AgentCPM-GUI: Building Mobile-Use Agents with
Reinforcement Fine-Tuning

Zhong Zhang'*, Yaxi Lu'*, Yikun Fu!", Yupeng Huo?, Shenzhi Yang?, Yesai Wu', Han Si'"
Xin Cong', Haotian Chen', Yankai Lin**, Jie Xie', Wei Zhou'!, Wang Xu!, Yuanheng Zhang'"
Zhou Su’®, Zhongwu Zhai’, Xiaoming Liu’, Yudong Mei’, Jianming Xu’, Hongyan Tian’
Chongyi Wang?, Chi Chen', Yuan Yao'#, Zhiyuan Liu'#, Maosong Sun'*
"Tsinghua University ?Renmin University of China *ModelBest Inc. *Shanghai Qi Zhi Institute

zhongzhang@tsinghua.edu.cn

Abstract

Large language model agents have enabled
GUI-based automation, particularly for mobile
devices. However, deployment remains limited
by noisy data, poor generalization, and lack of
support for non-English GUIs. In this work,
we present AgentCPM-GUI, an 8§B-parameter
GUI agent built for robust and efficient on-
device GUI interaction. Our training pipeline
includes grounding-aware pre-training to en-
hance perception, supervised fine-tuning on
high-quality Chinese and English trajectories to
imitate human-like actions, and reinforcement
fine-tuning with GRPO to improve reasoning
capability. AgentCPM-GUI achieves promis-
ing performance on five public benchmarks and
our proposed Chinese benchmark CAGUI. To
facilitate reproducibility and further research,
we publicly release all code, model checkpoint,
and evaluation data at: https://github.com/
OpenBMB/AgentCPM-GUI

1 Introduction

The rapid advancements in Large Language
Models (LLMs) and Multimodal Large Models
(MLLMs) have catalyzed a new era of autonomous
Al agents (Zhao et al., 2023; Wang et al., 2024b).
These agents are increasingly capable of under-
standing complex instructions (Ouyang et al., 2022;
Qian et al., 2024), performing multi-step plan-
ning (Huang et al., 2024), and interacting with
external tools or environments (Qin et al., 2024,
2025a). A critical frontier for deploying these in-
telligent agents in practical, human-centric applica-
tions is enabling them to proficiently operate Graph-
ical User Interfaces (GUIs) (Wang et al., 2024c;
Nguyen et al., 2025; Zhang et al., 2025a), partic-
ularly within the ubiquitous Android ecosystem,
where they serve as the primary interaction layer

* Equal contribution.

¥ Internship at Tsinghua University.
+ .

* Corresponding authors.

lyx23@mails.tsinghua.edu.cn

for a vast array of daily digital tasks. Empowering
LLM agents to seamlessly navigate and manipu-
late these mobile GUIs is essential for transforming
them into truly versatile digital assistants capable
of automating a wide spectrum of tasks on smart-
phones, thereby enhancing user productivity and
accessibility.

Early GUI agents emerged when Vision-
Language Models (VLMs) had limited ability in
reliably control GUI widgets. To compensate, re-
searchers augmented model inputs with structured
metadata, such as Android view hierarchies and
system APIs, and even off-loaded perception and
planning to more capable external VLMs (e.g.,
GPT-40 (Hurst et al., 2024)), thereby improving
widget grounding and action execution (Zhang
et al., 2025b; Chen et al., 2025a; Chen and Li,
2024; Zheng et al., 2024; Kim et al., 2023; Wang
et al., 2024a). Although effective, these hybrid
pipelines propagated errors from cross-modal mis-
matches, incurred round-trip latency, and depended
on metadata that many apps do not expose, creating
significant challenges for generality and scalability.
Recent GUI agents have advanced to resolving in-
terface elements directly from raw pixels, enabling
a single end-to-end model to match or even surpass
earlier hybrid approaches (Hong et al., 2024; Cheng
et al., 2024; Qin et al., 2025b; Xu et al., 2024; Wu
et al., 2025; Lin et al., 2025; Zhang and Zhang,
2024). This shift positions purely visual, end-to-
end modeling as the most scalable paradigm.

Despite significant progress, current visual GUI
agents still face several challenges: (1) Data qual-
ity and scale. High-quality, fine-grained interac-
tion trajectories that capture realistic user behavior
in diverse mobile apps are notoriously difficult to
collect at scale. Most publicly available datasets ei-
ther rely on synthetic generation or emulator-based
recordings, both of which can introduce noise and
lack semantic diversity. Such imperfect supervi-
sion limits the agent’s ability to learn precise wid-

155

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 155-180
November 4-9, 2025 ©2025 Association for Computational Linguistics

https://github.com/OpenBMB/AgentCPM-GUI
https://github.com/OpenBMB/AgentCPM-GUI

get grounding, compositional reasoning, and long-
horizon action planning. (2) Reasoning general-
ization. GUI agents that are trained solely via imi-
tation learning tend to overfit to interface patterns,
resulting in brittle planning and poor generalization
when task instructions deviate from seen templates
or when UI layouts exhibit minor variations. (3)
Language and regional coverage. Current re-
search concentrates almost exclusively on English
GUISs, paying limited attention to the rapidly grow-
ing and diverse Chinese mobile ecosystem, whose
interface design conventions and linguistic cues
differ substantially. These differences limit the gen-
eralizability of current agents in multilingual and
culturally diverse settings.

To address these challenges, we propose
AgentCPM-GUI, a VLM-based agent for mobile
GUI understanding and interaction. The key fea-
tures of this work are as follows.

* High-quality training data. We curate a
large-scale corpus of 55K trajectories with
470K steps, encompassing a wide variety of
Chinese Android apps via targeted collection
and meticulous annotation. To enhance gener-
alization and mitigate overfitting, we further
incorporate and rigorously de-duplicate multi-
ple public English Android datasets. The re-
sulting unified dataset supports effective train-
ing, enabling robust cross-lingual and cross-
app behavior modeling.

* Progressive training for perception, imi-
tation, and reasoning. We adopt a three-
stage progressive training pipeline to equip the
agent with strong GUI understanding and rea-
soning capabilities, consisting of grounding-
aware pre-training to enhance visual percep-
tion; supervised fine-tuning (SFT) to estab-
lish a reliable behavioral prior; and reinforce-
ment fine-tuning (RFT) (OpenAl, 2024; Shao
et al., 2024; Trung et al., 2024) to further
strengthen reasoning ability, enabling robust
performance on long-horizon and composi-
tional tasks. In addition, we optimize the train-
ing framework with asynchronous rollout and
load balancing to support scalable reinforce-
ment learning.

* Edge device oriented design. To reduce de-
coding overhead, we carefully select action
tokens to avoid unnecessary token fragmen-
tation and adopt a compact JSON-based ac-

tion format, resulting in an average output
length of just 9.7 tokens per action. While
prior works largely overlook redundancy in
action space design, our concise representa-
tion significantly improves runtime efficiency,
enabling smooth and responsive on-device ex-
ecution.

* Comprehensive benchmarking. We evaluate
AgentCPM-GUI on the widely used English
GUI agent benchmarks: AndroidControl (Li
et al., 2024), GUI-Odyssey (Lu et al., 2024a),
and AITZ (Zhang et al., 2024). In addition,
we introduce CAGUI, the first large-scale
Chinese Android GUI benchmark. CAGUI
is a representative subset of our corpus de-
signed for public evaluation. AgentCPM-GUI
achieves new state-of-the-art performance
across all datasets, demonstrating robust mul-
tilingual and cross-app generalization.

2 Method

2.1 Architecture Overview

As shown in Figure 1, we adopt a three-stage
training framework to transform MiniCPM-V (Yao
et al., 2024), a lightweight 8B vision-language
model, into a GUI-capable agent. The first stage
focuses on visual perception and grounding, using
tasks like OCR and widget localization to enhance
the model’s ability to align GUI elements with lan-
guage. In the second stage, the model is fine-tuned
on supervised GUI trajectories paired with natural
language instructions, enabling it to imitate human-
like actions. Finally, reinforcement fine-tuning is
applied using Group Relative Policy Optimization
(GRPO) (Shao et al., 2024) to further improve plan-
ning and decision-making.

2.2 Action Space Design

We design a unified and compositional action space
that is compact and friendly for language model
generation. It consists of six atomic actions, en-
abling expressive yet efficient GUI control:

* POINT: Specifies a normalized coordinate
(x,y) in [0,1000] to perform a tap. Com-
bined with to or duration, it supports swipes
and long presses.

* to: Indicates swipe direction or complements
POINT to define gesture endpoints.

* TYPE: Inputs a specified text string into the

156

Stage | : Visual Perception
and Grounding

Fun2Point \ Text2Point \
BBox2Text

¥

Stage lll : Reinforcement Fine-tuning

l Filtering

Advantage
Updating

@l
Data " Actions \
Queue

POINT: [123,456] -10
PRESS: “BACK 10

ymm————

: Policy @ ---------------- i
Stage Il : Supervised Updating ﬁVerify
Action Learning
Async. Thoughts Actions
>> Sampling | should touch the icon... POINT: [123,456]
INST. C”‘ Thoughts * —{Cannot identify the content... PRESS: “BACK”
Image % Actions The goods have been added...
Instruction:
Google the
capital of
Paraguay
Q
—

Figure 1: Overview of our training framework.

currently focused input field.

e PRESS: Simulates device keys like "HOME",
"BACK", or "ENTER" for common operations.

e STATUS: Communicates task state (e.g.,
"continue”, "finish"”, "impossible"), al-
lowing dynamic control flow.

e duration: Time an action lasts. Used alone

for delays or with POINT for long actions.

To reduce token overhead, we adopt a compact
JSON format with no extra whitespace, resulting in
a low average token cost of 9.7 per action, enabling
fast and efficient execution on edge devices.

