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Abstract

Languages vary along a wide variety of dimen-
sions. In Natural Language Processing (NLP),
it is useful to know how “distant” languages
are from each other, so that we can inform
NLP models about these differences or predict
good transfer languages. Furthermore, it can
inform us about how diverse language samples
are. However, there are many different perspec-
tives on how distances across languages could
be measured, and previous work has predom-
inantly focused on either intuition or a single
type of distance, like genealogical or typolog-
ical distance. Therefore, we propose DistaLs,
a toolkit that is designed to provide users with
easy access to a wide variety of language dis-
tance measures. We also propose a filtered sub-
set, which contains less redundant and more
reliable features. DistaLs is designed to be ac-
cessible for a variety of use cases, and offers
a Python, CLI, and web interface. It is eas-
ily updateable, and available as a pip package.
Finally, we provide a case-study in which we
use DistaLs to measure correlations of distance
measures with performance on four different
morphosyntactic tasks.1

1 Introduction

Since language resources are limited for the ma-
jority of the world’s languages (Joshi et al., 2020),
multi-lingual Natural Language Processing (NLP)
models are highly relevant. Knowing how diverse
a set of languages is can be important for many
crucial steps in the NLP pipeline, e.g. language se-
lection to ensure broad coverage, predicting which
source language to use for a target language, or
predicting performance. However, cross-lingual
performance of NLP models can be influenced by
many factors. While quantitative language-level
measures of distance have shown to be good predic-
tors for performance (e.g. Lin et al., 2019; Lauscher

1Code and data: https://bitbucket.org/robvanderg/distals

et al., 2020), it has also been shown that factors
such as data size or pre-training exposure (token
overlap) can be stronger predictors than structural
features (de Vries et al., 2022) or that different
factors matter for different NLP tasks (Blaschke
et al., 2025). However, some cross-lingual results
are harder to explain, e.g. when transfer works
well between intuitively distant languages such as
Indonesian and Irish (Lynn et al., 2014) or when a
particular language type turns out to be suitable for
transfer to various target languages (Pelloni et al.,
2022).

In practice, intuition, relying on properties such
as language family, script, or geolocation, is often
used to select a source language to transfer from.
Another line of work uses more objective typolog-
ical distances, commonly from lang2vec (Littell
et al., 2017), to gauge language similarities, but
this option too has several known issues (Toossi
et al., 2024; Khan et al., 2025).

In this context, we collect and compare language
distance measures more systematically. To this end,
we create DistaLs, a toolkit that provides users with
properties of languages, and a wide variety of lan-
guage distances measuring different dimensions
of diversity. We foresee at least three main use
cases for DistaLs: 1) selecting languages to trans-
fer from; 2) quickly estimating which measure of
language distance has a correlation to performance;
3) measuring diversity in language selection.

DistaLs is based on the ISO 639-3 language clas-
sification standard. For each language in ISO 639-
3, we aggregate language information from a vari-
ety of data sources, and use existing distance met-
rics, or design new ones where necessary. We com-
plement these with text-based features. DistaLs is
updateable from the original sources with a single
command. We also provide an exploratory data
analysis of our data sources, correlations across
different distance measures, and a case-study on
Universal Dependencies (UD) parsing, where we
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check which distance measure correlate with per-
formance for four morphosyntactic tasks.

2 Distance Measures

The distances collected in DistaLs can be roughly
grouped into four categories: meta-data, typo-
logical distances, wordlist-based, and text-based.
For each of these sources, we only collect infor-
mation for valid ISO 639-3 language codes. If
only the language name is available (the case for
“nlp_fate”) we check if Glottolog or ISO 639-3
includes the exact match of the name. Some of
the macro-languages have a variant that is the ma-
jority variant which can be assumed to be meant
by the user, in these cases we convert the lan-
guage label with a manually curated lookup table
(Appendix A), other macro-languages are not sup-
ported due to their internal diversity. The user is
informed when an automatic conversion is done,
and macro-label conversion can be disabled with
–disable_macro_conversion.

We focus on features that are available for at
least 1,000 languages. Our metrics aim to cover a
variety of dimensions, but within each dimension,
they might lack specificity. We have for example
a single feature representing phoneme inventory
distance; if one is interested in more fine-grained
information for a specific usecase (i.e. does a lan-
guage include stressed consonants), we refer to
the original data sources we included, which are
designed for this exact purpose.

