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Abstract

High-quality schematic diagrams, which pro-
vide a conceptual overview of the research,
play a crucial role in summarizing and clar-
ifying a study’s core ideas. However, creat-
ing these diagrams is time-consuming for au-
thors and remains challenging for current AI
systems, as it requires both a deep understand-
ing of the paper’s content and a strong sense
of visual design. To address this, we intro-
duce SCISKETCH, an open-source framework
that supports two automated workflows for
schematic diagram generation using foundation
models, shown in Figure 1. 1) In the graphic-
code-based workflow, SCISKETCH follows a
two-stage pipeline: it first produces a layout
plan expressed in a graphical code language
with a self-refinement and self-verification
mechanism. It then integrates empirical images
and symbolic icons to create a visually coher-
ent, informative diagram. 2) In the image-based
workflow, SCISKETCH directly synthesizes the
diagram image through image generation with
a self-refinement mechanism. Through both
automatic and human evaluations, we show
that SCISKETCH outperforms several state-of-
the-art foundation models, including GPT-4o,
Claude-3.7-Sonnet and Gemini-2.5-Pro, in gen-
erating schematic diagrams for scientific papers.
We make SCISKETCH fully open-sourced, pro-
viding researchers with an accessible, exten-
sible tool for high-quality schematic diagram
generation in scientific fields.

1 Introduction

Schematic diagrams have long been recognized as
a critical component in scientific and engineering
research (Larkin and Simon, 1987). High-quality
schematic diagrams can effectively convey com-
plex information in scientific paper through struc-
tured visual representations, enabling readers to
grasp key concepts more efficiently and accurately.

*Equal Contributions. Correspondence: Yilun Zhao
(yilun.zhao@yale.edu).
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Figure 1: Overview of SCISKETCH framework

While recent works (Belouadi et al., 2024; Zala
et al., 2024; Wei et al., 2025) have explored the
generation of diagram from short textual descrip-
tions (typically under 50 words), they fall short
of addressing the more challenging task of gen-
erating schematic diagrams directly from longer
contexts—specifically, full-length scientific papers.

This task is both challenging and important
for several reasons. First, scientific papers con-
tain dense, domain-specific language and com-
plex multi-section structures, which require mod-
els to understand not just isolated sentences but
also the broader context and interdependencies
across sections. Second, identifying what con-
stitutes schematic-worthy content involves deep
semantic understanding and abstraction, as the rel-
evant information is often scattered and implicitly
stated. Third, the generated diagrams must not only
be visually coherent but also semantically faithful
to the source material, which imposes strict con-
straints on layout, labeling, and relational structure.

To address these challenges and support re-
searcher’s productivity, we introduce SCISKETCH,
an open-source framework powered by foundation
models for sketching schematic diagrams in scien-
tific papers. It aims to reduce the manual effort
involved in creating high-quality, informative visu-
als for scientific research. As illustrated in Figure 2
and Figure 3, SCISKETCH supports two workflows:
In the graphic-code-based workflow, it operates in
two key phases: (1) Layout planning, which com-
prises a text analysis module, a layout refinement
module, and a graphic code verification module to
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produce a coherent layout plan (Feng et al., 2023;
Lian et al., 2023; Cho et al., 2023). (2) Diagram
generation, where an element discriminator module
collaborates with an empirical figure retrieval mod-
ule and an SVG generation module to enrich the
layout plan with visual elements, ultimately pro-
ducing the final schematic diagram that enhances
both visual clarity and semantic richness. In the
image-based workflow, the framework uses a text
analysis module and an image refinement module
to synthesize a coherent diagram image directly.

To evaluate the effectiveness of diagram gen-
eration, we introduce an automated assessment
method that leverages multimodal foundation mod-
els. Our validation shows that the model’s evalua-
tions closely align with human judgments. Through
extensive experiments and analysis, we demon-
strate that the SCISKETCH framework surpasses
state-of-the-art models, including GPT-4o, Claude-
3.7-Sonnet, and Gemini-2.5-Pro, in both the quality
and usability of the generated diagrams.

2 SCISKETCH Framework

Given a scientific paper, SCISKETCH is designed to
automatically generate schematic diagrams based
on user requests in two workflows.