2.3 Stage I: Visual Perception and Grounding

For grounding pre-training, we collect Android
GUI data by sampling examples from several
open-source corpora (AITZ (Zhang et al., 2024),
GUICourse (Chen et al., 2025b), OS-Atlas (Wu
et al., 2025), UGround (Gou et al., 2025),
ScreenSpot (Cheng et al., 2024)) and additional

screenshots from our collected Chinese app data.

Each image is formulated as either an OCR task
that asks the model to write the text in a marked

region, or a widget-localization task that asks it
to output the bounding box coordinate of a refer-
enced Ul element. Grounding batches mix in 50%
general multimodal SFT data (e.g., Chat, VQA,
Multimodal Reasoning) (Yao et al., 2024), which
regularizes the vision module while letting it ab-
sorb GUI-specific cues. In total, the grounding
pre-training dataset comprises 12M samples.

This pre-training stage plays a crucial role in
establishing the model’s low-level perceptual and
grounding abilities. We observe that, after this
stage, the model demonstrates strong proficiency
in identifying and locating GUI widgets, especially
in accurately predicting coordinates based on vi-
sual cues. However, the model at this point still
struggles to generate well-formed function calls
or to reason over action types, indicating limited
understanding of higher-level task semantics and
planning. These capabilities are further enhanced
in the subsequent SFT and RFT stages.

2.4 Stage II: Supervised Imitation Learning

Due to the scarcity of high-quality open-source
datasets for Chinese Android apps, we constructed
a large-scale, high-fidelity dataset of GUI inter-

157

action trajectories to support supervised imitation
learning. The corpus covers over 30 mainstream
Chinese apps, spanning eight functional domains:
life services, e-commerce, navigation, social, video,
music/audio, reading/learning, and productivity.
This ensures that the agent is exposed to a wide
spectrum of Ul layouts, widget types, and task in-
tents. In total, we obtained 55K complete task
trajectories comprising 470K atomic steps, approx-
imately 8.5 steps per trajectory.

In order to enhance cross-lingual generalization
and reduce over-fitting, we augmented our Chinese
corpus with publicly available English-language
datasets: AITW (Li et al., 2024), AITZ (Zhang
et al., 2024), AMEX (Chai et al., 2025), Android-
Control (Li et al., 2024), and GUI-Odyssey (Lu
et al., 2024a). Since AITW is internally redundant,
we performed intra-query de-duplication. For each
trajectory, we extracted ResNet-50 features from
its screenshots and averaged them to produce a tra-
jectory embedding. We then grouped trajectories
by shared query and, within each group, removed
those whose cosine similarity to any previously
retained sample exceeded a fixed threshold. This
retained approximately 40% of the original data.

Empirically, training solely on GUI-interaction
data led to a pronounced mode collapse during
the subsequent RFT stage, manifesting as impov-
erished and repetitive reasoning thoughts. To miti-
gate this, we mixed 50% general multimodal SFT
data into training batches, which helped stabilize
policy optimization. The SFT data comprises a mix
of single-turn (system-user-assistant) and multi-
turn dialogues. For multi-turn examples, we re-
tained only the last three turns of user-assistant
interaction to provide sufficient conversational con-
text while keeping input sequences within tractable
length limits. In total, 6.9M instances were used
for the SFT stage.

2.5 Stage III: Reinforcement Fine-tuning

We introduce an RFT stage to improve the agent’s
reasoning ability. To make RFT practical at scale,
we further develop a training framework which
supports asynchronous rollout and two levels of
load balancing to improve efficiency and scalability
across distributed environments.

2.5.1 Algorithmic Design

We conduct RFT based on the GRPO (Shao et al.,
2024) algorithm. GRPO replaces the value critic
of PPO (Schulman et al., 2017) with a group-wise

comparison of candidate completions. For reward
design and validation, we apply a two-stage valida-
tion scheme to evaluate model outputs: (1) format
checking and (2) semantic correctness. The reward
is mapped to the range [—1, 1]. If an output fails the
format check (e.g., malformed structure or missing
fields), a reward of —1 is assigned. If the format
is correct but the answer is semantically incorrect,
the reward is 0. If both format and answer are cor-
rect, the reward is 1. For action spaces involving
continuous goals, such as predicting a POINT target,
we further define correctness by spatial accuracy:
if the predicted point falls within the ground-truth
bounding box, a reward of 1 is assigned; otherwise,
0. This fine-grained reward design encourages both
syntactic correctness and task-specific accuracy.

2.5.2 System Optimization

Our training system adopts an asynchronous ar-
chitecture that decouples rollout execution from
policy updates. Once a task ID is dispatched from
the global task queue, it is sampled n times accord-
ing to the GRPO algorithm to generate multiple
candidate responses per policy. After inference and
reward computation for each sample are complete,
the main process computes the advantage for the
samples using GRPO’s variance-reduced estimator.
These advantage values are then sent to the node-
level main process for policy updating. The global
main process collects all necessary statistics and,
when synchronization conditions are met, coordi-
nates a unified policy update across nodes. This
design ensures tight integration of GRPO’s opti-
mization logic within our distributed, asynchronous
training framework.

Asynchronous Rollout. In our design, each GPU
group performs inference independently and asyn-
chronously. The inference results are first syn-
chronized to the local node’s main process. Then,
each local main process communicates its inference
status with a global main process, which tracks
global rollout progress and coordinates training
updates. During inference, each GPU group also
asynchronously requests the next batch of data re-
quired for computing policy gradients. The global
main process monitors the overall rollout status
and, once a pre-defined synchronization condition
is met, broadcasts a signal to all GPU groups to
pause rollout and perform a synchronized model
update. This asynchronous rollout scheme ensures
that GPU groups operate efficiently without wait-

158

Table 1: GUI grounding accuracy on the CAGUI benchmark over the Fun2Point, Text2Point, and Bbox2Text
sub-tasks. Bold and underline indicate the best and second-best results.

Models Fun2Point Text2Point Bbox2Text Average
Closed-source Models
GPT-40 (Hurst et al., 2024) 22.1 19.9 14.3 18.8
GPT-40 with grounding (Lu et al., 2024b) 44.3 44.0 14.3 34.2
Open-source Models
Qwen2.5-VL-7B (Bai et al., 2023) 59.8 59.3 50.0 56.4
InternVL2.5-8B (Dong et al., 2024) 17.2 24.2 459 29.1
InternVL2.5-26B (Dong et al., 2024) 14.8 16.6 36.3 22.6
OS-Genesis-7B (Sun et al., 2025) 5.8 4.0 6.0
UI-TARS-7B (Qin et al., 2025b) 56.8 66.7 14 41.6
OS-Altas-7B (Wu et al., 2025) 53.6 60.7 04 38.2
Aguvis-7B (Xu et al., 2024) 60.8 76.5 0.2 45.8
AgentCPM-GUI 79.1 76.5 58.2 71.3

ing for each other, thus fully utilizing resources.

Hierarchical Load Balancing. The asyn-
chronous design introduces challenges related
to load imbalance, particularly at two levels:
intra-node (between GPU groups) and inter-node
(between different compute nodes). Intra-node im-
balance is addressed by constructing a global task
queue from which inference tasks are dynamically
dispatched to GPU groups. This design make each
GPU group consistently have access to available
tasks, thereby minimizing idle time. However,
nodes with differing hardware configurations or
system loads can result in inter-node imbalance:
some nodes may accumulate more rollout results
than others. To address this, we implement a
work stealing mechanism: underutilized nodes can
request inference results from overburdened peers.
This approach is particularly suited for large-scale,
multi-modal inference outputs, which are often
expensive to transmit and manage. Work stealing
provides a flexible and scalable solution that avoids
the drawbacks of forced synchronization across
machines.

3 Experiments

3.1 GUI Grounding Capability

We evaluate GUI grounding on CAGUI through
three tasks designed to assess different aspects of
visual-language alignment and understanding: 1)
Fun2Point. Given a description of a component’s
function in the GUI (e.g., "this button opens the

website"), the model must locate the correct coordi-
nates of the mentioned component; 2) Text2Point.
The model is required to locate a given textual
string appearing within the GUI; 3) Bbox2Text.
The model receives a bounding box location on the
GUI and must accurately output the corresponding
textual content. Representative examples of these
tasks are included in Appendix C.1.

All three grounding tasks are evaluated on the
CAGUI benchmark, which was specifically curated
for assessing GUI grounding capability in Chinese
Android apps. The raw dataset consists of screen-
shots paired with corresponding XML metadata
collected from real-world apps. Each XML file
provides fine-grained annotations for GUI widgets,
including bounding box coordinates, textual con-
tent, and component types. For the Text2Point
and Bbox2Text tasks, annotations were directly ex-
tracted from the XML metadata by aligning tex-
tual content with their corresponding bounding
boxes. For Fun2Point, additional function-level la-
bels were constructed to reflect the semantic roles
of GUI widgets. To generate these labels, we first
overlaid bounding boxes onto the screenshots to ex-
plicitly highlight the spatial boundaries of each wid-
get. Then, we prompted a strong VLM Qwen?2.5-
VL-72B to produce concise functional descriptions,
yielding high-quality semantic labels for widgets.

Evaluation procedures were tailored to the input-
output formats of each model. InternVL models
output bounding boxes, which are evaluated against
the ground-truth using the Intersection-over-Union

159

Table 2: Step-level action prediction performance on five GUI Agent benchmarks, in terms of Type Match (TM) and
Exact Match (EM). Bold and underline indicate the best and second-best results. *OS-Atlas uses different train/test
splits on GUI-Odyssey benchmark and is not directly comparable.

