
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 295–306
November 4-9, 2025 ©2025 Association for Computational Linguistics

A Modular Framework for Hypothesis-Driven Small
Language Model Research

Richard Diehl Martinez∗ David Demitri Africa† Yuval Weiss†

Suchir Salhan Ryan Daniels Paula Buttery
University of Cambridge

Abstract

Building language models (LMs), especially
small and medium ones, remains more art than
science. While large LMs often improve by
sheer scale, it is still unclear why many de-
sign choices work. For small LMs, this un-
certainty is more limiting: tight parameter
budgets make each decision critical, yet re-
searchers still lack systematic, scientific ways
to test and refine new ideas. We introduce
Pico, a lightweight, modular framework that
enables systematic, hypothesis-driven research
for small and medium-scale language model
development. Pico consists of two libraries
that together provide a practical sandbox where
researchers can make targeted changes to a
model’s architecture or training procedures and
directly observe their effects on the model’s
behavior. To support reproducible experimen-
tation, we also release a suite of baseline mod-
els, pico-decoder, trained under standardized
conditions and open-sourced for the community.
Case studies highlight how Pico can support
iterative small LM design and analysis.

pico-lm
(Apache 2.0)

pico-lm
(Apache 2.0)

picolm.io Demo Video

1 Introduction
Recent advances in large language models (LLMs)
have enabled strong performance across diverse
tasks (Hendrycks et al., 2021; Cobbe et al., 2021;
Srivastava et al., 2023), but progress on Small
Language Models (SLMs) has been slower (see
Fig. 1). SLMs, loosely defined as models with
fewer than 10 billion parameters, are large enough
for emergent behaviors yet small enough to train on
modest budgets (Hu et al., 2024; Van Nguyen et al.,
2024; Wang et al., 2024; Subramanian et al., 2025).
Despite growing interest, designing efficient, high-
performing SLMs still relies on opaque trial-and-

∗Corresponding author: richard@picolm.io
†Equal contribution

��
	��������
�����
�

��
	��������

�+*",)('�������

��1�/
�

�17�8
�

�"A��������
�1��/
�

��
	P+(�������
��V�7
�

_�
������� �m,on"���p���
��v�t
� ��v��
�

�(�n�+AA��������
��1�/
�

��

��

p�

��

���

��������������������

��
	������
�
��
	��
�)�(�����
�

�/t��¥
� �/®¥
�

Figure 1: Best performance of fixed-size SLMs and
LLMs on MMLU per year, size of the circles represents
model size. Note that the size of GPT-4 models is
speculative 1 and has not been confirmed by OpenAI.

error, with limited understanding of how design
choices shape learning dynamics.

In this paper, we present Pico, a modular frame-
work designed to help researchers develop SLMs
in a more scientifically rigorous manner. Pico con-
sists of two libraries: pico-train, which provides
a lightweight, transparent training loop for lan-
guage models; and pico-analyze, a complemen-
tary toolkit for analyzing their learning dynamics.
Conceptually, pico-train provides the infrastruc-
ture for training and systematically checkpointing
model states and activations, while pico-analyze
offers the tools to compute learning dynamics met-
rics and comparisons on those checkpoints.

By bridging training and analysis in a single
open-source ecosystem, Pico lowers the barrier
for conducting reproducible, hypothesis-driven re-
search on small language model development. To
support controlled experimentation, we also release
a set of baseline models trained under standardized
conditions, the pico-decoder suite. The suite is a
starting point for researchers to build on and com-

1https://the-decoder.com/gpt-4-has-a-trillion-parameters

295

https://huggingface.co/pico-lm
https://github.com/pico-lm
https://www.picolm.io/demo-paper
https://youtu.be/llRUKwqMah4?si=F4Ol8P5Tj2ZQB7Fm
https://the-decoder.com/gpt-4-has-a-trillion-parameters


Tool Custom
Training

Checkpoint
Support

Feature
Extraction

Analysis
Tools

Low-Budget
Friendly

Pico ✓
Modular
PyTorch

✓
Optimizer,
weights & data

✓
Activations &
gradients

✓
pico-analyze
metrics

✓
Academic-GPU
scale

TransformerLens ✗ ✗ ✓ ✓ ✓

ACDC ✗ ✗ ✓ ✓ ✓

SAELens ✗ ✗ ▲ ✓ ✓

SmolLM2 ✓ ▲ ✗ ✗ ✓

Pythia Suite ▲ ▲ ✗ ▲ ✓

OLMo ✓ ▲ ✗ ✗ ▲

Table 1: Comparison of Pico and related frameworks for interpretability and learning dynamics.
Legend: ✓= Fully supported; ▲= Partial; ✗= Not supported.

pare against. Case studies in §3 demonstrate how
Pico enables researchers to build language models
in a hypothesis-driven way.

2 Pico

Unlike existing pretraining or interpretability stacks,
Pico integrates modular training with built-in sup-
port for learning dynamics. Table 1 highlights this
key advantage.

On the training side, pico-train automatically
logs detailed activations, gradients, and weights
at checkpoint intervals and enables researchers to
efficiently train models for controlled experiments.

On the analysis side, pico-analyze operates
directly on these in-situ logs, applying flexible met-
rics and component abstractions to track learning
dynamics as they unfold.

In this section we provide a concise overview
of the two Pico libraries: pico-train and pico-
analyze.