All metrics are converted to reflect distance (as
opposed to similarity) and are normalized to be
between 0.0 and 1.0. The distances are also bi-
directional, so the distance of language 1 to lan-
guage 2 is the same as from language 2 to lan-
guage 1. The information on which the distance
measures are based is also indexed and quickly
retrievable so that the measures can easily be im-
plemented differently, or the features can be used
for other usecases. We provide an overview of the
features in Table 1. We also provide an example
of how they could be aggregated, as taking a naive
average over all features will lead to undesirable
weighting of certain categories, and include con-
flicting/redundant sources. Our selection is based
on coverage, redundancy (Section 4), and quality.
However, it should be noted that this is not the
only possible way to aggregate the different fea-
tures, and different situations will require different
selections.

Category Feature Source Coverage

Metadata wiki_size Wikipedia 7,856
nlp_state State and fate 2,269
speakers LinguaMeta 5,539
AES Glottolog 7,725
loc Glottolog 7,629

Typology lang2vec URIEL 3,910
lang2vec_knn URIEL 3,910
PHOIBLE PHOIBLE 2,078
grambank_all Grambank 2,326
grambank_.* Grambank 2,326
glot_tree Glottolog 7,856
scripts LinguaMeta, GlotScript 6,431

Wordlists ASJP ASJP 6,117
concepts Conceptualizer 1,274

Text-driven whitespace LTI LangID 2,525
punctuation LTI LangID 2,525
char_distr. LTI LangID 2,525
textcat LTI LangID 2,525

Table 1: All features provided by DistaLs. Bold: recom-
mended to use for average for category. grambank_.*
refers to the sub-categories within Grambank. Coverage
of wiki_size is large, becuase if there is no Wikipedia
for a language, we assign the size 0 (happens for 7,570
languages).

Below, we describe each feature. Appendix B
contains further implementation details.

2.1 Metadata

Wikipedia We use the number of articles per
language as a statistic of a language, which can be
considered a proxy to online presence of languages.
The distance metric is the proportional difference in
size: 1−min(size1, size2)/max(size1, size2).

State and Fate The amount of resources avail-
able for a language can be a strong predictor for
performance for universally trained models. There
are many different catalogues of resour-ces, and
also many less standardized resources. We here use
the categorization provided by Joshi et al. (2020);
they divide languages into one of 6 groups based
on the availability of raw text data, and annotated
NLP datasets. The groups are ranked, so we use the
distance in rank as our metric: (max−min)/5.

LinguaMeta LinguaMeta (Ritchie et al., 2024) is
an effort to calculate metadata of languages into a
unified format. It is combining a variety of existing
resources, including manual corrections/additions
where possible. We extract the number of speak-
ers and scripts from LinguaMeta. The number
of speakers only counts L1 speakers, and uses a
variety of sources; CLDR,2 Wikipedia, and Google-

2cldr.unicode.org
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internal information. The scripts are mostly from
internal Google data which is used for keyboard
selection in their products. We complement the
scripts information with data from GlotScript (Kar-
garan et al., 2024), if there is more than 1 script
from both sources, we only use the intersection.
For the scripts, we use 1 − %overlap as metric,
and for the speakers we use the same formula as
for the Wikipedia size.

Glottolog (Hammarström et al., 2024) is a
database containing information and references for
different languages, dialects, and families. We here
use Agglomerated Endangerment Status (AES).
The endangerment status has 6 ranked classes, we
use the same formula as for “state and fate”.

2.2 Typology

lang2vec We use the average values over all
data sources for the syntax, phonology, and inven-
tory categories from the URIEL database through
the lang2vec toolkit (Littell et al., 2017), which
is in turn based on WALS (Dryer and Haspel-
math, 2013), SSWL (Collins and Kayne, 2011),
Ethnologue (Campbell and Grondona, 2008), and
PHOIBLE (Moran and McCloy, 2019). These val-
ues are concatenated and used as feature vector for
a language. We additionally use lang2vec’s impu-
tation method for missing features based on a k-
nearest-neighbours selection of similar languages.
The distance metric is cosine distance, where we
remove features from both languages if a feature
is missing for one of the languages. Reproducibil-
ity of the lang2vec distances is non-trivial (Toossi
et al., 2024; Khan et al., 2025), so we calculate
the cosine distance based on their representation
vectors ourselves.