Models AC-Low AC-High Odyssey AITZ CAGUI
™ EM T™ EM T™ EM T EM TM EM
Closed-source Models
GPT-40 (Hurst et al., 2024) - 195 - 208 - 204 700 353 3.67 3.67
Gemini 2.0 (Deepmind, 2024) - 285 - 602 - 327 - - - -
Claude (Anthropic, 2024) - 194 - 125 609 - - - - -
Open-source Models
Qwen2.5-VL-7B (Bai et al., 2023) 94.1 85.0 75.1 629 59.5 463 784 54.6 742 552
UI-TARS-7B (Qin et al., 2025b) 95.2 91.8 81.6 744 86.1 679 804 658 88.6 70.3
OS-Genesis-7B (Sun et al., 2025) 90.7 742 659 444 11.7 3.63 20.0 845 38.1 14.5
0OS-Atlas-7B (Wu et al., 2025) 73.0 67.3 704 565 91.8* 76.8* 74.1 58.5 81.5 559
Aguvis-7B (Xu et al., 2024) 939 894 656 542 267 135 357 19.0 674 382
OdysseyAgent (Lu et al., 2024a) 65.1 39.2 58.8 327 90.8 73.7 59.2 31.6 67.6 254
AgentCPM-GUI 944 90.2 77.7 69.2 90.9 75.0 857 764 969 913

(IoU) metric, with a threshold of 0.5 indicating a
successful match. GPT-4o is augmented with Om-
niParser (Lu et al., 2024b), which extracts layout
structures and text/icon segments before the model
predicts a target box index. Models including ours
generate point coordinates and are assessed by com-
paring them with ground-truth locations under a
predefined spatial tolerance.

The results are summarized in Table 1.
AgentCPM-GUI significantly outperforms all base-
lines across all three tasks. In particular, it achieves
a large performance margin in the Bbox2Text task,
where most baseline models struggle-largely due
to the need for precise alignment between visual re-
gions and text content. Despite the task’s difficulty,
AgentCPM-GUI attains a 58.2% accuracy, while
nearly all competing models score below 5%. This
highlights our model’s superior grounding ability,
especially in mobile interface contexts where visual
complexity, small text, and overlapping elements
pose unique challenges.

3.2 Action Prediction Capability

We conduct a comprehensive evaluation of
AgentCPM-GUI on representative benchmarks:
AndroidControl (Li et al., 2024), GUI-Odyssey (Lu
et al., 2024a), AITZ (Zhang et al., 2024), and
CAGUI, covering diverse GUI interaction patterns
across both English and Chinese environments.
Each benchmark adopts two standard evaluation

metrics: Type Match (TM), which checks if the
predicted action type matches the ground truth, and
Exact Match (EM), which additionally requires all
parameters to be correctly predicted. As shown
in Table 2, AgentCPM-GUI achieves state-of-the-
art performance across all benchmarks. Notably,
it demonstrates strong generalization in complex
multi-step scenarios, such as those in GUI-Odyssey
and AITZ, significantly outperforming existing
models. On the CAGUI benchmark, our model
achieves 96.9% TM and 91.3% EM, substantially
ahead of other models, highlighting its effective-
ness in Chinese-language GUI settings.

All baseline results are from our own re-
implementations to ensure fair and reproducible
comparisons. We closely followed each model’s
official instructions and prompts where available,
and applied consistent input and evaluation proto-
cols throughout. Notably, OS-Atlas uses a different
train/test split on GUI-Odyssey benchmark, so its
results are not directly comparable. Our evalua-
tion code and benchmarks are publicly released to
support reproducibility and future research.

3.3 Effects of Reinforcement Fine-tuning

To assess the contribution of RFT, we compare
our model’s performance before and after RFT
across all benchmarks, as shown in Table 3. On
challenging datasets such as AndroidControl-Low,
GUI-Odyssey, and AITZ, RFT brought significant

160

Table 3: Ablation study comparing AgentCPM-GUI before and after RFT.

Models AC-Low AC-High Odyssey AITZ CAGUI
™ EM T™ EM T™ EM T™ EM T™M EM

AgentCPM-GUI-SFT 87.6 83.1 786 695 86.1 667 79.0 61.1 969 915

AgentCPM-GUI-RFT 944 90.2 777 692 909 750 857 764 969 913

improvements, especially in exact match accuracy.
This demonstrates its effectiveness in enhancing
the model’s ability to handle long-horizon reason-
ing and complex decision-making. However, on
datasets like AndroidControl-High and CAGUI, the
SFT-only model already performed competitively
or even slightly better. This can be attributed to the
benchmarks’ large and diverse training sets, which
expose the model to similar patterns during SFT.
As a result, imitation learning alone suffices for
effective generalization, with additional reinforce-
ment offering minimal incremental benefits.

4 Related Work

Recent advances in GUI agents have been sup-
ported by the development of various datasets and
benchmarks, covering both grounding tasks and
interaction modeling (Deng et al., 2023; Cheng
et al., 2024; Wu et al., 2025; Chen et al., 2025b;
Gou et al., 2025; Rawles et al., 2023; Zhang et al.,
2024; Li et al., 2024; Lu et al., 2024a; Chai et al.,
2025; Rawles et al., 2025). However, most of these
focus on English GUISs, limiting cross-lingual gen-
eralization. Concurrently, the field has witnessed
a transition from modular to end-to-end vision-
language agents, with large VLMs trained on mil-
lions of screenshots increasingly used for ground-
ing and planning (Wang et al., 2024a; Zheng et al.,
2024; Hong et al., 2024; Xu et al., 2024; Qin et al.,
2025b; Lin et al., 2025; Yang et al., 2025; Sun
et al., 2025). To improve reasoning and adaptabil-
ity, reinforcement learning techniques have been
incorporated, ranging from offline policy training
to reward-based fine-tuning and reasoning-centric
paradigms (Bai et al., 2024; Wang et al., 2025; Bai
et al., 2025; Zhai et al., 2024; Liu et al., 2025b;
Tan et al., 2025; Huang et al., 2025; Zhou et al.,
2025; Lu et al., 2025; Xia and Luo, 2025; Liu et al.,
2025a; Papoudakis et al., 2025).

5 Conclusion

We present AgentCPM-GUI, a VLM-based agent
for mobile GUI interaction, trained via a three-

stage pipeline that builds grounding, action, and
reasoning skills. To support this, we construct a
high-quality Chinese Android dataset and incor-
porate selected English data for cross-lingual gen-
eralization. Reinforcement fine-tuning further en-
hances planning for long-horizon tasks. Experi-
ments on public and CAGUI benchmarks show
strong performance, particularly in Chinese set-
tings. All code, data, and models will be released
to support future research.

Limitations

While AgentCPM-GUI demonstrates strong per-
formance across both English and Chinese GUI
tasks, several limitations remain. First, the model’s
ability to handle long-horizon interactions is still
constrained by limited historical context. Although
reinforcement fine-tuning enhances planning and
reasoning, the agent only conditions on short, re-
cent trajectories, which can hinder its ability to
manage complex, multi-turn tasks requiring mem-
ory of earlier states or user preferences. Second,
error recovery remains a challenge. The current
agent lacks a robust mechanism for detecting fail-
ures and autonomously retrying or rolling back
actions. While reinforcement training improves
overall task success, it does not explicitly teach the
model to recover from suboptimal decisions or am-
biguous states. Third, our action space, though effi-
cient, assumes deterministic execution and does not
yet account for real-time feedback or unexpected
UI changes during interaction, which may reduce
robustness in deployment. Future work may in-
corporate memory modules, error-aware execution
loops, or uncertainty modeling to further strengthen
the agent’s autonomy and adaptability in dynamic
mobile environments.

Acknowledgments

This work was supported by the Postdoc-
toral Fellowship Program of CPSF (Grant No.
GZC20240831) and the China Postdoctoral Sci-
ence Foundation (Grant No. 2025M771586).

161

References

Anthropic. 2024. Introducing computer use,
a new claude 3.5 sonnet, and claude 3.5
haiku. https://www.anthropic.com/news/
3-5-models-and-computer-use.

Hao Bai, Yifei Zhou, Li Erran Li, Sergey Levine, and
Aviral Kumar. 2025. Digi-Q: Learning VLM g-value
functions for training device-control agents. In Inter-
national Conference on Learning Representations.

Hao Bai, Yifei Zhou, Jiayi Pan, Mert Cemri, Alane Suhr,
Sergey Levine, and Aviral Kumar. 2024. DigiRL:
Training in-the-wild device-control agents with au-
tonomous reinforcement learning. In Advances in
Neural Information Processing Systems 38.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang,
Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
and Jingren Zhou. 2023. Qwen-VL: A versatile
vision-language model for understanding, localiza-
tion, text reading, and beyond. arXiv preprint.

Yuxiang Chai, Siyuan Huang, Yazhe Niu, Han Xiao,
Liang Liu, Guozhi Wang, Dingyu Zhang, Shuai Ren,
and Hongsheng Li. 2025. AMEX: android multi-
annotation expo dataset for mobile GUI agents. In
Findings of the Association for Computational Lin-
guistics, pages 2138-2156.

Wei Chen and Zhiyuan Li. 2024. Octopus v2: On-
device language model for super agent. arXiv
preprint.

Wei Chen, Zhiyuan Li, and Mingyuan Ma. 2025a. Octo-
pus: On-device language model for function calling
of software apis. In Proceedings of the 2025 Confer-
ence of the Nations of the Americas Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 329-339.

Wentong Chen, Junbo Cui, Jinyi Hu, Yujia Qin, Junjie
Fang, Yue Zhao, Chongyi Wang, Jun Liu, Guirong
Chen, Yupeng Huo, Yuan Yao, Yankai Lin, Zhiyuan
Liu, and Maosong Sun. 2025b. GUICourse: From
general vision language models to versatile GUI
agents. In Proceedings of the 63rd Annual Meet-
ing of the Association for Computational Linguistics,
pages 21936-21959.

Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu,
Yantao Li, Jianbing Zhang, and Zhiyong Wu. 2024.
SeeClick: Harnessing GUI grounding for advanced
visual GUI agents. In Proceedings of the 62nd An-
nual Meeting of the Association for Computational
Linguistics, pages 9313-9332.

Google Deepmind. 2024. Introducing gemini 2.0:
our new ai model for the agentic era. https:
//blog.google/technology/google-deepmind/
google-gemini-ai-update-december-2024/.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen,
Samual Stevens, Boshi Wang, Huan Sun, and Yu Su.
2023. Mind2Web: Towards a generalist agent for the

web. In Advances in Neural Information Processing
Systems 36.

Xiaoyi Dong, Pan Zhang, Yuhang Zang, Yuhang
Cao, Bin Wang, Linke Ouyang, Songyang Zhang,
Haodong Duan, Wenwei Zhang, Yining Li, Hang
Yan, Yang Gao, Zhe Chen, Xinyue Zhang, Wei Li,
Jingwen Li, Wenhai Wang, Kai Chen, Conghui He,
and 5 others. 2024. InternLM-XComposer2-4KHD:
A pioneering large vision-language model handling
resolutions from 336 pixels to 4k HD. In Advances
in Neural Information Processing Systems 38.

Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie,
Cheng Chang, Yiheng Shu, Huan Sun, and Yu Su.
2025. Navigating the digital world as humans do:
Universal visual grounding for GUI agents. In The
Thirteenth International Conference on Learning
Representations.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng
Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan Wang,
Yuxiao Dong, Ming Ding, and Jie Tang. 2024. Co-
gAgent: A visual language model for GUI agents. In
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, CVPR 2024, pages 14281-14290.

Wenxuan Huang, Bohan Jia, Zijie Zhai, Shaosheng Cao,
Zheyu Ye, Fei Zhao, Zhe Xu, Yao Hu, and Shaohui
Lin. 2025. Vision-R1: Incentivizing reasoning capa-
bility in multimodal large language models. arXiv
preprint.

Xu Huang, Weiwen Liu, Xiaolong Chen, Xingmei
Wang, Hao Wang, Defu Lian, Yasheng Wang, Ruim-
ing Tang, and Enhong Chen. 2024. Understand-
ing the planning of LLM agents: A survey. arXiv
preprint.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam
Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow,
Akila Welihinda, Alan Hayes, Alec Radford, and 1
others. 2024. GPT-4o system card. arXiv preprint.

Geunwoo Kim, Pierre Baldi, and Stephen McAleer.
2023. Language models can solve computer tasks. In

Advances in Neural Information Processing Systems
36.

Wei Li, William W. Bishop, Alice Li, Christopher
Rawles, Folawiyo Campbell-Ajala, Divya Tyama-
gundlu, and Oriana Riva. 2024. On the effects of data
scale on computer control agents. arXiv preprint.

Kevin Qinghong Lin, Linjie Li, Difei Gao, Zhengyuan
Yang, Shiwei Wu, Zechen Bai, Stan Weixian Lei,
Lijuan Wang, and Mike Zheng Shou. 2025. ShowUTI:
One vision-language-action model for GUI visual
agent. In I[EEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 19498—19508.

Yuhang Liu, Pengxiang Li, Congkai Xie, Xavier Hu,
Xiaotian Han, Shengyu Zhang, Hongxia Yang, and
Fei Wu. 2025a. InfiGUI-R1: Advancing multimodal
GUI agents from reactive actors to deliberative rea-
soners. arXiv preprint.

162

https://www.anthropic.com/news/3-5-models-and-computer-use
https://www.anthropic.com/news/3-5-models-and-computer-use
https://openreview.net/forum?id=CjfQssZtAb
https://openreview.net/forum?id=CjfQssZtAb
https://papers.nips.cc/paper_files/paper/2024/hash/1704ddd0bb89f159dfe609b32c889995-Abstract-Conference.html
https://papers.nips.cc/paper_files/paper/2024/hash/1704ddd0bb89f159dfe609b32c889995-Abstract-Conference.html
https://papers.nips.cc/paper_files/paper/2024/hash/1704ddd0bb89f159dfe609b32c889995-Abstract-Conference.html
https://arxiv.org/abs/2308.12966v3
https://arxiv.org/abs/2308.12966v3
https://arxiv.org/abs/2308.12966v3
https://aclanthology.org/2025.findings-acl.110/
https://aclanthology.org/2025.findings-acl.110/
https://arxiv.org/abs/2404.01744
https://arxiv.org/abs/2404.01744
https://doi.org/10.18653/v1/2025.naacl-industry.27
https://doi.org/10.18653/v1/2025.naacl-industry.27
https://doi.org/10.18653/v1/2025.naacl-industry.27
https://aclanthology.org/2025.acl-long.1065/
https://aclanthology.org/2025.acl-long.1065/
https://aclanthology.org/2025.acl-long.1065/
https://aclanthology.org/2024.acl-long.505.pdf
https://aclanthology.org/2024.acl-long.505.pdf
https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/
https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/
https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/
https://papers.nips.cc/paper_files/paper/2023/file/5950bf290a1570ea401bf98882128160-Paper-Datasets_and_Benchmarks.pdf
https://papers.nips.cc/paper_files/paper/2023/file/5950bf290a1570ea401bf98882128160-Paper-Datasets_and_Benchmarks.pdf
https://openreview.net/forum?id=nRp0XhTf61&referrer=%5Bthe%20profile%20of%20Pan%20Zhang%5D(%2Fprofile%3Fid%3D~Pan_Zhang1)
https://openreview.net/forum?id=nRp0XhTf61&referrer=%5Bthe%20profile%20of%20Pan%20Zhang%5D(%2Fprofile%3Fid%3D~Pan_Zhang1)
https://openreview.net/forum?id=nRp0XhTf61&referrer=%5Bthe%20profile%20of%20Pan%20Zhang%5D(%2Fprofile%3Fid%3D~Pan_Zhang1)
https://openreview.net/forum?id=kxnoqaisCT
https://openreview.net/forum?id=kxnoqaisCT
https://openaccess.thecvf.com/content/CVPR2024/papers/Hong_CogAgent_A_Visual_Language_Model_for_GUI_Agents_CVPR_2024_paper.pdf
https://openaccess.thecvf.com/content/CVPR2024/papers/Hong_CogAgent_A_Visual_Language_Model_for_GUI_Agents_CVPR_2024_paper.pdf
https://arxiv.org/abs/2503.06749
https://arxiv.org/abs/2503.06749
https://arxiv.org/abs/2402.02716
https://arxiv.org/abs/2402.02716
https://arxiv.org/abs/2410.21276
http://papers.nips.cc/paper_files/paper/2023/hash/7cc1005ec73cfbaac9fa21192b622507-Abstract-Conference.html
https://arxiv.org/abs/2406.03679
https://arxiv.org/abs/2406.03679
https://openaccess.thecvf.com/content/CVPR2025/html/Lin_ShowUI_One_Vision-Language-Action_Model_for_GUI_Visual_Agent_CVPR_2025_paper.html
https://openaccess.thecvf.com/content/CVPR2025/html/Lin_ShowUI_One_Vision-Language-Action_Model_for_GUI_Visual_Agent_CVPR_2025_paper.html
https://openaccess.thecvf.com/content/CVPR2025/html/Lin_ShowUI_One_Vision-Language-Action_Model_for_GUI_Visual_Agent_CVPR_2025_paper.html
https://arxiv.org/abs/2504.14239
https://arxiv.org/abs/2504.14239
https://arxiv.org/abs/2504.14239

Ziyu Liu, Zeyi Sun, Yuhang Zang, Xiaoyi Dong, Yuhang
Cao, Haodong Duan, Dahua Lin, and Jiaqi Wang.
2025b. Visual-RFT: Visual reinforcement fine-
tuning. arXiv preprint.

Quanfeng Lu, Wengqi Shao, Zitao Liu, Fanqing Meng,
Boxuan Li, Botong Chen, Siyuan Huang, Kaipeng
Zhang, Yu Qiao, and Ping Luo. 2024a. GUIOdyssey:
A comprehensive dataset for cross-app GUI naviga-
tion on mobile devices. arXiv preprint.

Yadong Lu, Jianwei Yang, Yelong Shen, and Ahmed
Awadallah. 2024b. Omniparser for pure vision based
GUI agent. arXiv preprint.

Zhengxi Lu, Yuxiang Chai, Yaxuan Guo, Xi Yin, Liang
Liu, Hao Wang, Han Xiao, Shuai Ren, Guanjing
Xiong, and Hongsheng Li. 2025. UIR1: Enhanc-
ing action prediction of gui agents by reinforcement
learning. arXiv preprint.

Dang Nguyen, Jian Chen, Yu Wang, Gang Wu, Namy-
ong Park, Zhengmian Hu, Hanjia Lyu, Junda Wu,
Ryan Aponte, Yu Xia, Xintong Li, Jing Shi, Hongjie
Chen, Viet Dac Lai, Zhouhang Xie, Sungchul Kim,
Ruiyi Zhang, Tong Yu, Md. Mehrab Tanjim, and 11
others. 2025. GUI agents: A survey. In Findings of
the Association for Computational Linguistics, pages

22522-22538.

OpenAl. 2024. Reinforcement fine-tuning.
https://platform.openai.com/docs/guides/
reinforcement-fine-tuning.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray,
John Schulman, Jacob Hilton, Fraser Kelton, Luke
Miller, Maddie Simens, Amanda Askell, Peter Welin-
der, Paul F. Christiano, Jan Leike, and Ryan Lowe.
2022. Training language models to follow instruc-
tions with human feedback. In Advances in Neural
Information Processing Systems 35.