2.1 pico-train: A Minimalist Approach to
Model Training

pico-train is a lightweight, transparent frame-
work for training small- to medium-scale language
models. Unlike many existing training libraries that
prioritize efficiency at the cost of clarity, pico-
train is designed to be simple, modular, and easy
to modify, making it a flexible foundation for ex-
perimentation in language model research.

Out of the box, pico-train implements pico-
decoder, a LLaMA-style transformer (Touvron
et al., 2023) that incorporates key features of modern
autoregressive language models, including Grouped
Query Attention (GQA) (Ainslie et al., 2023), Ro-
tary Position Embeddings (RoPE) (Su et al., 2024),

FlashAttention (Dao et al., 2022), SwiGLU activa-
tions (Shazeer, 2020), and RMSNorm (Zhang and
Sennrich, 2019). All components, except FlashAt-
tention, are re-implemented from scratch in plain
PyTorch (Paszke et al., 2019), with an emphasis on
readability and documentation.

To ensure efficient multi-GPU and distributed
training, pico-train is built on Lightning Fabric
(Lightning AI, 2025) – a framework that, like Pico,
prioritizes simplicity and flexibility. Lightning Fab-
ric enables users to scale up training across multiple
GPUs or nodes without introducing excessive ab-
stractions and ensures that the core training logic
remains easy to understand and modify.

A distinguishing feature of pico-train is its
systematic checkpointing and version control sys-
tem. It automatically saves:

• Model states in both PyTorch- and Hug-
ging Face-compatible formats (Wolf et al.,
2019). This dual-format checkpointing en-
ables straightforward loading with vanilla Py-
Torch or integration into the Hugging Face
ecosystem, facilitating downstream tasks such
as fine-tuning, inference, or model sharing.
Researchers can thus easily plug pico-train
outputs into existing pipelines.

• Intermediate activations and gradients. At
user-defined intervals, the library gathers lay-
erwise activations and gradients from the for-
ward and backward passes on the current train-
ing batch. Optionally, it can also capture these
metrics from a fixed evaluation batch for con-
sistent comparisons over training. Collecting
these tensors at each checkpoint provides a
granular record of how representations and

296



gradient flows evolve over time.

• Training data batch. We save out the batch
of training data that was used to extract the set
of activations and gradients at a given point in
training.

• Evaluation results. Users can define and
record evaluation metrics (e.g., validation
perplexity, accuracy) alongside model check-
points.

All checkpoints are automatically uploaded and
version-controlled on Hugging Face, ensuring that
researchers can revisit any point in training to an-
alyze how the model evolved over time. These
structured checkpoints integrate seamlessly with
pico-analyze, enabling learning dynamics re-
search with minimal setup.

To simplify experimentation, we release a pre-
tokenized, pre-chunked, and pre-shuffled ver-
sion of Dolma (Soldaini et al., 2024), a large,
open-source English dataset, on Hugging Face:
pretokenized-dolma. This dataset removes pre-
processing overhead, ensures consistency across
runs, and supports streaming to reduce storage
needs. Using it is optional; users can substitute
their own data if they prefer. Details on our prepro-
cessing steps are in App. D.

By focusing on minimalism, modularity, and
transparency, pico-train makes it easy to modify
all aspects of the training pipeline.

2.2 pico-analyze: A General-Purpose
Framework for Studying Learning
Dynamics

pico-analyze is a companion tool to pico-train
designed to make analyzing learning dynamics
seamless and reproducible. It directly integrates
with the checkpoints saved by pico-train that
include activations, and gradients and enables re-
searchers to compute the learning dynamics of
trained models.

At its core, pico-analyze follows a simple ab-
straction: it applies metrics to components. Metrics
provide quantitative insights into various aspects
of model behavior, while components define the
specific model elements being analyzed. This de-
sign allows for flexible and fine-grained analysis of
training dynamics.

Metrics. Out of the box, pico-analyze supports
a range of built-in metrics, including:

• Sparsity Measures: Gini coefficient (Hurley
and Rickard, 2009) and Hoyer metric (Hoyer,
2004) gauge how concentrated the values of a
matrix are near zero.

• Rank-Based Metrics: Proportional Effective
Rank (Diehl Martinez et al., 2024) captures
a matrix’s “effective dimensionality,” while
Condition Number evaluates its numerical sta-
bility.

• Representation Similarity: CKA (Kornblith
et al., 2019) and PWCCA (Morcos et al., 2018)
compare activation patterns across layers or
checkpoints, revealing how internal represen-
tations evolve.

• Norms: Frobenius, Nuclear, and Infinity
norms measure the scale of a tensor, spot-
lighting issues such as vanishing or exploding
parameters.

Components. Metrics can be computed on dif-
ferent types of components:

• Simple components: Individual weight ma-
trices, gradients, or activations from a single
layer.

• Compound components: Higher-level struc-
tures that combine multiple model elements.
One example is the OV circuit, which tracks
how information flows in transformer models
by combining the value and output projection
matrices in self-attention layers (Elhage et al.,
2021).

This two-step abstraction is designed for exten-
sibility; new metrics and component types can be
easily defined, allowing researchers to tailor anal-
yses to specific hypotheses about language model
learning. We view pico-analyze not as a static
toolset, but as a foundation for community-driven
interpretability research.

3 Case Studies
We illustrate how Pico enables systematic,
hypothesis-driven experimentation through two
case studies.

3.1 MAML
Model-Agnostic Meta-Learning (Finn et al., 2017,
MAML) trains models to adapt quickly by alternat-
ing between short bursts of task-specific learning

297

https://huggingface.co/datasets/pico-lm/pretokenized-dolma


and a global update that improves generalization.
This setup encourages models to find initialization
points that adapt well to new tasks. While MAML
is typically used for fine-tuning, we follow prior
work (Bansal et al., 2020; Li and Zhang, 2021) in
applying it during pretraining.