2.1 Graphic-code-based Workflow

In the graphic-code-based workflow: it coordinates
multiple modules in a workflow consisting of two
main phases: Layout Planning and Diagram Gen-
eration, which we describe in detail below.

2.1.1 Layout Planning

At a high level, the layout planning phase begins by
interpreting the user’s intent and the provided sci-
entific paper, producing a textual description of the
target diagram. This description is then translated
into structured graphic code, iteratively refined for
clarity and accuracy, and finally verified to ensure
syntactic correctness and adherence to the target
specification. We detail the design as follows:

Text Analysis. Unlike typical text-to-image gen-
eration tasks, where an image is generated based on
a short description, scientific schematic diagrams
generation requires reasoning over long-form in-
puts, such as entire scientific papers that may span
dozens of pages. To accurately capture the user’s
intent and extract relevant content, we employ a

foundation model (specifically GPT-4o1 for all
SCISKETCH modules involving foundation mod-
els) to analyze the full text. Based on the user’s
request, the model generates a structured textual de-
scription of the target diagram layout, detailing key
components and their relationships. This intermedi-
ate representation serves as a high-level blueprint,
guiding the subsequent diagram generation process
rather than generating directly from the raw paper.

Layout Planning. Schematic diagrams are typi-
cally represented using vector graphics due to their
scalability and clarity. We adopt an XML-based
representation, specifically the XML schema used
by draw.io, which offers both programmatic con-
trol and ease of manual refinement. Given the tex-
tual description produced in the previous stage, we
prompt a foundation model to generate the corre-
sponding XML code that structurally encodes the
diagram as the initial diagram layout.

Layout Refinement. Foundation models can
enhance their outputs through iterative self-
evaluation (Madaan et al., 2023). To improve
the precision and quality of the initial layout, we
prompt the foundation model to critically assess
its own output. This self-evaluation checks for
missing elements, ambiguous or inconsistent con-
nections, and opportunities for aesthetic improve-
ment—while maintaining semantic fidelity. Based
on its own feedback, the foundation model is
prompted to revise the layout as needed. If the
feedback indicates no changes are necessary, the
current layout is accepted as final. This feedback-
refinement loop continues for up to four iterations,
ensuring a high-quality and semantically sound di-
agram layout.

Graphic Code Verification. The refined diagram
layout plan in graphic code language may occasion-
ally contain syntactic errors or hallucinated struc-
tures, resulting in invalid or uncompilable code.
For instance, draw.io’s XML schema requires each
<mxCell> element (except the root) to have a par-
ent attribute, and special characters must be prop-
erly escaped. To mitigate such issues, we employ
an iterative verification process in which we at-
tempt a foundation model to find potential errors.
If any error is reported, we prompt the foundation
model to produce the corrected diagram code. This
loop continues until no error is reported.

1We use gpt-4o-2024-11-20 for SCISKETCH due to
its superior performance.
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Figure 2: Overview of the graphic-code-based workflow of SCISKETCH two-stage framework. The first stage,
layout generation, produces an initial diagram layout plan, which is iteratively refined by a layout refinement
module to enhance structural coherence and completeness. The refined layout is then validated by a code verification
module. In the second stage, diagram generation, an element discriminator identifies components suitable for
replacement and routes them either to an empirical image retrieval module or an SVG generator—based on their
type—to construct the final diagram.

2.1.2 Diagram Generation

Scientific schematic diagrams typically consist of
two categories of visual elements: (1) empirical
figures, which present data-driven content such as
experimental results or input samples; and (2) sym-
bolic representations, which illustrate abstract con-
cepts like databases, models, or neural networks.
Generating such diagrams requires the incorpora-
tion of domain-relevant visuals to enhance clar-
ity and expressiveness. In the diagram generation
phase, the discriminator module systematically ana-
lyzes the diagram layout to determine whether each
component should be represented as a symbolic
icon or an empirical figure. Identified components
are then handled by either a symbolic generator or
an empirical figure retrieval module respectively.

Element Discriminator. The element discrim-
inator takes the verified diagram layout as input
and determines a replacement plan by prompting a
foundation model. The output is a structured data
representation containing four fields for each el-
ement: id, value, type, and description.
The id serves as a unique identifier to locate the
corresponding element within the diagram. The

type field is critical, as it dictates the subsequent
processing step: if the type is empirical, the ele-
ment is forwarded to the empirical image retrieval
module; if symbolic, it is passed to the symbolic
generator.