Georgios Papoudakis, Thomas Coste, Zhihao Wu,
Jianye Hao, Jun Wang, and Kun Shao. 2025. Appvim:
A lightweight vision language model for online app
control. arXiv preprint.

Cheng Qian, Bingxiang He, Zhong Zhuang, Jia Deng,
Yujia Qin, Xin Cong, Zhong Zhang, Jie Zhou, Yankai
Lin, Zhiyuan Liu, and Maosong Sun. 2024. Tell me
more! towards implicit user intention understanding
of language model driven agents. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics, pages 1088—1113.

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen,
Ning Ding, Ganqu Cui, Zheni Zeng, Xuanhe Zhou,
Yufei Huang, Chaojun Xiao, Chi Han, Yi R. Fung,
Yusheng Su, Huadong Wang, Cheng Qian, Runchu
Tian, Kunlun Zhu, Shihao Liang, Xingyu Shen, and
24 others. 2025a. Tool learning with foundation mod-
els. ACM Computing Surveys, 57(4):101:1-101:40.

163

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian,
Ruobing Xie, Jie Zhou, Mark Gerstein, Dahai Li,
Zhiyuan Liu, and Maosong Sun. 2024. ToolLLM:
Facilitating large language models to master 16000+
real-world apis. In The Twelfth International Confer-
ence on Learning Representations.

Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang,
Shihao Liang, Shizuo Tian, Junda Zhang, Jiahao Li,
Yunxin Li, Shijue Huang, Wanjun Zhong, Kuanye
Li, Jiale Yang, Yu Miao, Woyu Lin, Longxiang
Liu, Xu Jiang, Qianli Ma, Jingyu Li, and 16 oth-
ers. 2025b. UI-TARS: pioneering automated GUI
interaction with native agents. arXiv preprint.

Christopher Rawles, Sarah Clinckemaillie, Yifan Chang,
Jonathan Waltz, Gabrielle Lau, Marybeth Fair, Alice
Li, William E. Bishop, Wei Li, Folawiyo Campbell-
Ajala, Daniel Kenji Toyama, Robert James Berry,
Divya Tyamagundlu, Timothy P. Lillicrap, and Ori-
ana Riva. 2025. AndroidWorld: A dynamic bench-
marking environment for autonomous agents. In
The Thirteenth International Conference on Learn-
ing Representations.

Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana
Riva, and Timothy P Lillicrap. 2023. Android in the
wild: A large-scale dataset for android device control.
In Thirty-seventh Conference on Neural Information
Processing Systems Datasets and Benchmarks Track.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. 2017. Proximal policy
optimization algorithms. arXiv preprint.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Mingchuan Zhang, Y. K. Li, Y. Wu,
and Daya Guo. 2024. DeepSeekMath: Pushing the
limits of mathematical reasoning in open language
models. arXiv preprint.

Qiushi Sun, Kanzhi Cheng, Zichen Ding, Chuanyang
Jin, Yian Wang, Fangzhi Xu, Zhenyu Wu, Chengyou
Jia, Liheng Chen, Zhoumianze Liu, Ben Kao, Guo-
hao Li, Junxian He, Yu Qiao, and Zhiyong Wu. 2025.
Os-Genesis: Automating GUI agent trajectory con-
struction via reverse task synthesis. In Proceedings
of the 63rd Annual Meeting of the Association for
Computational Linguistics, pages 5555-5579.

Huajie Tan, Yuheng Ji, Xiaoshuai Hao, Minglan Lin,
Pengwei Wang, Zhongyuan Wang, and Shanghang
Zhang. 2025. Reason-RFT: Reinforcement fine-
tuning for visual reasoning. arXiv preprint.

Luong Quoc Trung, Xinbo Zhang, Zhanming Jie, Peng
Sun, Xiaoran Jin, and Hang Li. 2024. ReFT: Rea-
soning with reinforced fine-tuning. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics, pages 7601-7614.

Junyang Wang, Haiyang Xu, Jiabo Ye, Ming Yan,
Weizhou Shen, Ji Zhang, Fei Huang, and Jitao Sang.
2024a. Mobile-Agent: Autonomous multi-modal

https://arxiv.org/abs/2503.01785
https://arxiv.org/abs/2503.01785
https://arxiv.org/abs/2406.08451
https://arxiv.org/abs/2406.08451
https://arxiv.org/abs/2406.08451
https://arxiv.org/abs/2408.00203
https://arxiv.org/abs/2408.00203
https://arxiv.org/abs/2503.21620
https://arxiv.org/abs/2503.21620
https://arxiv.org/abs/2503.21620
https://aclanthology.org/2025.findings-acl.1158/
https://platform.openai.com/docs/guides/reinforcement-fine-tuning
https://platform.openai.com/docs/guides/reinforcement-fine-tuning
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://arxiv.org/abs/2502.06395
https://arxiv.org/abs/2502.06395
https://arxiv.org/abs/2502.06395
https://aclanthology.org/2024.acl-long.61/
https://aclanthology.org/2024.acl-long.61/
https://aclanthology.org/2024.acl-long.61/
https://doi.org/10.1145/3704435
https://doi.org/10.1145/3704435
https://openreview.net/forum?id=dHng2O0Jjr
https://openreview.net/forum?id=dHng2O0Jjr
https://openreview.net/forum?id=dHng2O0Jjr
https://arxiv.org/abs/2501.12326
https://arxiv.org/abs/2501.12326
https://openreview.net/forum?id=il5yUQsrjC
https://openreview.net/forum?id=il5yUQsrjC
https://openreview.net/forum?id=j4b3l5kOil
https://openreview.net/forum?id=j4b3l5kOil
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://aclanthology.org/2025.acl-long.277/
https://aclanthology.org/2025.acl-long.277/
https://arxiv.org/abs/2503.20752
https://arxiv.org/abs/2503.20752
https://aclanthology.org/2024.acl-long.410.pdf
https://aclanthology.org/2024.acl-long.410.pdf
https://arxiv.org/abs/2401.16158

mobile device agent with visual perception. arXiv
preprint.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao
Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang,
Xu Chen, Yankai Lin, Wayne Xin Zhao, Zhewei Wei,
and Jirong Wen. 2024b. A survey on large language
model based autonomous agents. Frontiers of Com-
puter Science, 18(6):186345.

Shuai Wang, Weiwen Liu, Jingxuan Chen, Weinan Gan,
Xingshan Zeng, Shuai Yu, Xinlong Hao, Kun Shao,
Yasheng Wang, and Ruiming Tang. 2024c. GUI
agents with foundation models: A comprehensive
survey. arXiv preprint.

Taiyi Wang, Zhihao Wu, Jianheng Liu, Jianye Hao,
Jun Wang, and Kun Shao. 2025. DistRL: An asyn-
chronous distributed reinforcement learning frame-
work for on-device control agent. In The Thirteenth
International Conference on Learning Representa-
tions.

Zhiyong Wu, Zhenyu Wu, Fangzhi Xu, Yian Wang,
Qiushi Sun, Chengyou Jia, Kanzhi Cheng, Zichen
Ding, Liheng Chen, Paul Pu Liang, and Yu Qiao.
2025. OS-ATLAS: foundation action model for gen-
eralist GUI agents. In The Thirteenth International
Conference on Learning Representations.

Xiaobo Xia and Run Luo. 2025. GUI-R1: A generalist
rl-style vision-language action model for gui agents.
arXiv preprint arXiv:2504.10458.

Yiheng Xu, Zekun Wang, Junli Wang, Dunjie Lu, Tian-
bao Xie, Amrita Saha, Doyen Sahoo, Tao Yu, and
Caiming Xiong. 2024. Aguvis: Unified pure vi-
sion agents for autonomous GUI interaction. arXiv
preprint.

Yuhao Yang, Yue Wang, Dongxu Li, Ziyang Luo, Bei
Chen, Chao Huang, and Junnan Li. 2025. Aria-UI:
Visual grounding for GUI instructions. In Findings of
the Association for Computational Linguistics, pages
22418-22433.

Yuan Yao, Tianyu Yu, Ao Zhang, Chongyi Wang, Junbo
Cui, Hongji Zhu, Tianchi Cai, Haoyu Li, Weilin Zhao,
Zhihui He, Qianyu Chen, Huarong Zhou, Zhensheng
Zou, Haoye Zhang, Shengding Hu, Zhi Zheng, Jie
Zhou, Jie Cai, Xu Han, and 4 others. 2024. Minicpm-
v: A GPT-4V level MLLM on your phone. arXiv
preprint.

Simon Zhai, Hao Bai, Zipeng Lin, Jiayi Pan, Peter Tong,
Yifei Zhou, Alane Suhr, Saining Xie, Yann LeCun,
Yi Ma, and Sergey Levine. 2024. Fine-tuning large
vision-language models as decision-making agents
via reinforcement learning. In Advances in Neural
Information Processing Systems 38.

Chaoyun Zhang, Shilin He, Jiaxu Qian, Bowen Li,
Liqun Li, Si Qin, Yu Kang, Minghua Ma, Guyue Liu,
Qingwei Lin, Saravan Rajmohan, Dongmei Zhang,
and Qi Zhang. 2025a. Large language model-brained
GUI agents: A survey. Transactions on Machine
Learning Research, 2025.

164

Chi Zhang, Zhao Yang, Jiaxuan Liu, Yanda Li, Yucheng

Han, Xin Chen, Zebiao Huang, Bin Fu, and Gang Yu.
2025b. Appagent: Multimodal agents as smartphone
users. In Proceedings of the 2025 CHI Conference
on Human Factors in Computing Systems.