PHOIBLE (Moran and McCloy, 2019) is a
cross-linguistic phonological database. It contains
phoneme inventories based on International Pho-
netic Alphabet (International Phonetic Association,
2005) collected from a wide variety of sources. We
use the set of the defined GlyphIds for each lan-
guage as a representation, and use the % of overlap
between these sets as a distance metric.

Grambank (Skirgård et al., 2023) is a database
containing morphosyntactic information about lan-
guages. It contains 195 features with a higher lan-
guage coverage compared to lang2vec. Similar
to Ploeger et al. (2024), we first binarize the data,
and then we take the euclidean distance ignoring

empty features. Languages with fewer than 25% of
the features covered are removed. We divide this
distance by the square root of the total number of
features to make it range between 0–1.

Glottolog Besides the AES (described above),
we also extract family trees from Glottolog. We
calculate a distance based on the position in the
tree structure. If two languages are in different
language families, the distance is maximal (1.0), if
the languages are in the same tree, we calculate the
number of overlapping edges divided by the depth
of the deepest language of the two.

2.3 Wordlist-based metrics

ASJP Automated Similarity Judgment Program
(ASJP) is a database containing standardized word
lists of concepts in many languages (Wichmann
et al., 2022). Their word list is based on the
Swadesh lists (Swadesh, 1955). Both lists are cre-
ated to cover concepts that are expected to exist in
cultures and languages all over the world. For each
concept, ASJP collected a phonetic description of
the concept in each language. We follow their orig-
inal implementation (Bakker et al., 2009) and use
average normalized Levenshtein distance over the
phonetic sequences of the concepts.

Conceptualizer Liu et al. (2023) use 51 con-
cepts from the bible combined with 32 concepts
defined in Swadesh lists to compare representa-
tions of different concepts in different languages.
They model the concepts as a bipartite graph, in
which a concept (represented as a set of English
strings) links to all correlated translations. We use
the language distance metric as proposed by Liu
et al. (2023); the cosine distance over the represen-
tations of each concept for each language, where
a concept representation is the number of steps a
concept needs to get to the English concept.

2.4 Text-driven distances

We use a combination of the GlotLID (Kargaran
et al., 2023) and the LTI LangID corpus (Brown,
2014) as our source data because of their large
language coverage. These datasets are combina-
tions of a variety of sources, but the majority of
data comes from Wikipedia and a variety of bible
translation sets. We take 1,000 lines per script
(equal amount of each source) of each available
data source to represent a language. We apply NFC
normalization before collecting our features.
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Character categories There are two categories
of characters that are commonly used across differ-
ent scripts: whitespace characters, and punctu-
ation characters. The amount of usage of these
categories can be used to distinguish languages
with whitespace-based writing systems, lengths of
words within these, and the amount of punctuation
information. For both categories, we use the defini-
tion from the huggingface library (specifically, the
_is_whitespace and _is_punctuation function)
for classification. We then convert the percentages
to a distance score through the following formula:
1−min(prob1, prob2)/max(prob1, prob2)

Character distribution distance We first extract
the character distributions from each language. Fol-
lowing the original LTI LangID Corpus we use
UTF-8 encoding for defining characters, and for
each character estimate their frequency as a prob-
ability. We then use the Jensen-Shannon distance
over the union of the character sets of both lan-
guages.

Textcat distance Cavnar et al. (1994) proposed
to use n-gram frequency-lists for language classifi-
cation. Specifically, they extract the 300 most com-
mon 1–5 character n-grams, and sort them by fre-
quency to represent a language. For an input, they
then create a similar frequency list, and calculate
a distance to the representation of each language
in the training data to obtain a similarity ranking.
We use the same setup to calculate distances across
texts of different languages, but use the 400 most
common n-grams, following van Noord (1997).

3 Interface

DistaLs provides language data in the following
three ways:

• Pre-calculated distances: we provide all met-
rics for all language pairs in csv files.

• Database with language information: this will
automatically be downloaded by the package
if it is not found. The code uses this database
to calculate the distances.

• Scrape the data: download all data sources
with a single bash script, and then use this to
populate a database (as described above). This
allows for easy updating of all data sources.

DistaLs provides three different interfaces (be-
sides the pre-calculated distances), which are de-
scribed in the next sections.