Implementation We implemented MAML in
pico-train by adding a lightweight inner loop
that updates a classification head on masked token
tasks, followed by a meta-update to the full model
(Africa et al., 2025a,b). pico-train automatically
handles distributed GPU synchronization, requiring
no changes to Pico’s core training logic.

Analysis We evaluate MAML on Paloma per-
plexity and observe consistent 4–15% gains over
standard pretraining. To better understand this
improvement, we analyze the proportional effec-
tive rank (PER) (Diehl Martinez et al., 2024) of
both weights and gradients over time. PER cap-
tures the dimensionality of a tensor’s signal. In
meta-learning, one concern is that inner-loop up-
dates may overly constrain model updates to a low-
dimensional subspace, potentially limiting general-
ization. As shown in Fig. 2, we observe synchro-

1 2 3 4 5 6
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0

Tr
ain

 L
os

s

First loss floor Spikes mark
transition

Second loss spike

MAML

1 2 3 4 5 6
0.82

0.83

0.84

0.85

0.86

0.87

0.88

PE
R 

(W
eig

ht
)

Weights undergo compression

1 2 3 4 5 6
Checkpoint step / 1000

0.02

0.04

0.06

0.08

0.10

0.12

0.14

PE
R 

(G
ra

die
nt

)

First PER trough

PER rebound

Second PER trough

Stable rank

Figure 2: Training dynamics under MAML. Top to
bottom: Training loss and proportional effective rank
(PER) of weights and gradients. Sharp drops in PER
align with spikes in loss. Shaded regions correspond to
different observed phases in training.

nized troughs in PER and spikes in both loss and
perplexity. This suggests that inner-loop updates
temporarily compress the model’s capacity into
a low-rank subspace before the outer-loop update
restores variance and expressivity.

New Hypothesis and Next Steps These results
support the hypothesis that MAML’s learning dy-
namics involve cycles of compression and recovery.
This raises concrete follow-up questions: could
adjusting the inner-loop learning rate reduce exces-
sive compression? Would alternative meta-learning
schedules or task mixes stabilize the representa-
tional space more effectively? Using Pico’s modular
training and built-in logging, these variants can be
tested with minimal friction. By comparing learn-
ing dynamics and outcomes across runs, researchers
can refine their design choices in a reproducible,
hypothesis-driven loop.

3.2 ReLoRA

0 2 4 6 8 10 12 14 16 18 20

0.55

0.60

0.65

0.70

B
Li

M
P

Baseline
ReLoRA

0 2 4 6 8 10 12 14 16 18 20
0

2e4

4e4

6e4

8e4

1e5

C
on

di
tio

n
N

um
be

r(
G

ra
di

en
t)

A
tte

nt
io

n
Va

lu
e

P
ro

je
ct

io
n

0 2 4 6 8 10 12 14 16 18 20
Checkpoint Step / 1000

0

2e7

4e7

6e7

8e7

1e8

C
on

di
tio

n
N

um
be

r(
G

ra
di

en
t)

A
tte

nt
io

n
O

ut
pu

tP
ro

je
ct

io
n

Figure 3: Training dynamics under ReLoRA. Top to
bottom: BLiMP accuracy over time, averaged condition
numbers of the gradient updates for the attention value
and output projection matrices.

ReLoRA (Lialin et al., 2023) adapts LoRA (Hu
et al., 2022), a fine-tuning technique that freezes
pretrained weights and injects trainable low-rank
matrices, into the pretraining loop. In theory,
this could provide a sample-efficient way to train

298



Family Size #Tokens Paloma ↓ HellaSwag ↑ ARC-Easy ↑ TruthfulQA ↑
Pico 11M 250B 136.17 25.62 32.79 51.75

65M 250B 42.24 27.25 38.22 46.13
181M 250B 30.08 30.69 44.65 41.85
570M 250B 22.96 37.33 48.99 36.33

Pythia 14M 300B 86.64 26.15 31.31 50.14
70M 300B 43.76 27.56 36.23 47.02
160M 300B 29.96 30.26 43.73 44.51
410M 300B 20.55 40.55 52.10 41.23

OPT 125M 300B 27.22 31.33 43.48 42.89
350M 300B 20.91 36.66 44.06 41.01

Table 2: Performance of small-scale language models on four benchmarks. Lower is better for Paloma perplexity
(↓); higher is better for HellaSwag, ARC-Easy, and TruthfulQA accuracies (↑).

large models by constraining updates to a low-rank
subspace.

Implementation We incorporate ReLoRA into
pico-train by adding a lightweight wrapper
around attention and MLP weight matrices, and
by modifying the learning rate schedule to handle
periodic resets (Weiss et al., 2025). We evaluated
the model on BLiMP (Warstadt et al., 2020), which
we configured via a single config entry.

Analysis We find that ReLoRA surprisingly un-
derperforms standard pretraining on BLiMP (see
Fig. 3, top) (Warstadt et al., 2020). To investi-
gate this, we analyze the condition numbers of
the gradient updates across layers and training
checkpoints. This metric reflects how sensitive
gradient-based updates are to numerical instability,
a relevant concern for methods like ReLoRA that
repeatedly project updates into a low-rank subspace.
As shown in Fig. 3 (bottom), ReLoRA gradients
are substantially more ill-conditioned and exhibit
high inter-layer variance.

