi.org/10.1145/3613904.3642016
https://doi.org/10.1145/3613904.3642016
https://doi.org/10.1145/3411764.3445717
https://doi.org/10.1145/3411764.3445717
https://doi.org/10.1145/3411764.3445717
https://doi.org/10.18653/v1/2020.acl-main.494
https://doi.org/10.18653/v1/2020.acl-main.494
https://api.semanticscholar.org/CorpusID:269502195
https://api.semanticscholar.org/CorpusID:269502195
https://api.semanticscholar.org/CorpusID:269502195
https://doi.org/https://doi.org/10.1145/3613904.3641904
https://doi.org/https://doi.org/10.1145/3613904.3641904
https://doi.org/10.1109/tvcg.2023.3346713
https://doi.org/10.1109/tvcg.2023.3346713
https://doi.org/10.1109/tvcg.2023.3346713
https://doi.org/10.18653/v1/2021.naacl-main.71
https://doi.org/10.18653/v1/2021.naacl-main.71
https://doi.org/10.18653/v1/2020.acl-main.132
https://doi.org/10.18653/v1/2020.acl-main.132
http://arxiv.org/abs/1911.06194
http://arxiv.org/abs/1911.06194
http://arxiv.org/abs/1911.06194
https://doi.org/10.18653/v1/2023.findings-acl.798
https://doi.org/10.18653/v1/2023.findings-acl.798

Krystal Kallarackal, Minsuk Chang, Michael Terry,
and Lucas Dixon. 2024. LLM comparator: Visual an-
alytics for side-by-side evaluation of large language
models. In Extended Abstracts of the CHI Confer-
ence on Human Factors in Computing Systems, CHI
EA ’24, New York, NY, USA.

Ehsan Kamalloo, Nouha Dziri, Charles Clarke, and
Davood Rafiei. 2023. Evaluating open-domain ques-
tion answering in the era of large language models.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 5591-5606. Association for
Computational Linguistics.

Scott M. Lundberg. 2024. Exact explainer — SHAP
latest documentation.

Scott M. Lundberg and Su-In Lee. 2017. A unified
approach to interpreting model predictions. In Pro-
ceedings of the 3 1st International Conference on Neu-
ral Information Processing Systems, NIPS’17, page
4768-4777, Red Hook, NY, USA. Curran Associates
Inc.

Andreas Madsen, Sarath Chandar, and Siva Reddy. 2024.
Are self-explanations from large language models
faithful? In Findings of the Association for Com-
putational Linguistics: ACL 2024, pages 295-337.
Association for Computational Linguistics.

Trevor Manz, Nezar Abdennur, and Nils Gehlenborg.
2024. anywidget: reusable widgets for interac-
tive analysis and visualization in computational
notebooks. Journal of Open Source Software,
9(102):6939. Publisher: The Open Journal.

Yao Ming, Shaozu Cao, Ruixiang Zhang, Zhen Li,
Yuanzhe Chen, Yangqiu Song, and Huamin Qu. 2017.
Understanding hidden memories of recurrent neural
networks. In 2017 IEEE Conference on Visual Ana-
lytics Science and Technology (VAST), pages 13-24.

Edoardo Mosca, Ferenc Szigeti, Stella Tragianni, Daniel
Gallagher, and Georg Groh. 2022. SHAP-based ex-
planation methods: A review for NLP interpretabil-
ity. In Proceedings of the 29th International Con-
ference on Computational Linguistics, pages 4593—
4603, Gyeongju, Republic of Korea. International
Committee on Computational Linguistics.

W. James Murdoch, Peter J. Liu, and Bin Yu. 2018.
Beyond word importance: Contextual decomposition
to extract interactions from LSTMSs. In International
Conference on Learning Representations.

Lucas Monteiro Paes, Dennis Wei, Hyo Jin Do, Hendrik
Strobelt, Ronny Luss, Amit Dhurandhar, Manish Na-
gireddy, Karthikeyan Natesan Ramamurthy, Prasanna
Sattigeri, Werner Geyer, and Soumya Ghosh. 2024.
Multi-level explanations for generative language
models. ArXiv, abs/2403.14459.

Vitali Petsiuk, Abir Das, and Kate Saenko. 2018. RISE:
Randomized input sampling for explanation of black-
box models. ArXiv, abs/1806.07421.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383-2392, Austin,
Texas. Association for Computational Linguistics.

Yuqi Ren and Deyi Xiong. 2023. HuaSLIM: Human at-
tention motivated shortcut learning identification and
mitigation for large language models. In Findings of
the Association for Computational Linguistics: ACL
2023, pages 12350-12365. Association for Computa-
tional Linguistics.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. "why should i trust you?": Explain-
ing the predictions of any classifier. In Proceedings
of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD
’16, page 1135-1144, New York, NY, USA.

Wojciech Samek, Alexander Binder, Gregoire Mon-
tavon, Sebastian Lapuschkin, and Klaus-Robert
Miiller. 2017. Evaluating the visualization of what a
deep neural network has learned. IEEE Transactions
on Neural Networks and Learning Systems, 28:2660—
2673.