Figure 1: Screenshot of the web interface.

3.1 Web interface

We provide an online interface to DistaLs on
https://distals.streamlit.app/. The user is
presented with a text field, in which language
names can be added (search results will pop up
for easy selection after typing). After selecting a
number of languages, the users clicks on the button
or presses enter, and after a short wait the distances
will be shown per category (see Figure 1).

3.2 Command-line Interface (CLI)

DistaLs is available as a pip package. After in-
stalling the package, the main functionality is ac-
cessed through the parameter –langs. The user
specifies a list of languages, which can be ISO639-
3 codes, ISO639-2 codes, or language names
(which will be converted according to the proce-
dure described in Section 2). DistaLs will first
print all the information it has available for each
language. If there are two languages defined, it
will then print all the distances for each category,
including their average. When information for a
feature is not available for both languages, it will
print a –1 value. If more than two languages are
included, it will print language×language matrices.
An example of usage and its output can be seen in
Figure 2.

The CLI command also provides an interface
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$ d i s t a l s −− l a n g s f r y dan
l o a d i n g from : . / d i s t a l s −db . p i c k l e . gz
7856 l a n g u a g e s l o a d e d
========================================
I n f o r m a t i o n f o r f r y
w i k i _ s i z e : 57 ,027
n l p _ s t a t e : 1 . The Sc rap i ng −Bys
s p e a k e r s : 740 ,000
AES : 5 . n o t e n d a n g e r e d
l o c : ( 5 . 8 6 0 9 1 , 5 3 . 1 4 3 )
l a n g 2 v e c : [ 1 . 0 , 1 . 0 , 0 . 0 , . . . ]
l ang2vec_knn : [ 1 . 0 , 1 . 0 , 0 . 0 , . . . ]
p h o i b l e : [ ' 0 0 6 1 ' , ' 0 0 6 1 + 0 0 6 9 ' , ' 0 0 6 1 + 0 0 7 5 ' , . . . ]
grambank : { ' GB020 ' : 1 , ' GB021 ' : 1 , ' GB022 ' : 1 , . . . }
g l o t _ t r e e : [ " ' Western F r i s i a n [ west2354 ] [ f r y ] − l − ' " , " '

West lauwers − T e r s c h e l l i n g F r i s i a n [ west2902 ] ' " , " ' Modern
West F r i s i a n [ mode1264 ] ' " , . . . ]

s c r i p t s : { ' l a t n ' }
a s j p : [ [ ' 1 ' , ' ik ' ] , [ ' 2 ' , ' do , yo ' ] , [ ' 3 ' , ' vEi ' ] , . . . ]
w h i t e s p a c e : 0 .160835
p u n c t u a t i o n : 0 .031726
char_JSD : { ' ' : 0 . 1 6 0 8 , ' e ' : 0 . 1 1 9 5 , ' n ' : 0 . 0 7 5 4 , . . . }
t e x t c a t : [ ' ' , ' e ' , ' n ' , . . . ]

========================================
I n f o r m a t i o n f o r dan
w i k i _ s i z e : 308 ,911
n l p _ s t a t e : 3 . The R i s i n g S t a r s
s p e a k e r s : 5 ,510 ,600
AES : 5 . n o t e n d a n g e r e d
l o c : ( 9 . 3 6 2 8 4 , 5 4 . 8 6 5 5 )
l a n g 2 v e c : [ 1 . 0 , 0 . 0 , 0 . 0 , . . . ]
l ang2vec_knn : [ 1 . 0 , 0 . 0 , 0 . 0 , . . . ]
p h o i b l e : [ ' 0 0 6 1 ' , ' 0 0 6 2 + 0 3 2 5 ' , '0062+0325+02B0 ' , . . . ]
grambank : { ' GB020 ' : 1 , ' GB021 ' : 1 , ' GB022 ' : 1 , . . . }
g l o t _ t r e e : [ " ' Danish [ dan i1285 ] [ dan ] − l − ' " , " ' South