New Hypothesis and Next Steps This pattern
suggests that repeated low-rank resets may am-
plify gradient instability, undermining ReLoRA’s
intended efficiency gains. Several next steps follow
naturally: for example, adding layerwise condition
number regularization, adjusting the rank dynami-
cally, or modifying the reset schedule to reduce in-
stability. Because pico-train and pico-analyze
modularize core components and log detailed in-
situ signals, researchers can test these changes
quickly, track their effects on gradient stability, and
iterate systematically. This demonstrates Pico’s

value as a scientific sandbox for implementing, an-
alyzing, and refining design choices in the small
LM regime.

4 Pico Model Suite
We train a suite of pico-decoder models at vari-
ous scales on pretokenized-dolma using pico-
train, all of which are open-sourced on our Hug-
ging Face organization. These models range from
11M to 570M parameters, with plans to extend to
billion-parameter models, and serve both as evalu-
ations of our training pipeline and as testbeds for
research on scaling laws and interpretability.

Each model is trained for 125,000 steps (covering
250B tokens). We evaluate the final model check-
points on the Paloma benchmark (Magnusson et al.,
2024), HellaSwag (Zellers et al., 2019), Arc-Easy
(Clark et al., 2018) and Truthful QA (Lin et al.,
2022), comparing performance against established
decoder models. As shown in Table 2, our models
achieve comparable results to Pythia and OPT mod-
els, despite running on an academic-level compute
budget (4 nodes of 4 A100s each).

We provide a comparison of these models and
their compute/storage overhead in Table 4. Re-
ported “GPU hours” are not directly comparable
across frameworks due to differences in hardware,
dataloaders, and logging pipelines, but our training
times are broadly consistent with existing suites.
For reference, whereas pico-large required 7,465
A100-hours, prior reports list Pythia-1B at 4,830
A100-hours, MPT-1.3B at 7,920 A100-hours, and
TinyLlama-1.1B at 3,456 A100-hours under opti-
mized stacks (Zhang et al., 2024). Importantly, all

299

https://huggingface.co/pico-lm/models


of our models are trained in a streaming pipeline,
with datasets and checkpoints streamed from and
uploaded to Hugging Face. Streaming adds data
latency 2 but greatly simplifies reproducibility and
removes local storage requirements. Users who
prioritize throughput can instead train models with
a locally cached dataset.

5 Related Literature
We survey where Pico sits within a growing ecosys-
tem of frameworks that support the training and
analysis of language models, ranging from opti-
mized production libraries to interpretability toolk-
its.

5.1 Training Frameworks
Open-source initiatives. Initiatives by
EleutherAI, including GPT-Neo, GPT-J, and the
interpretability-focused Pythia suite (Biderman
et al., 2023) as well as projects like the Allen
Institute’s OLMo (Groeneveld et al., 2024), Meta’s
Llama (Touvron et al., 2023), and BigScience’s
BLOOM (Le Scao et al., 2023), have democratized
access to pretrained weights and checkpoints.
While these frameworks support post-hoc in-
vestigations into phenomena such as linguistic
emergence and scaling effects (Belrose et al., 2023;
Gurnee et al., 2023; Michaelov and Bergen, 2023;
Diehl Martinez et al., 2024), they do not capture
detailed, in-training signals by default and only
provide static checkpoints. Smaller frameworks
like SmolLM (Allal et al., 2025), TinyLlama
(Zhang et al., 2024), NanoGPT (Karpathy,
2023), and TinyStories (Eldan and Li, 2023)
offer minimalistic, modular training loops that
facilitate quick experimentation. However, they
usually leave the implementation of fine-grained
monitoring (e.g., activations or gradient flows) to
the user.

Large-scale and efficient frameworks. Plat-
forms such as NVIDIA’s Megatron-LM (Narayanan
et al., 2021) and Microsoft’s DeepSpeed (Rasley
et al., 2020) excel at distributed training for models
with billions of parameters, though they lack native
mechanisms for inspecting intermediate states.

5.2 Analysis Frameworks
Post-hoc model probing. Given that detailed
training signals are often unavailable by default,

2On our network, streaming results in approximately
80–100% slower batch loading compared to a local cache.

many researchers have adopted post-hoc probing
methods. Such approaches rely on external hook-
ing libraries to intercept hidden states and attention
patterns (Voita et al., 2019; Clark et al., 2019;
Michel et al., 2019), looking at information flows
within models to discover security or privacy vul-
nerabilities (Roger, 2023; Yao et al., 2024). While
powerful, these methods demand significant mod-
ifications and usually depend upon pre-existing
checkpoints.

Mechanistic interpretability. Recently, mecha-
nistic interpretability (mechinterp) has gained trac-
tion as a framework for reverse-engineering neural
networks at the algorithmic level (Olah et al., 2020;
Elhage et al., 2021). Mechinterp focuses on local-
izing and characterizing the internal “circuitry” of
attention heads, MLP layers, or individual neurons.
A variety of mechinterp libraries, e.g., Transformer-
Lens (Nanda and Bloom, 2022), SAELens (Bloom
et al., 2024), and ACDC (Conmy et al., 2023), of-
fer powerful tooling to dissect trained transformer
models at inference time. However, these efforts
typically assume that checkpoints are already avail-
able and do not natively capture the evolution of
internal mechanisms throughout training.