Jiwen Zhang, Jihao Wu, Yihua Teng, Minghui Liao,

Nuo Xu, Xiao Xiao, Zhongyu Wei, and Duyu Tang.
2024. Android in the zoo: Chain-of-action-thought
for GUI agents. In Findings of the Association for
Computational Linguistics, pages 12016-12031.

Zhuosheng Zhang and Aston Zhang. 2024. You only

look at screens: Multimodal chain-of-action agents.
In Findings of the Association for Computational
Linguistics, pages 3132-3149.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,

Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen
Yang, Yushuo Chen, Zhipeng Chen, Jinhao Jiang,
Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, and
3 others. 2023. A survey of large language models.
arXiv preprint.

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and

Yu Su. 2024. Gpt-4v(ision) is a generalist web agent,
if grounded. In Forty-first International Conference
on Machine Learning.

Hengguang Zhou, Xirui Li, Ruochen Wang, Minhao

Cheng, Tianyi Zhou, and Cho-Jui Hsieh. 2025. R1-
zero’s "aha moment" in visual reasoning on a 2b
non-sft model. arXiv preprint.

https://arxiv.org/abs/2401.16158
https://doi.org/10.1007/s11704-024-40231-1
https://doi.org/10.1007/s11704-024-40231-1
https://arxiv.org/abs/2411.04890
https://arxiv.org/abs/2411.04890
https://arxiv.org/abs/2411.04890
https://openreview.net/forum?id=LPG8pPSfQD
https://openreview.net/forum?id=LPG8pPSfQD
https://openreview.net/forum?id=LPG8pPSfQD
https://openreview.net/forum?id=n9PDaFNi8t
https://openreview.net/forum?id=n9PDaFNi8t
https://arxiv.org/abs/2504.10458
https://arxiv.org/abs/2504.10458
https://arxiv.org/abs/2412.04454
https://arxiv.org/abs/2412.04454
https://aclanthology.org/2025.findings-acl.1152/
https://aclanthology.org/2025.findings-acl.1152/
https://arxiv.org/abs/2408.01800
https://arxiv.org/abs/2408.01800
https://openreview.net/forum?id=nBjmMF2IZU
https://openreview.net/forum?id=nBjmMF2IZU
https://openreview.net/forum?id=nBjmMF2IZU
https://openreview.net/forum?id=xChvYjvXTp
https://openreview.net/forum?id=xChvYjvXTp
https://doi.org/10.1145/3706598.3713600
https://doi.org/10.1145/3706598.3713600
https://doi.org/10.18653/v1/2024.findings-emnlp.702
https://doi.org/10.18653/v1/2024.findings-emnlp.702
https://doi.org/10.18653/v1/2024.findings-acl.186
https://doi.org/10.18653/v1/2024.findings-acl.186
https://arxiv.org/abs/2303.18223
https://openreview.net/forum?id=piecKJ2DlB
https://openreview.net/forum?id=piecKJ2DlB
https://arxiv.org/abs/2503.05132
https://arxiv.org/abs/2503.05132
https://arxiv.org/abs/2503.05132

A Training Details

We list the main hyperparameters for the SFT and RFT stages in Table 4 and Table 5, respectively.

Table 4: Training parameters for Stage II: Supervised Fine-tuning.

Parameter Default Value Description
model_max_length 2304 Maximum sequence length
max_line_res 1120 Maximum image resolution for the longest axis
per_device_train_batch_size 1 Training batch size per device
gradient_accumulation_steps 1 Gradient accumulation steps
num_train_epochs 3 Number of training epochs
learning_rate le-5 Learning rate
weight_decay 0.1 Weight decay coefficient
adam_betal 0.9 Adam optimizer betal parameter
adam_beta?2 0.999 Adam optimizer beta2 parameter
max_grad_norm N/A Gradient clipping disabled
1r_scheduler_type cosine Learning rate scheduler type
warmup_ratio 0.05 Linear warmup ratio
bf16 True Use bfloat16 precision
gradient_checkpointing False Whether using gradient checkpointing
deepspeed ZeRO-2 Deepspeed optimization stage

Table 5: Training parameters for Stage III: Reinforcement Fine-tuning.

Parameter Default Value Description
max_prompt_length 16384 Maximum prompt length
max_completion_length 512 Maximum completion length
max_line_res 1120 Maximum image resolution for the longest axis
num_generations 8 Number of generations
per_device_train_batch_size 1 Training batch size per device
gradient_accumulation_steps 32 Gradient accumulation steps
learning_rate le-6 Learning rate
num_train_epochs 3 Number of training epochs
weight_decay 0.1 Weight decay coefficient
adam_beta?2 0.99 Adam optimizer beta2 parameter
max_grad_norm 1.0 Maximum gradient norm for clipping
1r_scheduler_type cosine Learning rate scheduler type
beta 0.04 KL divergence coefficient
bf16 True Use bfloat16 precision

165

B Evaluation Details

To ensure fair and consistent evaluation across all models, we adopt a unified evaluation framework. Since
different models may define their own action formats and conventions, their outputs are first converted
into a shared action representation defined by AgentCPM-GUI. This normalization allows us to compare
models under the same evaluation criteria and metrics. In the following, we provide representative input
prompts for each model, detail the evaluation settings and hyperparameters, and describe how action space
conversion is performed when applicable.

B.1 Qwen2.5-VL-7B
B.1.1 Data example

Qwen2.5-VL-7B Data Example
|

System Message

You are a helpful assistant.
Tools
You may call one or more functions to assist with the user query.

You are provided with function signatures within <tools></tools> XML tags:
<tools>
{"type": "function”, "function": {"name_for_human": "mobile\ use", "name": "mobile\ use", "
description": "Use a touchscreen to interact with a mobile device, and take screenshots.
+ This is an interface to a mobile device with touchscreen. You can perform actions like clicking,
typing, swiping, etc.
+ Some applications may take time to start or process actions, so you may need to wait and take
successive screenshots to see the results of your actions.
* The screen's resolution is 1092x2408.
+ Make sure to click any buttons, links, icons, etc with the cursor tip in the center of the element.
Don't click boxes on their edges unless asked.", "parameters": {"properties": {"action": {"
description": "The action to perform. The available actions are:
“key " : Perform a key event on the mobile device.
— This supports adb's " keyevent™ syntax.
— Examples: \"volume_up\", \"volume_down\", \"power\", \"camera\", \"clear\".
“click ™ : Click the point on the screen with coordinate (X, y).
“long_press” : Press the point on the screen with coordinate (X, y) for specified seconds.
“swipe " : Swipe from the starting point with coordinate (X, y) to the end point with
coordinates?2 (x2, y2).
+ type : Input the specified text into the activated input box.
* " system_button" : Press the system button.
+ ~open : Open an app on the device.
+ " wait" : Wait specified seconds for the change to happen.
% " terminate” : Terminate the current task and report its completion status.", "enum": ["key", "

non

*

* % ¥

"non non non

click", "long_press", "swipe", "type", "system_button", "open", "wait", "terminate"], "type
": "string"}, "coordinate": {"description": "(x, y): The x (pixels from the left edge) and y (
pixels from the top edge) coordinates to move the mouse to. Required only by " action=click
*, “action=long_press", and "action=swipe".", "type": "array"}, "coordinate2": {"
description": "(x, y): The x (pixels from the left edge) and y (pixels from the top edge)

non n,n

coordinates to move the mouse to. Required only by "action=swipe".", "type": "array"}, "

166

(1]

text": {"description": "Required only by "action=key ", "action=type", and " action=open".",

n,on

"type": "string"}, "time": {"description": "The seconds to wait. Required only by " action=
long_press™ and "action=wait".", "type": "number"}, "button": {"description": "Back
means returning to the previous interface, Home means returning to the desktop, Menu
means opening the application background menu, and Enter means pressing the enter.

non

Required only by "action=system_button" ", "enum": ["Back", "Home", "Menu", "Enter"],
"type": "string"}, "status": {"description": "The status of the task. Required only by "action
=terminate.", "type": "string", "enum": ["success", "failure"]}}, "required": ["action"], "
type": "object"}, "args\ format": "Format the arguments as a JSON object."} }

</tools>

For each function call, return a json object with function name and arguments within <tool_call
></tool_call> XML tags:

<tool_call>

{"name": <function—name>, "arguments": <args—json—object>}

</tool_call>

The user query: [user_request]

Current step query: low_lew_instruction (included only when low_lew_instruction is defined)
Task progress (You have done the following operation on the current device): [history_actions]
[current_screenshot]

[thought_and_action]

\

B.1.2 Action Space Mapping

Table 6 shows the action space mapping from Qwen2.5-VL-7B to the standardized representation. Two
key differences must be addressed during conversion. First, Qwen2.5-VL-7B expresses duration in
seconds for actions such as long_press and wait, whereas AgentCPM-GUI expects time in milliseconds.
Second, Qwen2.5-VL-7B produces absolute screen coordinates (in pixels) for spatial actions like click,
long_press, and swipe, while AgentCPM-GUI uses normalized coordinates in the range [0, 1000]
relative to screen size.

Table 6: Action space mapping from Qwen2.5-VL-7B to AgentCPM-GUI.

Qwen2.5-VL-7B Input Parameters AgentCPM-GUI

click coordinate = (X, y) {"POINT":[int(x/width*1000),
int(y/height*1000)]}

long_press coordinate = (X, y), time {"POINT":[x,y],"duration”:
timex1000}

swipe coordinate = (x1, y1), coordinate2 = (x2, {"POINT":[x1,y1],"to":

y2) direction}

Note: direction is computed from two
points

type text {"TYPE" :text}

system_button button = Back / Home / Enter {"PRESS" : BACK/HOME/ENTER}

terminate None {"STATUS":"finish"}

wait time {"duration”:time*x10007}

167

B.1.3 Hyperparameters

We adopt the same hyperparameter settings as used in Qwen2.5-VL-7B for fair comparison, as summarized
in Table 7.