S c a n d i n a v i a n [ s o u t 3 2 4 8 ] ' " , " ' Nor th Germanic [ n o r t 3 1 6 0
] ' " , " ' Nor thwes t Germanic [ n o r t 3 1 5 2 ] ' " , " ' Germanic [
germ1287 ] ' " , " ' C l a s s i c a l Indo − European [ c l a s 1 2 5 7 ] ' " , " '
Indo − European [ indo1319 ] ' " ]

s c r i p t s : { ' l a t n ' }
a s j p : [ [ ' 1 ' , ' yoy ' ] , [ ' 2 ' , ' du ' ] , [ ' 3 ' , ' v i ' ] , . . . ]
w h i t e s p a c e : 0 .156298
p u n c t u a t i o n : 0 .028514
char_JSD : { ' ' : 0 . 1 5 6 3 , ' e ' : 0 . 1 2 4 9 , ' r ' : 0 . 0 6 7 5 , . . . }
t e x t c a t : [ ' ' , ' e ' , ' r ' , . . . ]

========================================
D i s t a n c e s between f r y and dan ( −1 i f f e a t u r e n o t a v a i l a b l e )
METADATA
w i k i _ s i z e : 0 .8154
n l p _ s t a t e : 0 .4000
s p e a k e r s : 0 .8657
AES : 0 .0000
l o c : 0 .0149
a v e r a g e : 0 .5203

TYPOLOGY
l a n g 2 v e c : 0 .1598
lang2vec_knn : 0 .1204
p h o i b l e : 0 .8148
grambank : 0 .3841
g b _ c l a u s e : 0 .3742
gb_nominal_domain : 0 .3482
gb_numera l : 0 .5000
gb_pronoun : 0 .0000
gb_ve rba l_doma in : 0 .4644
g l o t _ t r e e : 0 .5325
s c r i p t s : 0 .0000
a v e r a g e : 0 .5995

WORDLISTS
a s j p : 0 .3397
c o n c e p t s : 0 .0400
a v e r a g e : 0 .1898

TEXTBASED
w h i t e s p a c e : 0 .0282
p u n c t u a t i o n : 0 .1012
char_JSD : 0 .1979
t e x t c a t : 0 .5859
a v e r a g e : 0 .3919

Figure 2: Example output of DistaLs. It first reports
information about the provided language(s), and then
reports all features per category.

to the updating of the database. There are three
separate arguments (for language labels and names,
databases, and text-based features), which can be
used separately or jointly. The resulting database

>>> from distals import distals
>>> model = distals.Distals()
>>> model.get_dists('nld', 'cmn')
{'metadata': {'wiki_size': 0.99378,

'nlp_state': 0.2,
'speakers': 0.98131,
'AES': 0.0,
'loc': 0.39121,
'average': 0.39377},

'typology': {'lang2vec': 0.31654,
'lang2vec_knn': 0.33795,
'phoible': 0.82278,
'grambank': 0.58478,
'gb_clause': 0.55470,
'gb_nominal_domain': 0.59761,
'gb_numeral': 0.0,
'gb_pronoun': 0.64550,
'gb_verbal_domain': 0.60302,
'glot_tree': 1.0,
'scripts': 0.66667,
'average': 0.80252},

'wordlists': {'asjp': 0.49636,
'concepts': 0.08,
'average': 0.28818}

'textbased': {'whitespace': 0.21244,
'punctuation': 0.67855,
'char_JSD': 0.54401,
'textcat': 0.87235,
'average': 0.87235}

}

Figure 3: Example output of DistaLs when used in
Python.

is stored in a dictionary which is saved in a com-
pressed pickle file. The toolkit will automatically
download a recent database from the repository if
–database_path is not specified. The code can
also be ran directly from the repository (python3
src/distals/distals.py) without installation.

3.3 Python

For easy integration into other projects and code-
bases, we also provide a python interface. The
information stored for each language is directly
available from the DistaLs database, which is a
python dictionary in a pickle file. One can also
import DistaLs to get direct access to the distances,
which can be returned as a list or as a dictionary
(containing the four main categories as a hierarchy).
The language names and code conversion scripts
are also available after loading DistaLs. Example
usage is shown in Figure 3. Updating the DistaLs
database is done by first running a bash script that
downloads/updates the data, and then the python
package has functionality to update through a sin-
gle command.
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4 Exploratory Data Analysis

To get a clearer picture of the coverage, we count
the number of features supported by each language,
and plot the number of languages with N supported
features (Figure 4). This shows that there are a few
features for which almost all languages are covered.
These are mainly meta-features and genealogical
information. Many features have a coverage around
2,000 languages, which often have a large overlap
in languages. DistaLs contains 437 languages that
have information for all 17 features.