6 Conclusion

We introduce Pico, a modular framework designed
to help researchers study and improve small and
medium-sized language models through a more
systematic, scientifically grounded process. pico-
train provides an extensible environment for train-
ing models, with built-in checkpointing that cap-
tures detailed signals needed to analyze learning
dynamics. pico-analyze builds directly on these
checkpoints, enabling researchers to test specific
hypotheses about how changes to model architec-
tures or training procedures affect convergence,
sparsity, rank, and representation learning.

To further support controlled experiments and
comparative studies, we open-source a suite of
pico-decoder baseline models ranging from 11M
to 570M parameters. These baselines give re-
searchers a consistent starting point for evaluating
new ideas or scaling laws under reproducible con-
ditions.

By combining transparent training, detailed in-
situ logging, and flexible analysis, Pico provides a
practical sandbox for hypothesis-driven research.

300



Limitations
The Pico framework is designed for interpretability
and experimentation rather than optimized large-
scale production training, meaning it may not effi-
ciently scale to industrial-scale models with hun-
dreds of billions of parameters. Additionally, the
inherent overhead of systematically checkpointing
intermediate activations and gradients at frequent
intervals can significantly increase storage and com-
putational costs during training.

Ethics Statement
Pico aims to facilitate transparent and reproducible
research into language model interpretability and
learning dynamics. To streamline experimentation,
we release the pretokenized-dolma dataset, a
preprocessed dataset in English, enabling quick and
efficient model training. Additionally, the initial
pico-decoder model suite is also trained exclu-
sively on English-language data. We acknowledge
that this emphasis on English datasets and models
can inadvertently reinforce English as the domi-
nant language in NLP and interpretability research,
potentially marginalizing research on other lan-
guages. We strongly encourage and support the
development and release of similarly structured,
high-quality datasets and models in languages other
than English. Finally, any checkpoint or artifact up-
loaded by Pico to platforms such as Hugging Face
must be used responsibly, with users remaining
mindful of data privacy concerns, potential biases
in training data, and risks associated with misuse
or harmful applications of model checkpoints.

Acknowledgments
This work was supported by a grant from the
Accelerate Programme for Scientific Discovery,
made possible by a donation from Schmidt Futures.
Richard Diehl Martinez is supported by the Gates
Cambridge Trust (grant OPP1144 from the Bill
& Melinda Gates Foundation). Suchir Salhan is
supported by Cambridge University Press & As-
sessment. David Demitri Africa is supported by
the Cambridge Trust and the Jardine Foundation. A
big thank you to Leshem Choshen for their helpful
comments and suggestions.

References
David Demitri Africa, Suchir Salhan, Yuval Weiss, Paula

Buttery, and Richard Diehl Martinez. 2025a. Meta-

pretraining for zero-shot cross-lingual named entity
recognition in low-resource philippine languages.
arXiv preprint arXiv:2509.02160.

David Demitri Africa, Yuval Weiss, Paula Buttery, and
Richard Diehl Martinez. 2025b. Learning dynamics
of meta-learning in small model pretraining. arXiv
preprint arXiv:2508.02189.

Joshua Ainslie, James Lee-Thorp, Michiel de Jong,
Yury Zemlyanskiy, Federico Lebron, and Sumit Sang-
hai. 2023. Gqa: Training generalized multi-query
transformer models from multi-head checkpoints.
In Proceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing, pages
4895–4901.

Loubna Ben Allal, Anton Lozhkov, Elie Bakouch,
Gabriel Martín Blázquez, Guilherme Penedo,
Lewis Tunstall, Andrés Marafioti, Hynek Kydlíček,
Agustín Piqueres Lajarín, Vaibhav Srivastav, et al.
2025. Smollm2: When smol goes big–data-centric
training of a small language model. arXiv preprint
arXiv:2502.02737.

Trapit Bansal, Rishikesh Jha, Tsendsuren Munkhdalai,
and Andrew McCallum. 2020. Self-supervised meta-
learning for few-shot natural language classification
tasks. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 522–534, Online. Association for
Computational Linguistics.

Nora Belrose, Zach Furman, Logan Smith, Danny Ha-
lawi, Igor Ostrovsky, Lev McKinney, Stella Bider-
man, and Jacob Steinhardt. 2023. Eliciting latent
predictions from transformers with the tuned lens.
Preprint, arXiv:2303.08112.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory
Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit,
USVSN Sai Prashanth, Edward Raff, et al. 2023.
Pythia: A suite for analyzing large language models
across training and scaling. In International Con-
ference on Machine Learning, pages 2397–2430.
PMLR.

Joseph Bloom, Curt Tigges, Anthony Duong, and David
Chanin. 2024. Saelens. https://github.com/
jbloomAus/SAELens.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D. Manning. 2019. What does BERT
look at? an analysis of BERT‘s attention. In Pro-
ceedings of the 2019 ACL Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP,
pages 276–286, Florence, Italy. Association for Com-
putational Linguistics.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the AI2 reasoning challenge. CoRR,
abs/1803.05457.

301

https://doi.org/10.18653/v1/2020.emnlp-main.38
https://doi.org/10.18653/v1/2020.emnlp-main.38
https://doi.org/10.18653/v1/2020.emnlp-main.38
https://arxiv.org/abs/2303.08112
https://arxiv.org/abs/2303.08112
https://github.com/jbloomAus/SAELens
https://github.com/jbloomAus/SAELens
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/W19-4828
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457


Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.