Symbolic Generator. Scalable Vector Graphics
(SVGs) are widely used for symbolic icons due
to their high precision, consistent visual quality
across varying resolutions, compact file size and
ease of editing. The symbolic generator module
takes the element’s value and description as
input and instruct GPT-4o to produce a simple yet
informative SVG icon to replace the corresponding
element in diagram.

Empirical Figure Retrieval. For elements iden-
tified as empirical, the empirical figure retrieval
module attempts to match them with relevant fig-
ures provided by the user. Authors may optionally
supply a set of candidate figures as input to the sys-
tem. The module compares each element’s value
with the filenames or associated metadata of the
provided figures. If a suitable match is found, the
image is selected as the replacement. If no rele-
vant figure is identified, the element is passed to
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Figure 3: Overview of the image-based workflow of SCISKETCH two-stage framework. An initial diagram image is
synthesized using an image generation API. This image is then iteratively refined under the guidance of an image
refinement module to improve clarity and structure.

the symbolic form generator module to produce a
fallback symbolic representation.

2.2 Image-based Workflow

In the image-based workflow: multiple modules are
coordinated to synthesize the diagram image. Simi-
lar to the layout planning phase in the graphic-code-
based workflow, the process begins with generating
a textual description of the target diagram. How-
ever, rather than translating this description into
graphical code, the image-based workflow lever-
ages a foundation model to generate a diagram
image directly from the description. The image is
then refined iteratively for clarity and accuracy.

3 Experiment

3.1 Evaluation Data

To construct our evaluation set within a limited
budget, we carefully curated 40 scientific papers
from Hugging Face Daily Papers2 and arXiv. The
selection includes a balance mix of classic papers
and recently published papers in computer science.
Each selected paper contains a clear conceptual
pipeline figure, which we use as the reference for
evaluating diagram generation quality.

3.2 Evaluation Protocol

Evaluation Criteria. We evaluate the quality of
the generated schematic diagram using three cri-
teria: (1) Completeness — whether all key com-
ponents described in the source paper are repre-
sented in the diagram, with no critical elements
omitted; (2) Logical Consistency — whether the
relationships and connections between components
accurately reflect the logical structure and intended
semantics of the paper; and (3) Aesthetic Quality —
the visual clarity of the diagram, including layout

2https://huggingface.co/papers

organization, appropriate spacing, and the absence
of overlapping or misaligned elements.

Automated Evaluation. Leveraging foundation
models as judges has received increasing attention
and adoption in recent work (Zheng et al., 2023).
As demonstrated in the previous LLM-as-a-judge
work, strong LLMs like GPT-4 show very high
agreements with human experts. We employ GPT-
4o to assess the quality of generated diagrams by
comparing them to their corresponding reference
diagrams from the original papers. For each evalua-
tion criterion—Completeness, Logical Consistency,
and Aesthetic Quality—the model is prompted to
first provide a rationale for its assessment, followed
by a score on a 1–5 scale, where 1 denotes the low-
est quality and 5 denotes the highest.

Human Evaluation. We employed four evalua-
tors with Master’s degree in Computer Science to
assess the quality of the generated diagrams. We
randomly sampled 20 papers from our evaluation
set. We ask the evaluator to assign a score from 1 to
5 to each generated diagram with regarding to the
three criteria, Completeness, Logical Consistency
and Aesthetic Quality. We document the definition
of each metric in detail in Appendix C. We provide
the ground truth diagram from the original paper
as the reference.

3.3 Baseline Systems

Due to the limited prior work on generating dia-
grams directly from full scientific papers, we com-
pare our framework against state-of-the-art founda-
tion models capable of handling document-level in-
puts, i.e., GPT-4o, Claude-3.7-Sonnet, and Gemini-
2.5-Pro. To ensure a fair comparison and avoid
information leakage, we manually remove the orig-
inal diagram from each paper before inputting it
into the baseline models.
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Model-based Evaluation Human Evaluation

System Comp. Logical
Cons.