We normalized all features to have a value be-
tween 0 and 1, but different features might still have
different distributions within this range. Hence, for
each feature, we sort the values of all language-
pairs, disregarding the missing values. We then
plot the scores to get an overview of how the distri-
butions differ. Results (Figure 5) show that there
is indeed a disparity in the distributions of the
probabilities, with AES having lower distances,
because there are only 6 possible labels, and the
text-based feature (textcat) and typology based fea-
tures (PHOIBLE, Grambank, and Glot_tree) hav-
ing larger distances for most pairs.

Some of the features have a similar goal, so they
can be expected to correlate. For example, the
main categories in the typology category all aim
to capture typological distances. If features have
a large overlap, some of them can be left out for
the sake of simplicity and efficiency. We therefore
perform a correlation study for feature-pairs across
all language-pairs. For each pair of features, the
languages included can be different (based on data
availability). Hence, the results across features are
not directly comparable, but should give a rough
idea of which features contain similar information.
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0.17 0.17 0.07 0.05 0.07 0.03 0.16 0.21 0.02 0.11 1.00 0.07 0.00 0.15 0.03 0.86 0.77

0.02 0.04 0.05 0.04 0.22 0.09 0.26 0.20 0.21 0.47 0.07 1.00 0.04 0.07 0.04 0.13 0.21

0.09 0.04 0.06 0.01 0.06 0.02 0.07 0.09 0.02 0.05 0.00 0.04 1.00 0.04 0.02 0.02 0.01

0.00 0.02 0.04 0.06 0.04 0.01 0.18 0.11 0.09 0.08 0.15 0.07 0.04 1.00 0.16 0.22 0.22

0.04 0.00 0.01 0.03 0.07 0.03 0.06 0.08 0.03 0.08 0.03 0.04 0.02 0.16 1.00 0.11 0.14

0.18 0.16 0.08 0.07 0.02 0.02 0.21 0.29 0.05 0.16 0.86 0.13 0.02 0.22 0.11 1.00 0.96

0.11 0.10 0.07 0.08 0.04 0.05 0.27 0.31 0.09 0.25 0.77 0.21 0.01 0.22 0.14 0.96 1.00

0.2

0.4

0.6

0.8
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Figure 6: Pearson correlations across all features (except
the grambank sub-categories). P-values in Appendix D.

Results (Figure 6) show only a few strong Pear-
son correlations (i.e. > 0.5), which are all within
the main categories we defined in Section 2, ex-
cept script which has a strong correlation to the
text-based distances. Within the typology category,
there are many moderate correlations (0.3–0.5),
and across categories there are mostly correlations
close to 0, where mainly the text-based distances
(char JSD and textcat) have some weak correlations
(~0.2) across the other features.

5 Case Study

Inspired by the studies of de Vries et al. (2022),
Samardžić et al. (2022) and Blaschke et al. (2025),
who analyze the effect of certain language distances
on downstream NLP model performance, we exe-
cute a similar case study on cross-lingual transfer
with our extended feature set. We train a multi-task
model on the first 10k words of each UD v2.15 tree-
bank (Nivre et al., 2020) that has a training split
resulting in 64 source and 126 target languages.
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UPOS Dep UFeats Lemma

nlp_state −0.42 ∗ −0.37 ∗ −0.08 ∗ −0.12 ∗

speakers −0.24 ∗ −0.20 ∗ −0.02 −0.05 ∗

AES −0.32 ∗ −0.23 ∗ −0.03 −0.05 ∗

loc −0.29 ∗ −0.28 ∗ 0.02 0.02
phoible −0.19 ∗ −0.17 ∗ 0.02 −0.02
grambank −0.42 ∗ −0.45 ∗ −0.20 ∗ −0.11 ∗

glot_tree −0.27 ∗ −0.27 ∗ −0.03 −0.07 ∗

asjp −0.26 ∗ −0.28 ∗ −0.14 ∗ −0.11 ∗

concepts −0.32 ∗ −0.31 ∗ 0.01 −0.10 ∗

textcat −0.21 ∗ −0.23 ∗ −0.06 ∗ −0.06 ∗

Table 2: Pearson’s r between language distance and
accuracy or labelled attachment score (Dep). ∗p<0.05.