Table 7: Inference hyperparameters for Qwen2.5-VL-7B.

Parameter Default Value Description

do_sample True Whether to use sampling (replaces greedy)
top_p 0.01 Nucleus sampling threshold
top_k 1 Top-k sampling limit

temperature 0.01 Controls sampling randomness
repetition_penalty 1.0 Penalty factor for repetition
max_new_tokens 2048 Maximum number of new tokens to generate
B.2 UI-TARS

B.2.1 Data example

UI-TARS Data Example

System Message

You are a helpful assistant.

User

You are a GUI agent. You are given a task and your action history, with screenshots. You need to
perform the next action to complete the task.

Output Format

Thought:
Action:

Action Space

click(start_box="<|box_start|>(x1,y1)<|box_end|>")
long_press(start_box=’<|box_start|>(x1,y1)<|box_end|>’, time=")
type(content=")

scroll(direction="down or up or right or left’)

press_back()

press_home()

wait()

finished() # Submit the task regardless of whether it succeeds or fails.

Note
- Use English in Thought part.
- Summarize your next action (with its target element) in one sentence in Thought part.

User Instruction
[user_request]

168

[history_screenshot]

Assistant

[history_thought_and_action]

User

[current_screenshot]

Assistant(included only when low_lew_instruction is defined)

Thought: [low_lew_instruction]
Action:

Assistant

[thought_and_action]

\

B.2.2 Action Space Mapping

Table 8 shows the action space mapping from UI-TARS to the standardized representation. Since UI-TARS
and AgentCPM-GUI define scroll directions oppositely, the direction must be reversed during conversion.

Table 8: Action space mapping from UI-TARS to AgentCPM-GUI.

UI-TARS Input Format AgentCPM-GUI

click(...) start_box with (x, y) {"POINT":[x,yl}

long_press(...) start_box with (x, y), time=‘ms’ (op- {"POINT”:[x,y],"duration”:
tional) time (default 1000)}

type(...) content="‘text’ {"TYPE":text}

scroll(...) direction="‘up/down/left/right’ {"POINT":[500,500],

"to":reversed direction}
Note: direction is reversed (e.g., up —

down)
press_back() - {"PRESS" : BACK}
press_home() - {"PRESS" : HOME }
wait() - {"duration”:200}
finished() - {"STATUS":"finish"}

B.3 OS-ATLAS
B.3.1 Data example

OS-ATLAS Data Example

|
System Message

You are a helpful assistant.

You are a foundational action model capable of automating tasks across various digital
environments, including desktop systems like Windows, macOS, and Linux, as well as mobile
platforms such as Android and iOS. You also excel in web browser environments. You will interact
with digital devices in a human-like manner: by reading screenshots, analyzing them, and taking

169

appropriate actions.

Your expertise covers two types of digital tasks:

- Grounding: Given a screenshot and a description, you assist users in locating elements mentioned.
Sometimes, you must infer which elements best fit the description when they aren’t explicitly
stated.

- Executable Language Grounding: With a screenshot and task instruction, your goal is to
determine the executable actions needed to complete the task.

You are now operating in Executable Language Grounding mode. Your goal is to help users
accomplish tasks by suggesting executable actions that best fit their needs. Your skill set includes
both basic and custom actions:

1. Basic Actions

Basic actions are standardized and available across all platforms. They provide essential
functionality and are defined with a specific format, ensuring consistency and reliability.

Basic Action 1: CLICK

- purpose: Click at the specified position.

- format: CLICK <point>[[x-axis, y-axis]]</point>

- example usage: CLICK <point>[[101, 872]1</point>

Basic Action 2: TYPE

- purpose: Enter specified text at the designated location.
- format: TYPE [input text]

- example usage: TYPE [Shanghai shopping malll]

Basic Action 3: SCROLL

- purpose: Scroll in the specified direction.

- format: SCROLL [direction (UP/DOWN/LEFT/RIGHT)]
- example usage: SCROLL [UP]

2. Custom Actions

Custom actions are unique to each user’s platform and environment. They allow for flexibility
and adaptability, enabling the model to support new and unseen actions defined by users. These
actions extend the functionality of the basic set, making the model more versatile and capable of
handling specific tasks.

Custom Action 1: LONG_PRESS

- purpose: Long press at the specified position.

- format: LONG_PRESS <point>[[x-axis, y-axis]]</point>
- example usage: LONG_PRESS <point>[[101, 872]]</point>

Custom Action 2: PRESS _BACK

- purpose: Press a back button to navigate to the previous screen.
- format: PRESS_BACK

- example usage: PRESS_BACK

Custom Action 3: PRESS_ HOME
- purpose: Press a home button to navigate to the home page.
- format: PRESS_HOME

170

- example usage: PRESS_HOME

Custom Action 4: PRESS_RECENT

- purpose: Press the recent button to view or switch between recently used applications.
- format: PRESS_RECENT
- example usage: PRESS_RECENT

Custom Action 5: WAIT

- purpose: Wait for the screen to load.
- format: WAIT

- example usage: WAIT

Custom Action 6: COMPLETE

- purpose: Indicate the task is finished.
- format: COMPLETE

- example usage: COMPLETE

In most cases, task instructions are high-level and abstract. Carefully read the instruction and
action history, then perform reasoning to determine the most appropriate next action. Ensure you
strictly generate two sections: Thoughts and Actions.

Thoughts: Clearly outline your reasoning process for current step.

Actions: Specify the actual actions you will take based on your reasoning.

Your current task instruction, action history, and associated screenshot are as follows:
Screenshot:[current_screenshot]

Task: [user_request] You need to: [low_lew_instruction](included only when low_lew_instruction
is defined)

History:

[history_low_lew_instruction](included only when low_lew_instruction is defined)

[thought_and_action]

\

B.3.2 Action Space Mapping

Table 9 shows the action space mapping from OS-ATLAS to the standardized representation. When
evaluating the AndroidControl-Low setting, we found that the model’s predicted scroll direction is often
opposite to that indicated in the low-level instruction. Therefore, the scroll direction is reversed during
evaluation.

B.4 OS-Genesis

B.4.1 Data Example

For the GUI-Odyssey, AITZ, and CAGUI benchmarks, we construct evaluation prompts following the
format described in Data Example. For AndroidControl, we adopt the official evaluation code provided in
the benchmark’s GitHub repository.

OS-Genesis Data Example

|
System Message

You are a helpful assistant.

171

Table 9: Action space mapping from OS-Atlas to AgentCPM-GUIL

0OS-Atlas Input Format AgentCPM-GUI
CLICK [[x, y1] {"POINT":[x,y]1}
LONG_PRESS [[x, ylI {"POINT":[x,y],"duration”: 1000}
TYPE [text] {"TYPE" :text}
SCROLL [direction] {"POINT":[500,500],"to" :direction}
Note: if use_low_instruction is True, direction is re-

versed: up<sdown, left<>right

PRESS_BACK - {"PRESS" :BACK}
PRESS_HOME - {"PRESS" : HOME }
PRESS_RECENT - {"PRESS" :RECENT}
WAIT - {"duration”:200}
COMPLETE - {"STATUS":"finish"}

e —

You are a GUI task expert, I will provide you with a high-level instruction, an action history, a
screenshot with its corresponding accessibility tree.

High-level instruction: [user_request]

Action history:

Accessibility tree:

Please generate the low-level thought and action for the next step.

[thought_and_action]

B.4.2 Action Space Mapping

Table 10 shows the action space mapping from OS-Genesis to the standardized representation. Similar to
OS-ATLAS, the predicted scroll direction on AndroidControl-Low is often opposite to the instruction,
and is therefore reversed during evaluation.

Table 10: Action space mapping from OS-Genesis to AgentCPM-GUI.

OS-Genesis Input Fields AgentCPM-GUI

type text {"TYPE":text}

click X,y {"POINT":[x,yl}

long_press X,y {"POINT":[x,y], "duration”:1000}

dismiss X,y {"POINT":[x,y]1}

get_text X,y {"POINT":[x,y]}

navigate_home - {"PRESS" :HOME }

navigate_back - {"PRESS" :BACK}

scroll direction {"POINT":[500,500],"to":direction}
Note: If wuse_low_instruction is True, direction is re-
versed: up<>down, left<>right

wait - {"duration":200}

172

B.5 OdysseyAgent
B.5.1 Data example

Following the official implementation, OdysseyAgent’s input consists of the current instruction along
with a history of images and their associated actions.

OdysseyAgent Data Example
|

System Message

You are a helpful assistant.

User

Picture 1: image_path

I’m looking for guidance on how to [instruction]

Previous screenshots: image-history: image_path
Previous Actions: 1. [Action 1]

2. [Action 2].

[Action]

B.5.2 Action Space Mapping

Table 11 shows the action space mapping from OdysseyAgent to the standardized representation. The
output format of OdysseyAgent is largely compatible with AgentCPM-GUI. The only exception is the
RECENT action, which is not part of the AgentCPM-GUI action space and is therefore ignored during
evaluation.

Table 11: Action space mapping from OdysseyAgent to AgentCPM-GUI.

OdysseyAgent Input Fields AgentCPM-GUI

CLICK X,y {"POINT":[x,y]1}

LONG_PRESS X,y {"POINT":[x,y],"duration”:1000}
SCROLL direction {"POINT":[500,500],"to":direction}
TYPE text {"TYPE" : text}

HOME - {"PRESS” : HOME }

BACK - {"PRESS" :BACK}

COMPLETE - {"STATUS":"finish"}

IMPOSSIBLE - {"STATUS" :"impossible"?}

B.5.3 Hyperparameters

We follow the original implementation for inference, enabling the image_history option to incorporate
temporal context. Specifically, we store the last 4 actions and their corresponding images. The inference
is conducted with the torch seed set to 1234 and the random seed set to 2020 to ensure reproducibility.