Aesthetic
Quality Average Comp. Logical

Cons.
Aesthetic
Quality Average

GPT-4o 4.1 4.7 3.5 4.1 3.8 3.9 2.1 3.3
Gemini-2.5-Pro 4.5 4.7 2.4 3.9 4.1 4.0 2.5 3.5
Claude-3.7-Sonnet 4.2 4.2 4.4 4.3 4.2 4.3 3.6 4.0

SCISKETCH (drawio) 4.4 4.6 4.2 4.4 4.3 4.1 3.7 4.0
SCISKETCH (image) 4.4 4.0 4.6 4.3 4.3 3.8 4.3 4.1

Table 1: Evaluation of diagram quality across models by both model-based and human evaluation. Metrics include completeness,
logical consistency, and aesthetic quality.

3.4 Experimental Results and Analysis

Main Findings. Table 1 presents the evaluation
scores from both the multimodal model and hu-
man evaluators. Both sources indicate that the
SCISKETCH framework achieves high scores. All
methods—including the baselines and SCISKETCH

—perform comparably well in terms of complete-
ness and logical consistency. The most notable
discrepancy lies in aesthetic quality, where human
evaluators showed a clear preference for diagrams
that incorporate visual elements.

In addition to quantitative evaluation, we also
conducted a qualitative analysis of the generated di-
agrams. Selected examples from both the baseline
models and our proposed framework are shown
in Appendix A. With the latest model update on
March 25th, GPT-4o is now capable of generating
images. In most cases, its outputs consist of generic
rectangular boxes with minimal structure, render-
ing them largely unusable in scientific contexts.

Gemini 2.5 Pro often produces diagrams in
Markdown-inspired formats such as Mermaid.
While it is capable of capturing logical structure,
its outputs tend to be overly verbose and visually
cluttered, making them less suitable for scientific
papers. Claude 3.7 Sonnet attempts to use SVG
representations and is generally more concise than
Gemini. However, it lacks visual elements and is
difficult to edit or post-process manually. More-
over, due to the syntax constraints of the graphical
languages, the Mermaid code generated by Gemini
often fails to render successfully on the first attempt
and typically requires manual correction.

In contrast, our proposed framework generates
diagrams that are both concise and semantically
faithful to the original paper. It captures the key
components while avoiding unnecessary elements
that may distract the reader. Furthermore, by inte-
grating symbolic icons and empirical images, the
diagrams are better suited for inclusion in scientific

Setting Iteration Numbers Executable Rate

w/o Verification 0 0.882
w Verification 0.118 1.0

Table 2: Average iteration counts and execution rates, illus-
trating the effectiveness of the verification module.

papers. Additionally, in the graphic-code based
workflow, the output is editable XML. Users can
conveniently refine the diagrams post-generation
to meet specific formatting or presentation needs.

Effectiveness of the framework. All experi-
ments are initially conducted using GPT-4o. To
assess the robustness and generalizability of our
framework, we replace GPT-4o with the open-
source language model DeepSeek. We randomly
sampled three papers for this comparison, and the
results are presented in Appendix D. Despite with
the open-sourced language model, the framework
can still produce high-quality diagrams: the gener-
ated outputs effectively capture the core concepts
of the papers and maintain logical coherence in the
arrangement of components.

Ablation Study. Our framework uses three key
modules to produce the final diagram layout: the
text analysis module, the refinement module, and
the code verification module. To evaluate the con-
tribution of the verification module, we conduct an
ablation experiment by generating diagrams with-
out the verification module. As shown in Table 2,
without verification, the code executable rate drops
to 0.883. When the verification module is enabled,
with an average of 0.118 correction iterations, the
framework achieves a 100% code execution suc-
cess rate. We also assess the impact of the refine-
ment module. On average, each diagram genera-
tion involves 2.12 iterations of refinement. Each
iteration introduces improvements such as adding
missing components, adjusting layouts, or enhanc-

407



ing visual clarity through colors and highlights.
Figure 10 shows an example. While the first iter-
ation already produces a solid initial layout, the
second refinement iteration groups multiple out-
puts into a single cluster, enhancing both clarity
and readability.

Case Study. To further illustrate the strengths
and limitations of SCISKETCH in both workflows,
we conduct a detailed analysis of both successful
and unsuccessful cases, as shown in Figure 11 and
Figure 12.