Arthur Conmy, Augustine Mavor-Parker, Aengus Lynch,
Stefan Heimersheim, and Adrià Garriga-Alonso.
2023. Towards automated circuit discovery for mech-
anistic interpretability. Advances in Neural Informa-
tion Processing Systems, 36:16318–16352.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and
Christopher Ré. 2022. Flashattention: Fast and
memory-efficient exact attention with io-awareness.
Advances in neural information processing systems,
35:16344–16359.

Richard Diehl Martinez, Pietro Lesci, and Paula But-
tery. 2024. Tending towards stability: Convergence
challenges in small language models. In Findings
of the Association for Computational Linguistics:
EMNLP 2024, pages 3275–3286, Miami, Florida,
USA. Association for Computational Linguistics.

Ronen Eldan and Yuanzhi Li. 2023. Tinystories: How
small can language models be and still speak coherent
english? Preprint, arXiv:2305.07759.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom
Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly,
Nova DasSarma, Dawn Drain, Deep Ganguli, Zac
Hatfield-Dodds, Danny Hernandez, Andy Jones,
Jackson Kernion, Liane Lovitt, Kamal Ndousse,
Dario Amodei, Tom Brown, Jack Clark, Jared Ka-
plan, Sam McCandlish, and Chris Olah. 2021. A
mathematical framework for transformer circuits.
Transformer Circuits Thread. Https://transformer-
circuits.pub/2021/framework/index.html.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017.
Model-agnostic meta-learning for fast adaptation of
deep networks. In Proceedings of the 34th Interna-
tional Conference on Machine Learning, volume 70
of Proceedings of Machine Learning Research, pages
1126–1135. PMLR.

Dirk Groeneveld, Iz Beltagy, Evan Walsh, Akshita Bha-
gia, Rodney Kinney, Oyvind Tafjord, Ananya Jha,
Hamish Ivison, Ian Magnusson, Yizhong Wang, et al.
2024. Olmo: Accelerating the science of language
models. In Proceedings of the 62nd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 15789–15809.

Wes Gurnee, Neel Nanda, Matthew Pauly, Katherine
Harvey, Dmitrii Troitskii, and Dimitris Bertsimas.
2023. Finding neurons in a haystack: Case stud-
ies with sparse probing. Transactions on Machine
Learning Research.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.

2021. Measuring massive multitask language under-
standing. In International Conference on Learning
Representations.

Patrik O Hoyer. 2004. Non-negative matrix factorization
with sparseness constraints. Journal of machine
learning research, 5(Nov):1457–1469.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-rank adaptation of
large language models. In International Conference
on Learning Representations.

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu
Cui, Xiang Long, Zhi Zheng, Yewei Fang, Yuxiang
Huang, Weilin Zhao, et al. 2024. Minicpm: Unveiling
the potential of small language models with scalable
training strategies. arXiv preprint arXiv:2404.06395.

Niall Hurley and Scott Rickard. 2009. Comparing mea-
sures of sparsity. IEEE Transactions on Information
Theory, 55(10):4723–4741.

Andrej Karpathy. 2023. nanogpt.

Simon Kornblith, Mohammad Norouzi, Honglak Lee,
and Geoffrey Hinton. 2019. Similarity of neural
network representations revisited. In International
conference on machine learning, pages 3519–3529.
PMLR.

Teven Le Scao, Angela Fan, Christopher Akiki, El-
lie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon,
Matthias Gallé, et al. 2023. Bloom: A 176b-
parameter open-access multilingual language model.

Yue Li and Jiong Zhang. 2021. Semi-supervised meta-
learning for cross-domain few-shot intent classifica-
tion. In Proceedings of the 1st Workshop on Meta
Learning and Its Applications to Natural Language
Processing, pages 67–75, Online. Association for
Computational Linguistics.

Vladislav Lialin, Sherin Muckatira, Namrata Shiva-
gunde, and Anna Rumshisky. 2023. ReLoRA: High-
Rank Training Through Low-Rank Updates. In The
Twelfth International Conference on Learning Rep-
resentations.

Lightning AI. 2025. Lightning fabric. Version 2.5.1.

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022.
TruthfulQA: Measuring how models mimic human
falsehoods. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 3214–3252, Dublin,
Ireland. Association for Computational Linguistics.

Ian Magnusson, Akshita Bhagia, Valentin Hofmann,
Luca Soldaini, Ananya Harsh Jha, Oyvind Tafjord,
Dustin Schwenk, Evan Walsh, Yanai Elazar, Kyle Lo,
et al. 2024. Paloma: A benchmark for evaluating
language model fit. Advances in Neural Information
Processing Systems, 37:64338–64376.

302

https://doi.org/10.18653/v1/2024.findings-emnlp.187
https://doi.org/10.18653/v1/2024.findings-emnlp.187
https://arxiv.org/abs/2305.07759
https://arxiv.org/abs/2305.07759
https://arxiv.org/abs/2305.07759
https://proceedings.mlr.press/v70/finn17a.html
https://proceedings.mlr.press/v70/finn17a.html
https://openreview.net/forum?id=JYs1R9IMJr
https://openreview.net/forum?id=JYs1R9IMJr
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://github.com/karpathy/nanoGPT
https://doi.org/10.18653/v1/2021.metanlp-1.8
https://doi.org/10.18653/v1/2021.metanlp-1.8
https://doi.org/10.18653/v1/2021.metanlp-1.8
https://openreview.net/forum?id=DLJznSp6X3
https://openreview.net/forum?id=DLJznSp6X3
https://lightning.ai/docs/fabric/stable/
https://doi.org/10.18653/v1/2022.acl-long.229
https://doi.org/10.18653/v1/2022.acl-long.229


James Michaelov and Ben Bergen. 2023. Emergent in-
abilities? inverse scaling over the course of pretrain-
ing. In Findings of the Association for Computational
Linguistics: EMNLP 2023, pages 14607–14615, Sin-
gapore. Association for Computational Linguistics.