Damien Sileo. 2024. tasksource: A large collection
of NLP tasks with a structured dataset preprocess-
ing framework. In Proceedings of the 2024 Joint
International Conference on Computational Linguis-
tics, Language Resources and Evaluation (LREC-
COLING 2024), pages 1565515684, Torino, Italia.
ELRA and ICCL.

Chandan Singh, W. James Murdoch, and Bin Yu. 2019.
Hierarchical interpretations for neural network pre-
dictions. In International Conference on Learning
Representations.

Hendrik Strobelt, Sebastian Gehrmann, Michael
Behrisch, Adam Perer, Hanspeter Pfister, and Alexan-
der M. Rush. 2018. Seq2seq-vis: A visual debug-
ging tool for sequence-to-sequence models. CoRR,
abs/1804.09299.

Hendrik Strobelt, Sebastian Gehrmann, Bernd Huber,
Hanspeter Pfister, and Alexander M. Rush. 2016. Vi-
sual analysis of hidden state dynamics in recurrent
neural networks. CoRR, abs/1606.07461.

Lichao Sun, Yue Huang, Haoran Wang, Siyuan Wu,
Qihui Zhang, Chujie Gao, Yixin Huang, Wenhan
Lyu, Yixuan Zhang, Xiner Li, Zhengliang Liu, Yixin
Liu, Yijue Wang, Zhikun Zhang, Bhavya Kailkhura,
Caiming Xiong, Chaowei Xiao, Chunyuan Li, Eric P.
Xing, Furong Huang, Hao Liu, Heng Ji, Hongyi
Wang, Huan Zhang, Huaxiu Yao, Manolis Kellis,
Marinka Zitnik, Meng Jiang, Mohit Bansal, James
Zou, Jian Pei, Jian Liu, Jianfeng Gao, Jiawei Han,
Jieyu Zhao, Jiliang Tang, Jindong Wang, John C.
Mitchell, Kai Shu, Kaidi Xu, Kai-Wei Chang, Li-
fang He, Lifu Huang, Michael Backes, Neil Zhen-
giang Gong, Philip S. Yu, Pin-Yu Chen, Quanquan

468

https://doi.org/10.1145/3613905.3650755
https://doi.org/10.1145/3613905.3650755
https://doi.org/10.1145/3613905.3650755
https://doi.org/10.18653/v1/2023.acl-long.307
https://doi.org/10.18653/v1/2023.acl-long.307
https://shap.readthedocs.io/en/latest/example_notebooks/api_examples/explainers/Exact.html#Tabular-data-with-partition-(Owen-value)-masking
https://shap.readthedocs.io/en/latest/example_notebooks/api_examples/explainers/Exact.html#Tabular-data-with-partition-(Owen-value)-masking
https://dl.acm.org/doi/10.5555/3295222.3295230
https://dl.acm.org/doi/10.5555/3295222.3295230
https://doi.org/10.18653/v1/2024.findings-acl.19
https://doi.org/10.18653/v1/2024.findings-acl.19
https://doi.org/10.21105/joss.06939
https://doi.org/10.21105/joss.06939
https://doi.org/10.21105/joss.06939
https://doi.org/10.1109/VAST.2017.8585721
https://doi.org/10.1109/VAST.2017.8585721
https://aclanthology.org/2022.coling-1.406
https://aclanthology.org/2022.coling-1.406
https://aclanthology.org/2022.coling-1.406
https://openreview.net/forum?id=rkRwGg-0Z
https://openreview.net/forum?id=rkRwGg-0Z
https://api.semanticscholar.org/CorpusID:268553623
https://api.semanticscholar.org/CorpusID:268553623
https://api.semanticscholar.org/CorpusID:49324724
https://api.semanticscholar.org/CorpusID:49324724
https://api.semanticscholar.org/CorpusID:49324724
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/2023.findings-acl.781
https://doi.org/10.18653/v1/2023.findings-acl.781
https://doi.org/10.18653/v1/2023.findings-acl.781
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1109/TNNLS.2016.2599820
https://doi.org/10.1109/TNNLS.2016.2599820
https://aclanthology.org/2024.lrec-main.1361
https://aclanthology.org/2024.lrec-main.1361
https://aclanthology.org/2024.lrec-main.1361
https://openreview.net/forum?id=SkEqro0ctQ
https://openreview.net/forum?id=SkEqro0ctQ
http://arxiv.org/abs/1804.09299
http://arxiv.org/abs/1804.09299
http://arxiv.org/abs/1606.07461
http://arxiv.org/abs/1606.07461
http://arxiv.org/abs/1606.07461

Gu, Ran Xu, Rex Ying, Shuiwang Ji, Suman Jana,
Tianlong Chen, Tianming Liu, Tianyi Zhou, William
Wang, Xiang Li, Xiangliang Zhang, Xiao Wang,
Xing Xie, Xun Chen, Xuyu Wang, Yan Liu, Yanfang
Ye, Yinzhi Cao, and Yue Zhao. 2024. TrustLLM:
Trustworthiness in large language models. CoRR,
abs/2401.05561.