• Graphic-code-based Workflow: The top ex-
ample corresponds to the VQ-VAE paper and
demonstrates a high-quality generation. The left
side shows the original diagram from the paper.
As seen in the generated version, the system suc-
cessfully captures the core components—such as
the encoder, decoder, and embedding table—and
integrates both input/output data and symbolic
icons, resulting in a visually appealing and in-
formative diagram. Despite these strengths, the
SCISKETCH framework still has some limita-
tions. In the bottom example which corresponds
to the CoCA paper, although the diagram cor-
rectly represents the two generative paths and in-
cludes an amplification process, the complexity
of the logic makes it challenging for the system
to produce a clear and structured layout.

• Image-based Workflow: The top example corre-
sponds to the FABLES paper and demonstrates a
high-quality generation. In addition to the same
strengths of the graphic-code-based workflow,
the image-based-workflow can generate a more
coherent diagram with elements are placed har-
moniously and the icons are consistent due to
the direct generation property. However, this
approach also has certain limitations. In the bot-
tom example which corresponds to the TEMPLE-
MQA paper, although the diagram successfully
conveys the core idea, some words are misspelled
in the image. Furthermore, due to the generative
nature, occasional hallucinated elements are in-
troduced.

These issues highlight open challenges and poten-
tial directions for improving the framework in fu-
ture work.

4 Related Work

Recent advances in text-to-image generation have
focused predominantly on producing photorealistic

images (Ramesh et al., 2021; Saharia et al., 2022;
Zhang et al., 2023; Dai et al., 2023; Chang et al.,
2023). While these models achieve impressive vi-
sual fidelity, they offer limited utility for generat-
ing structured, symbolic representations such as
scientific diagrams. In contrast, emerging work on
vector graphic generation in SVG format (Frans
et al., 2022; Jain et al., 2023; Wu et al., 2023,
2024) shows potential for creating simple illustra-
tions. However, these approaches fall short in han-
dling the complex reasoning and spatial planning
required for scientific schematics.

More directly relevant efforts include Au-
tomaTikZ (Belouadi et al., 2024), which fine-tunes
foundation models to generate TikZ code for vector
graphics, and DiagrammerGPT (Zala et al., 2024),
which adopts a two-stage pipeline involving lay-
out planning followed by diagram synthesis using
diffusion models. Similarly, DiagramAgent (Wei
et al., 2025) coordinates multiple specialized agents
to plan, code, and edit diagrams, showcasing the
promise of large language models in structured con-
tent generation. Despite these innovations, such
systems are typically limited to brief prompts and
struggle with the dense, interrelated content char-
acteristic of full-length scientific papers. Moreover,
they offer limited support for hybrid diagrams that
integrate empirical data visualizations with sym-
bolic or conceptual elements—core features of sci-
entific schematics.

To our knowledge, SCISKETCH is the first
open-source framework designed specifically for
schematic diagram generation for scientific re-
search, making it accessible and extensible for the
broader research community.

5 Conclusion

This work tackles the challenge of generating
schematic diagrams from full-length scientific pa-
pers. We introduce the first open-source framework
specifically designed for this task, enabling the cre-
ation of scientific diagrams directly from full-text
content. Our system outperforms SOTA models in
both quantitative metrics and human evaluations.
By automating diagram generation, our approach
has the potential to significantly boost researchers’
productivity across academia and industry, stream-
lining the creation of high-quality visualizations.
Future work could focus on semantic abstraction
of generated SVG icons and enhancing layout ro-
bustness for complex diagram structures.
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A Select Examples

Example diagrams generation results from state-
of-the-art foundation models (GPT-4o, Gemini-
2.5-Pro, Claude-3.7-Sonnet) and SCISKETCH are
shown in Figure 4, Figure 5, Figure 6, Figure 7,
Figure 8, Figure 9. Compared to the baselines, our
method produces diagrams that better align with the
core concepts and logical structure of the original
paper, while also exhibiting higher aesthetic qual-
ity. Moreover, our framework captures essential
components without including verbose or irrelevant
elements, resulting in concise and clear diagrams
that effectively convey the intended information.

B Prompts

B.1 Layout Planning Phase in
Graphic-Code-Based Workflow

Text Analysis
You are an expert in describing a scientific diagram

given the caption and the content of the paper.