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one? In Advances
in Neural Information Processing Systems, volume 32.
Curran Associates, Inc.

Ari Morcos, Maithra Raghu, and Samy Bengio. 2018.
Insights on representational similarity in neural net-
works with canonical correlation. Advances in neural
information processing systems, 31.

Neel Nanda and Joseph Bloom. 2022. Transformerlens.
https://github.com/TransformerLensOrg/
TransformerLens.

Deepak Narayanan, Mohammad Shoeybi, Jared Casper,
Patrick LeGresley, Mostofa Patwary, Vĳay Kor-
thikanti, Dmitri Vainbrand, Prethvi Kashinkunti, Julie
Bernauer, Bryan Catanzaro, et al. 2021. Efficient
large-scale language model training on gpu clusters
using megatron-lm. In Proceedings of the interna-
tional conference for high performance computing,
networking, storage and analysis, pages 1–15.

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel
Goh, Michael Petrov, and Shan Carter. 2020. Zoom
in: An introduction to circuits. Distill, 5(3):e00024–
001.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. PyTorch: An
imperative style, high-performance deep learning li-
brary. In Advances in Neural Information Processing
Systems, volume 32.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and
Yuxiong He. 2020. Deepspeed: System optimiza-
tions enable training deep learning models with over
100 billion parameters. In Proceedings of the 26th
ACM SIGKDD international conference on knowl-
edge discovery & data mining, pages 3505–3506.

Fabien Roger. 2023. Large language models sometimes
generate purely negatively-reinforced text. Preprint,
arXiv:2306.07567.

Noam Shazeer. 2020. Glu variants improve transformer.
arXiv preprint arXiv:2002.05202.

Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin
Schwenk, David Atkinson, Russell Authur, Ben Bo-
gin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar,
et al. 2024. Dolma: an open corpus of three trillion
tokens for language model pretraining research. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 15725–15788.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
et al. 2023. Beyond the imitation game: Quantifying
and extrapolating the capabilities of language mod-
els. Transactions on Machine Learning Research.
Featured Certification.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan,
Wen Bo, and Yunfeng Liu. 2024. Roformer: En-
hanced transformer with rotary position embedding.
Neurocomputing, 568:127063.

Shreyas Subramanian, Vikram Elango, and Mecit Gun-
gor. 2025. Small language models (slms) can
still pack a punch: A survey. arXiv preprint
arXiv:2501.05465.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Chien Van Nguyen, Xuan Shen, Ryan Aponte, Yu Xia,
Samyadeep Basu, Zhengmian Hu, Jian Chen, Mihir
Parmar, Sasidhar Kunapuli, Joe Barrow, et al. 2024.
A survey of small language models. arXiv preprint
arXiv:2410.20011.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019. Analyzing multi-head
self-attention: Specialized heads do the heavy lift-
ing, the rest can be pruned. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 5797–5808, Florence, Italy.
Association for Computational Linguistics.

Fali Wang, Zhiwei Zhang, Xianren Zhang, Zongyu Wu,
Tzuhao Mo, Qiuhao Lu, Wanjing Wang, Rui Li, Jun-
jie Xu, Xianfeng Tang, et al. 2024. A comprehensive
survey of small language models in the era of large
language models: Techniques, enhancements, appli-
cations, collaboration with llms, and trustworthiness.
arXiv preprint arXiv:2411.03350.

Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mo-
hananey, Wei Peng, Sheng-Fu Wang, and Samuel R.
Bowman. 2020. BLiMP: The Benchmark of Linguis-
tic Minimal Pairs for English. Transactions of the
Association for Computational Linguistics, 8:377–
392.

Yuval Weiss, David Demitri Africa, Paula Buttery, and
Richard Diehl Martinez. 2025. Investigating relora:
Effects on the learning dynamics of small language
models. Preprint, arXiv:2509.12960.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771.

303

https://doi.org/10.18653/v1/2023.findings-emnlp.973
https://doi.org/10.18653/v1/2023.findings-emnlp.973
https://doi.org/10.18653/v1/2023.findings-emnlp.973
https://proceedings.neurips.cc/paper_files/paper/2019/file/2c601ad9d2ff9bc8b282670cdd54f69f-Paper.pdf
https://github.com/TransformerLensOrg/TransformerLens
https://github.com/TransformerLensOrg/TransformerLens
https://proceedings.neurips.cc/paper_files/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://arxiv.org/abs/2306.07567
https://arxiv.org/abs/2306.07567
https://openreview.net/forum?id=uyTL5Bvosj
https://openreview.net/forum?id=uyTL5Bvosj
https://openreview.net/forum?id=uyTL5Bvosj
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.1162/tacl_a_00321
https://doi.org/10.1162/tacl_a_00321
https://arxiv.org/abs/2509.12960
https://arxiv.org/abs/2509.12960
https://arxiv.org/abs/2509.12960


Yifan Yao, Jinhao Duan, Kaidi Xu, Yuanfang Cai, Zhibo
Sun, and Yue Zhang. 2024. A survey on large lan-
guage model (llm) security and privacy: The good,
the bad, and the ugly. High-Confidence Computing,
4(2):100211.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. HellaSwag: Can
a machine really finish your sentence? In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 4791–4800,
Florence, Italy. Association for Computational Lin-
guistics.