Ian Tenney, Ryan Mullins, Bin Du, Shree Pandya, Min-

suk Kahng, and Lucas Dixon. 2024. Interactive
prompt debugging with sequence salience.

Miles Turpin, Julian Michael, Ethan Perez, and

Samuel R. Bowman. 2023. Language models don’t
always say what they think: unfaithful explanations
in chain-of-thought prompting. In Proceedings of the
37th International Conference on Neural Information
Processing Systems, NIPS °23, Red Hook, NY, USA.
Curran Associates Inc.

Qianli Wang, Tatiana Anikina, Nils Feldhus, Josef Gen-
abith, Leonhard Hennig, and Sebastian Moller. 2024.
LLMCheckup: Conversational examination of large
language models via interpretability tools and self-
explanations. In Proceedings of the Third Workshop
on Bridging Human—Computer Interaction and Natu-
ral Language Processing, pages 89—104. Association
for Computational Linguistics.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben-
gio, William W. Cohen, Ruslan Salakhutdinov, and
Christopher D. Manning. 2018. HotpotQA: A dataset
for diverse, explainable multi-hop question answer-
ing. In Conference on Empirical Methods in Natural
Language Processing (EMNLP).

YELP. 2015. Yelp academic dataset.

Matthew D. Zeiler and Rob Fergus. 2013. Visualizing
and understanding convolutional networks. CoRR,
abs/1311.2901.

469

https://doi.org/10.48550/arXiv.2401.05561
https://doi.org/10.48550/arXiv.2401.05561
http://arxiv.org/abs/2404.07498
http://arxiv.org/abs/2404.07498
https://doi.org/10.18653/v1/2024.hcinlp-1.9
https://doi.org/10.18653/v1/2024.hcinlp-1.9
https://doi.org/10.18653/v1/2024.hcinlp-1.9
https://business.yelp.com/data/resources/open-dataset/
http://arxiv.org/abs/1311.2901
http://arxiv.org/abs/1311.2901

A Jupyter Notebook Usage

Editing the Assignments

To define the groups in the input over which you would like to get attributions you can use the edit widget to define
the assignment of input segments to groups.

cafga. edit_assignments(input, "word")

/ 128 Python

Edit Tools ~

Clear Evaluation Direction

I'm excited to use CafGa, but I'm not sure about it's usage.

Sample Name

Save

Confirm
Visualizing the Explanation

Finally, we would like to visualize the explanation. Since we used a two-dimensional scalarizer we defacto got two
explanations. Set the scalarizer_index to the index of the scalarizer for which you would like to see the explanation.

scalarizer_index = 0

lanation(

ited_input.input_segments,

—edited_input.group_assignments,

utions=explanation.attributions(scalarizer_index],
sanple_name=edited_input.sample_name,

)

03s Python

Example Attribution Values By Group

I'm -m use CafGa, but I'm not sure about it's excited

usage.

T

Detracting @ B Contributing

Figure 6: The assignment editor and the attributed text
display as Jupyter notebook widgets.

B Operator Descriptions

The operators provided in CafGa can be seen in
Table 3. For the boolean operators we sample
10 model responses and use the percentage of
times the operator is true to evaluate the models
response. For the logical operators we sample a sin-
gle response and use a DeBERTa-based NLI model
(Sileo, 2024) to evaluate the response.

Name Description

Contains Checks whether the response con-
tains the target answer

Equals Checks whether the response equals
the target answer

Starts With Checks whether the response starts
with the target answer

Ends With Checks whether the response ends
with the target answer

Entails Checks whether the response logi-
cally entails the target answer

Contradicts Checks whether the response logi-
cally contradicts the target answer

Semantically Checks whether the response seman-

Equals tically equals the target answer by

applying entailment in both direc-
tions.

Table 3: The operators available in CafGa.

C Task Descriptions

SQuAD: We take local question answering tasks
from SQuAD (Rajpurkar et al., 2016) and place
the question in the template and the context in the
input. The model is asked to answer the question
given the context.

YELP: We take reviews from the YELP academic
dataset (YELP, 2015) and ask the model to predict
whether the review is of positive or negative
sentiment. We place the review in the input and
the prediction instructions in the template.
Prompt: Inspired by the example presented in
Tenney et al. (2024) we create a set of few-shot
prompts that contain errors. The explanation can
be used to detect the errors and also to note parts
in the instructions that cause the model to recreate
the errors in the examples. We put the instructions
and the examples in the input. The template only
contains the new sample for which the user wants
the model to follow the prompt.

HotpotQA: To create complex questions we use
Hotpot QA Yang et al. (2018), which contains
questions that require chaining multiple supporting
facts. We put supporting facts, potentially
misleading facts and the question in the input. The
template only contains the instructions to answer
the question.

BARQA: For long-form text comprehension we
use examples from the Bridging Anaphora dataset
Hou (2020). We place the article in the input and
the question in the template.

470