You should give a detailed description of the

diagram which will be used to generate the diagram.

Output the description within the <description>

</description> tag.

You should follow the following steps:

1. Read the paper comprehensively and extract all

the information that relates to the caption.

2. Based on the caption and the paper, decide the

type of the diagram.

3. Based on the caption, paper content and the type

of the diagram, identify the components and layout

of the diagram.

4. Generate a detailed description of the diagram.

The description should comepletely come from the

paper. And it should match the caption.

5. Check the description with the caption and the

paper, make sure the description is correct and

complete. If not, revise the description until it

is correct and complete.

6. Wrap the description within the <description>

</description> tag.

Paper Content: {paper_content}

Caption: {caption}

Layout Generation
You are an expert in generating a scientific diagram

based on the description of the diagram. You should

generate an executable code of {language} to fully

represent the description. After generation, you

need to verify to make sure it could be executed

without any error.

You could follow the following steps:

1. Analyze the description and identify the type,

components and layout of the diagram.

2. Generate the executable {language} code for all

the components and layout.

3. Make sure the code covers all the components of

the description.

4. Verify the code to make sure it could be

executed without any error.

5. Return your result in a code block wrapped with

“‘.

Think step by step and make sure the diagram is

clear and matches the description and the caption.

Description: {description}

Code:

Layout Refinement
You are an expert in planning and designing a

scientific diagram with the {language}. Given

the description, the caption, and the code of

the diagram, you need to check if there is any

improvement to make the diagram more precise and

appealing to the reader. You should follow the

following steps:

1. Analyze the description and the caption of the

diagram to understand the components and layout of

the diagram.

2. Analyze the code and consider how the scientific

diagram can be enhanced to make it match the

description and caption.

3. Consider how to arrange the components and

layout of the diagram to make it more appealing to

the reader.

4. Try to avoid overlap of components as much as

possible.

5. If the code is good enough, you should not make

any changes to the code.

You will first need to decide if any improvement is

needed. You should wrap your decision inside the

<decision></decision> tag.

You should only input yes or no inside the

<decision></decision> tag.

If the decision is yes, you should then generate the

improved code in a code block wrapped with “‘.

Think step by step and make sure the code is

self-contained and executable.

Description: {description}

Caption: {caption}

Diagram: {diagram}

Graphic Code Verification
You are an expert of {language}. You know the rules

and regulations of {language}. You will be given

the {language} code of the diagram. You should

verify the code to make sure it could be executed

without any error. If you identify any error, you

should fix the error and output the fixed code.

You will first decide if there is any error in the

code. You should wrap your decision inside the

<decision></decision> tag. You should only input

yes or no inside the <decision></decision> tag.

If there are errors in the code, you should then

generate the fixed code in a code block wrapped with

“‘.

Think step by step and make sure the code is

self-contained and executable.

Here are some rules to follow:

1. The child-parent relationship should be correct

-- no child should be the parent of itself or the

parent of its parent.

2. For each mxGeometry object, there should be an

as="geometry" attribute at the end.

3. Each mxCell should have a parent.

Diagram: {diagram}

B.2 Diagram Generation Phase in
Graphic-Code-Based Workflow

Element Discriminator
You are a scientific researcher with professional

design skills. Given a drawio diagram which shows a
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Figure 4: Example diagram from the original paper. The left is the Budget Relocation paper, the right is the DyLAN
paper

Figure 5: Example diagram generated by GPT-4o

Figure 6: Example diagram generated by Gemini-2.5-Pro

Figure 7: Example diagram generated by Claude-3.7-Sonnet

diagram of a scientific paper, your job is to select

some of the components to be replaced by images to

make it more appealing. The images should come from

either the author’s input, or could be replaced by a

vivid svg icon.

You should follow the following steps:

1. Comprehend the drawio diagram thoroughly.

2. Identify which component should be replaced with

412



Figure 8: Example diagram generated by SCISKETCH graphic-code-based workflow

Figure 9: Example diagram generated by SCISKETCH image-based workflow

Figure 10: An example illustrating how the iterative refinement process improves diagram quality. In the second
iteration, the color of the "Compute Budget" bars is adjusted for better visibility and thematic alignment, and
multiple outputs are grouped into a single cluster to enhance clarity.

an image to make the diagram look better.