Biao Zhang and Rico Sennrich. 2019. Root mean square
layer normalization. Advances in Neural Information
Processing Systems, 32.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and
Wei Lu. 2024. Tinyllama: An open-source small
language model. arXiv preprint arXiv:2401.02385.

304

https://doi.org/10.1016/j.hcc.2024.100211
https://doi.org/10.1016/j.hcc.2024.100211
https://doi.org/10.1016/j.hcc.2024.100211
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472


A Default pico-train configurations

Category Parameter Default Value

Model

Model Type pico_decoder
Hidden Dimension (3model) 768
Number of Layers (=layers) 12
Vocabulary Size 50,304
Sequence Length 2,048
Attention Heads 12
Key/Value Heads 4
Activation Hidden Dim 3,072
Normalization Epsilon 1 × 10−6

Positional Embedding Theta 10,000.0

Training

Optimizer AdamW
Learning Rate 3 × 10−4

LR Scheduler Linear w/ Warmup
Warmup Steps 2,500
Gradient Accumulation Steps 128
Max Training Steps 200,000
Precision BF16 Mixed

Data
Dataset Name pico-lm/pretokenized-dolma
Batch Size 1,024
Tokenizer allenai/OLMo-7B-0724-hf

Checkpointing

Auto Resume True
Save Every N Steps 1,000
Learning Dynamics Layers "attention.v_proj",

"attention.o_proj",
"swiglu.w_2"

Learning Dynamics Eval Data pico-lm/pretokenized-paloma-tinsy

Evaluation
Metrics ["paloma"]
Paloma Dataset Name pico-lm/pretokenized-paloma-tinsy
Eval Batch Size 16

Monitoring
Logging Level INFO
Log Every N Steps 100

Table 3: Default configuration settings used in pico-train, organized by configuration category.

B pico-decoder models comparison
Attribute tiny small medium large
Parameter Count 11M 65M 181M 570M
Hidden Dimension (3model) 96 384 768 1536
Feed-forward Dim 384 1536 3072 6144
Training Time (125K Steps) 4926h 5645h 6112h 7465h
Checkpoint Time 7m42s 3m25s 1m58s 1m29s
Checkpoint Storage (Model State) 151MB 863MB 2.4GB 7.5GB
Checkpoint Storage (Learning Dynamics) 37MB 176MB 550MB 2GB

Table 4: Comparison of pico-decoder model variants trained with default pico-train configurations. Except for
hidden and feed-forward dimension, all models share the training settings detailed in Table 3. Models are trained for
125,000 total training steps on 16 NVIDIA A100-SXM4-80GB GPUs. Time reported in GPU hours (h), minutes
(m) and seconds (s); checkpoint time and storage reported per checkpoint step.

305



C Available metrics in pico-analyze

Metric Description Data Type Category
CKA
(Kornblith et al., 2019)

• Measures similarity between activations at dif-
ferent checkpoints

• Uses kernel methods to track representation
evolution

Activations Similarity

PWCCA
(Morcos et al., 2018)

• Measures activation similarity across training
• Emphasizes important components via projec-

tions

Activations Similarity

Condition Number • Computes ratio of largest to smallest singular
value

• Indicates sensitivity to small input changes

Weights
Activations
Gradients

Rank

PER
(Diehl Martinez et al.,
2024)

• Measures entropy of normalized singular val-
ues

• Indicates effective parameter usage

Weights
Gradients

Rank

Gini Coefficient
(Hurley and Rickard,
2009)

• Measures sparsity via weight distribution in-
equality

Weights
Activations
Gradients

Sparsity

Hoyer’s Sparsity
(Hoyer, 2004)

• Measures sparsity by computing ratio of L1/L2
norms

Weights
Activations
Gradients

Sparsity

Norm • Frobenius, Nuclear, Infinity matrix norms Weights
Activations
Gradients

Norm

Table 5: Overview of built-in metrics in pico-analyze. Data Types indicates on what types of checkpoint data the
metrics can be applied. The Category column classifies metrics based on their primary purpose.

D Preprocessing of the
pretokenized-dolma dataset

To prepare the pretokenized-dolma dataset used
in our experiments, we begin by downloading
the Dolma corpus and selecting a random 30%
subset. The text is then tokenized using the
allenai/OLMo-7B-0724-hf tokenizer and split
into fixed-length sequences of 2049 tokens (2048 +
1 for next-token prediction). We ensure consistency
across shards by chunking token streams without
overlap, dropping any remainder shorter than the
full sequence length.

After tokenization and chunking, we shuffle the
dataset and sample a fixed number of sequences

per shard, generating 100 shards in total. The
resulting dataset is saved as Parquet files and up-
loaded to our Hugging Face organization under
pico-lm/pretokenized-dolma.

To facilitate scalable loading and training, we
further fine-shard the dataset into 10,000 pieces
using a secondary script. These final shards are
compact (78MB each), randomly shuffled, pre-
tokenized, and ready for streaming via the Hugging
Face datasets API. This preprocessing ensures that
all models see data in a consistent order, which is
critical for learning dynamics analysis. We release
all of the scripts we use for preprocessing data in
our GitHub repository.

306

https://huggingface.co/datasets/pico-lm/pretokenized-dolma