We use all treebanks for part-of-speech tagging
(UPOS) and dependency parsing (Dep), and add
lemmatization (Lemma) and morphological tag-
ging (UFeats) when available. For languages with
multiple treebanks, we average the results. We
use the MaChAmp toolkit (van der Goot et al.,
2021) v0.4.2 with default hyperparameters. We
train with XLM-R large (Conneau et al., 2020) and
Glot500 (Imani et al., 2023) as an encoder, and re-
port the average results (trends were highly similar
across models).

We evaluate the correlations on the subset of
most informative features from Section 2 (bold
in Table 2). The correlations (Table 2) are weak
for the morphological tasks (UFeats/Lemma), but
much stronger for the syntactic tasks (UPOS/Dep),
whose performance can be better predicted with our
distance features. Interestingly, the most strongly
correlated distances are scattered across our dis-
tance categories.

6 Comparison to Other Toolkits

We compare existing toolkits for estimating lan-
guage diversity in Table 3. DistaLs covers the most
categories of distances, but some other toolkits
have more functionality within a specific category.

For example, Delta3 and LangDive (Samardzic
et al., 2024) focus on the diversity of datasets
with respect to linguistic and syntactic information.
Within the domain of syntax, they will provide a
much more granular perspective on distance, but at
the cost of a lower language coverage. QwanQwa4

instead focuses on aligning metadata across dif-
ferent language-code systems, and typdiv (Ploeger
et al., 2024) provides metrics for assesing typologi-
cal diversity. LangRank (Lin et al., 2019) directly
focuses on predicting transfer performance, provid-
ing a variety of metrics.

7 Conclusion

We propose DistaLs, a toolkit that aggregates lan-
guage information from a variety of sources, and
provides distance measures based on this. Dis-
taLs contains a variety of easy to use interfaces, a
webpage, csv files, python, and a command-line
interface. It includes a wide variety of measures
covering a variety of dimensions of “distance”, all
with a high language coverage. We showed its
usefulness by reporting correlations of the features
with four morphosyntactic tasks. Based on this, we
conclude that syntactic tasks have higher correla-
tions than morphological tasks (i.e., performance
transfer is easier to predict), and that no features
are close to a perfect correlation, however, features
with a moderate correlations are quite diverse.
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Toolkit Focus Lang. cat. Coverage Typology Metadata Wordlists Textbased Updatable Interface

Lang2vec typology ISO 639-3 4,005 ✓ ✓ ✗ ✗ ✗ python, CLI
Delta syntactic diversity — 156 ✓ ✗ ✗ ✗ ✓ python, c
LangDive dataset diversity ISO 639-3 — ✗ ✗ ✗ ✗ ✓ python
QwanQwa metadata many 7,511 ✓ ✓ ✗ ✗ ✗ python
typdiv diversity glottocodes — ✓ ✗ ✗ ✗ ✓ python, CLI
LinguaMeta metadata BCP-47,ISO 639-3 7,512 ✓ ✓ ✗ ✗ ✗ tsv file
LangRank multiple ISO 639-2 — ✓ ✓ ✗ ✓ ✗ python
DistaLs multiple ISO 639-3 1,271–7,855 ✓ ✓ ✓ ✓ ✓ python, CLI, web

Table 3: Comparison of existing toolkits for measuring language diversity. The main categories refer to the ones
described in Section 2. A ‘—’ in coverage means that these toolkits are supposed to be used with datasets to estimate
the distances. Updateable refers to automatically updateable (i.e. through a single command).
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Limitations

We limited the language coverage to the ISO 639-
3 standard, as it is one of the most widely used
set of language labels. However, this standard is
known to have biases (Morey et al., 2013). At the
same time, we ignore in-language variation, and we
make the (flawed) assumption that the textual data
we use serves as a proxy for a representation of the
language as a whole. Also, the data sources we in-
clude are carefully chosen to have a wide coverage,
but there is definitely more information for high-
resource languages. The case-study on the UD data
also has a biased sub-selection of languages, which
have a higher coverage in Western languages.

Furthermore, each feature can be seen as an ab-
straction to actual diversity as it occurs within a
language. This is a necessary step to take when
providing smaller numbers of distance metrics, but
it is obscuring a lot of potentially interesting infor-
mation. If more detailed information on a specific
dimension of language is required, we refer to the
original data sources.