3. If the component is a concrete example or data

from the paper, then it should be provided by the

author.

4. If the component is an abstract component which

could be replaced by a svg icon, then it should be

provided by a svg generator.

5. You need to output the components result which

could be replaced by an image in a valid json string

as a list of dictionaries.

The dictionary should strictly follow the rules:

1. source: the replaced image source either be

"author" or "svg" according to the rules.

2. id: the id of the mxCell which should be

replaced.

3. title: the value of the mxCell.

4. description: a detailed description of the

component which will help generate the image later
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Figure 11: Examples of diagrams generated by SCISKETCH framework graphic-code-based workflow. The top
example illustrates a high-quality generation with accurate structure and visual clarity. The bottom example
demonstrates a case with structural or semantic errors.

Input Request Referenced Image Image-based-workflow

The pipeline for 
collecting faithfulness 

annotations in 
book-length 

summarization

Overview of 
TEMPLE-MQA

Figure 12: Examples of diagrams generated by SCISKETCH framework image-based workflow. The top example
illustrates a high-quality generation with accurate structure and visual clarity. The bottom example demonstrates a
case with typos and hallucinations.

on.

Think step by step and put the final result in a

valid json string wrapped by triple “‘.

Diagram: {diagram}

SVG Generation
You are an excellent svg designer. Your job is to

generate an svg given the title and description of

the svg. Make it as simple as possible, otherwise

it will mess up with other components in a diagram.

Output the svg and wrap it within triple “‘.

title: {title}

description: {description}

Empirical Figure Retrieval
You are an expert in matching for an image in a

given candidate_list with image names based on the

title and description. You will need to give the

index if the image is found, otherwise output -1.

The index is zero based. Only output the number of

the index.

title: {title}

description: {description}

candidate_list: {candidate_list}

index:

B.3 Diagram Generation in Image-Based
Workflow

Diagram Image Refinement
You are an expert in assessing the quality of an

image given the description. You need to find out

if there are any issues in the image, and if so, how
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to fix them. Output the decision and wrap it inside

the <decision></decision> tag. You should only

output yes or no inside the <decision></decision>

tag. If nothing needs to be fixed, you should

output no.

Output your assessment and suggestions inside the

<suggestion></suggestion> tag.

Description: {description}

C Evaluation

C.1 Human Evaluation Criteria
We ask the evaluator to give a score from 1 to 5 with regarding
to the three fine-grained aspects, Completeness, Logical Con-
sistency and Aesthetic Quality. The definition and instruction
of scoring is shown in Table 3

D Experiments

D.1 Experiments with DeepSeek
To evaluate the adaptability of our framework to open-source
foundation models, We replace all the foundation model in the
framework with DeepSeek. And we generate the diagrams for
three sampled papers. The result is shown in Figure 13
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Aspect Definition Instructions

Completeness

Evaluate if the diagram includes all
essential components and elements

described in the source paper without
omitting critical information.

Score 1 means the diagram is missing
most of the main components or fails to

capture essential parts of the source
paper.

Score 5 means the diagram includes all
relevant components, fully representing

the source material without any
omissions.

Logical
Consistency

Evaluate if the relationships and
connections between diagram

components accurately reflect the
logical structure and intended

semantics of the original paper.

Score 1 means the diagram has
misleading, incorrect, or missing
connections between components,

failing to capture the logical flow.
Score 5 means the diagram’s

relationships and connections are
accurate and coherent, perfectly
mirroring the logic and intended

meaning of the source paper.

Aesthetic
Quality

Evaluate the visual clarity and
professional presentation of the

diagram including layout organization,
spacing, and element alignment.

Score 1 means the diagram is cluttered,
visually confusing, or contains

significant overlap or misalignment.
Score 5 means the diagram is visually

clear, well-organized, with good
spacing, and all elements are neatly

aligned.

Table 3: Evaluation Criteria Descriptions
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Figure 13: Examples of diagrams generated by the SCISKETCH framework using an open-source language model.
The left example shows the ground-truth diagram from the original paper. The right example presents the diagram
generated by SCISKETCH using DeepSeek. Despite the use of an open-source model, the generated diagram
successfully captures the core concepts and presents the components in a logically coherent manner.
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