While we were careful in selecting the infor-
mation sources, with data on this scale there are
undoubtedly errors in the data. We have done an
automatic and manual correction of some of the
LTI-LangID data in cooperation with Ralf Brown,
and have done inspection, cleaning and merging
of the other sources where possible, but there are
of course many data points that are hard to verify.
The text-based features are also biased in domain.
Most of the data comes from bible translations.
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Appendix

A Macro Language Conversion

Table 4 reports the list of manually added conver-
sions of macro labels.

Macro Language

est ekk
zho cmn
grn gug
toki tok
nep npi
lav lvs
ara arb
ori ory
msa zlm
kom kpv

Table 4: Conversion of macro labels to language labels.

B Implementation Details for Distance
Measures

Below, we describe implementation details of ver-
sion 0.1.1 of DistaLs.

B.1 Metadata

Wikipedia We collect the page counts from
the webpage https://en.wikipedia.org/wiki/
List_of_Wikipedias. Where possible, we use
the language attribute from the column with sam-
ple text in each wiki’s language. For the relatively
few wikis where this information is not available,
we derive the language from the wikicode. We
manually verified that this fallback option results
in the correct ISO639-3 codes as of September 12,
2025.

B.2 Typology

lang2vec We use the syntax_average+
phonology_average+inventory_average cate-
gory for original features, and the syntax_knn+
phonology_knn+inventory_knn category for the
KNN completed features.

We only compare lang2vec vectors for language
pairs where at least 25% of the features have values
for both languages. Users can change this thresh-
old.

PHOIBLE Some languages have multiple
phoneme inventories on PHOIBLE (coming from

different sources and/or describing different di-
alects/sociolects).5 If this applies to one or both
languages, we calculate the distances between each
inventory of the first language and each inventory
of between each pair of the second language, and
return the minimum distance. We do not take into
account the allophone information.

Grambank We only compare Grambank feature
vectors for language pairs where at least 25% of
the features have values for both languages. Users
can change this threshold.

Glottolog Where pseudo-families6 are used in
Glottolog for bookkeeping purposes, we remove
the pseudo-families. For instance, the family tree
path for German Sign Language is originally Ger-
man Sign Language – DSGic – L1 Sign Language –
Sign Language, but we remove the last two nodes.

B.3 Wordlist-based metrics

ASJP Some languages have multiple word form
entries for one concept (because a wordlist contains
multiple entries for a concept, and/or because ASJP
contains multiple wordlists with the same language
code). In such cases, we use the word form with
the lowest Levenshtein distance to the other word
form it is compared to.

We ignore vowel and consonant modifiers (cf.
Brown et al., 2008) when calculating Levenshtein
distances. In addition to normalizing the Leven-
shtein distance by the length of the longer word,
we normalize it by the average distance between
entries with different meanings in the two wordlists
being compared. We only compare ASJP wordlists
for language pairs where at least 25% of the con-
cepts have word form entries for both languages.
Users can change this threshold.

C Licenses

Licenses for each data source are listed in Table 5.
DistaLs is released under the CC BY-SA 4.0, as it
is required by some of the included data sources.

D P-values of Correlations Across
Features

Figure 7 has the same shape as Figure 6 in the pa-
per, but contains the p-values instead of the actual

5https://phoible.org/faq#why-do-some-
languages-have-multiple-entries-in-phoible

6https://glottolog.org/meta/glossary#
sec-pseudofamilies
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Category Feature Source License

Metadata wiki_size Wikipedia CC BY-SA
nlp_state state and fate —
speakers LinguaMeta CC BY-SA 4.0
scripts LinguaMeta, GlotScript MIT License
AES Glottolog CC BY 4.0
loc Glottolog CC BY 4.0

Typology lang2vec URIEL CC BY-SA 4.0
lang2vec_knn URIEL CC BY-SA 4.0
PHOIBLE PHOIBLE GPL 3
grambank_all Grambank CC BY 4.0
grambank_.* Grambank CC BY 4.0
glot_tree Glottolog CC BY 4.0

Wordlists ASJP ASJP CC BY 4.0
concepts Conceptualizer —

Text-driven whitespace LTI LangID CC
punctuation LTI LangID CC
char_distr. LTI LangID CC
textcat LTI LangID CC

Table 5: Licenses for all data sources included in Dis-
taLs.

correlation. The values are generally very low, this
is because of the large data size.
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Figure 7: P-values of correlations across features.
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