173

B.6 Aguvis-7B
B.6.1 Data Example

Aguvis Data Example

System Message

You are a GUI agent. You are given a task and a screenshot of the screen. You need to perform a
series of pyautogui actions to complete the task.
You have access to the following functions:

n, n

"name": "mobile.swipe", "description": "Swipe on the screen”, "parameters": {"type": "object",
propertles : {"from_coord": {"type": "array", "items": {"type": "number"}, "description": "The
starting coordinates of the swipe"}, "to_coord": {"type": "array", "items": {"type": "number"},
"description”’ "The ending coordinates of the swipe"}}, "required": ["from_coord", "to_coord"]}}

n, n

"name": "mobile.home", "description": "Press the home button"}
name" "mobile.back", "description": "Press the back button" }
"name": "mobile.wait", "description": "wait for the change to happen", "parameters": {"type":
object" "properties": {"seconds": {"type": "number", "description": "The seconds to wait"}},
requ1red" ["seconds"]} }
"name": "mobile.long_press", "description": "Long press on the screen", "parameters": {"type":
object" "properties™: {"x": {"type": "number", "description": "The x coordinate of the long

press"}, "y": {"type": number", "description": "The y coordinate of the long press"}}, "required":

[" s "]}}

n,on

"name": "mobile.open_app", "description": "Open an app on the device", "parameters": {"type":
"object", propertles : {"app_name": {"type": "string", "description": "The name of the app to
open"}}, "required": ["app_name"]}}

Please generate the next move according to the ui screenshot, instruction and previous actions.
Instruction: [Instruction]
Previous actions: [previous_actions]

[thought and Action]

non n, n

n, n

n,on

n, n non

"non

n,n

non

"non

Table 12: Action space mapping from Aguvis to AgentCPM-GUIL.

Aguvis Input Fields AgentCPM-GUI

pyautogui.click X,y {"POINT":[x*x1000,y*1000]}

mobile.long_press X,y {"POINT":[x*1000,y*1000],
"duration”:1000}

pyautogui.scroll()/hscroll() direction {"POINT":[500,500],"to": direction}

Note: scroll performs vertical, and hscroll
performs horizontal swipes

pyautogui.write text {"TYPE" : text}
mobile.home()/ - {"PRESS" : HOME }
mobile.back() - {"PRESS" :BACK}
mobile.terminate() - {"STATUS":"finish"}
mobile.open_app app_name -

mobile.wait [time] {"duration"”:3000%}

174

B.6.2 Action Space Mapping

Table 12 shows the action space mapping from Aguvis to the standardized representation. All coordinates
in Aguvis are in the range [0, 1] and are scaled accordingly during conversion. Swipe actions are mapped
following the definition in the pyautogui package. Since AgentCPM-GUI does not include an "open
app" action, it is ignored during evaluation.

B.6.3 Hyperparameters

The hyper parameters are the same as the origin implementation. To be specific, we choose "self-plan”
mode during inference, with temperature set as 0 and generate only 1024 new max tokens. Historical
actions are not included during inference, as their inclusion leads to abnormal model behavior.

C CAGUI Benchmark

C.1 CAGUI_Grounding

We provide examples from the three tasks that constitute the grounding benchmark, each containing 1,500
samples. The Text2Bbox and Bbox2Text tasks are based on the same dataset. Each bounding box is
defined by four absolute coordinates in the format <Ty,in, Ymin> Tmax> Ymax>, With the origin located at
the top-left corner of the screen.

Text2Point Data Examples

|
Text

QQEK

Bounding Box

<643, 462, 849, 744>

Prompt of AgentCPM-GUI

fRE—1TGUIEEHFE MR R, EKHH E A B SURS N AR - (RIS BIRIES &
FIGUIE B A1 FH 5 SORR HOZSUR AL IS - BN : FRREE, AL UK
BOAEXT AR BRE A O 5 POINTL...] A

Bbox2Text Data Examples
|

Bounding Box

<60, 120, 132, 192>

Bounding Box
iR [E]
Prompt of AgentCPM-GUI

RE—NGUIEAH X FIRAINE R, ERRIEAFADNFE (bounding box) FHiid %) Hixf
REEISCF » AR EIAESS R ARTE 45 R BIGUIREL B AN & o 548 {1 10300 55 o H 24 44 B0 H B ST
Fo BN BRREE, DFERAIREE . A EIOR

175

Fun2Point Data Examples

Function

UDCE 2 — SR B % - HERIRER M — M SRBER, fvF M kB AR fThhgik
i EHE A LUEE R A, Sl SRR — A TR EUIESR R, A DER
AT — DR, IAND) HT HE T B B R -

Bounding Box

<1061, 2424, 1159, 2522>

Prompt of AgentCPM-GUI

RRE—PGUIERF RN T K, EARRIEENTB)Th e fRH 0 R A AR R o IRE N —28
BAERRIELE € MIGUIE B A1 B A B DhREfd S B B PO AL E - AAPR oA
TR A L AR SR E, HF H IR I 4EE]0~1000 Fi A FREEIE,
DheefRH . AdHR(E, DAPOINTL...,..] W&, HARGEFIEE AR T T

C.2 CAGUI Agent

We present examples of our dataset tasks, each consisting of a query, a screenshot, and the corresponding
answer operation. The system prompt used to evaluate AgentCPM-GUI is also included. In total, the
benchmark comprises 600 tasks, which together contain 4,516 single-step images. During evaluation,
inputs to AgentCPM-GUI follow the standard chat format. Each user message contains both the task
query and the associated screenshot, structured as a list with two elements: a text string formatted as
"<Question>{query }</Question>\n 3 Fil - %= B([X]: " and the corresponding image.

Agent Data Examples
|

Query

TE MBS LUR TR R I AL T AR TR N VLA 1T 60% HIFE AN -

Action Type: Click
Action Detail: [0.13, 0.61]

System Prompt of AgentCPM-GUI

Role
R — BB L ERGFEGUIREM B BB, RKRI\AH AR, 547 48 F |
FIGUITTE A&, AE R R HRAE -

Task
NP PR, RIEWMAR LRI REREEE, Wl T PRERE-

Rule
- DU IETSONS 2 Hin HY
- i R E L HEESchema) 3R

Schema

{
”type”: ”Object”’
"description”: "PUTERIEHRE HRIEFIRE",

176

"additionalProperties”: false,
"properties”: {
"thought”: {
"type": "string",
"description”: "FREIARYE YT FE"
ie
"POINT": {
"$ref”: "#/$defs/Location”,
"description”: "mdifFRE LR EME"
P
"to": {
"description”: "#3), AE&FHESE",
"oneOf": [
{
"enum”: [
"up”,
"down",
"left”,
"right”
1,
"description”: "MEFI&E (POINT) HiA&, HUTIEBHFHEEIE, FREFER
E-mT WL mA"

X
{
"$ref”": "#/$defs/Location”,
"description”: "FEENEFENAIE"
3
]

3

"duration”: {
"type": "integer",
"description”: "BIYEBUTHINT (BIESE RN (A, =7,
"minimum”: @,
"default”: 200
X
"PRESS": {
"type": "string",
"description”: "flAZFFIRIZHE, HOMEN[EIZ|ETIHLE, BACKIR[EIFLEH, ENTERA
[E] 23550
"enum”: [
"HOME"
"BACK",
"ENTER"
]
B
"TYPE": {
"type": "string",
"description”: "#uj A LA
D
"STATUS": {

177

"type": "string",

"description”: "M EIES RS o FIRE N satisfied, TLTH#H
1E; impossible, 1EETIEFERM; interrupt, 1ESSHWI; need_feedback, 2P
o,

"enum": [
"continue"”,
"finish”,
"satisfied”,
"impossible”,
"interrupt”,
"need_feedback"
1,
"default”: "continue”
}
o
"$defs”: {
"Location": {
"type": "array",
"description”: "ARFRNAEN T RREA DAMESMENAE, HEREEEL
g Elo~1000, FLHFBE—ITE BT, FEZDITLERAILEITY”,
"items": {
"type"”: "integer",
"minimum”: 0@,
"maximum”: 1000
3
"minltems”: 2,
"maxItems”: 2

178

D Case Study

We demonstrate GUI agent tasks on a real Xiaomi 12S device running MIUI 14.0.11. All interactions
with the graphical interface are carried out via ADB control based on the AgentCPM-GUTI’s predicted
actions. The original input and output were in Chinese and translated into English.

gi User Task: Go to Bilibili to watch Li Zigi’s latest video and give it a like.

LR [T PEL Y [T PEL Y [T e T
Q BESE =) < (anmas @) 0% <(arzx e
el 0 biibiiR 2
4 TRGEIRL.. RS,
sEo9R AFRE S] SR
REGMMEESR. @ DonoRSTAIEE.. O
57 AR
—uERH2EE Vive SIORAER T
ERBENO2K. . O IRRAHLTTT kil
THREHERE EREE R #iam
BEmE] ;
FiLe, —
mEER
mRtERR s
ARFRSE s7503
LS

AESE RE WE — S @

#a

ABC DEF

5 GHI JKL MNO =R ; GHI JKL MNO E®
! PQRS TUV WXYZ o ! PQRS TUV WXYZ 0
" 123 w L E B " 123 o L E
(&} @
he task is to Thought: The task is to Thought: The task is to Thought: The task is to
's latest video on watch Li Zigi's latest video watch Li Zigi's latest video watch Li Zigi's latest video
Bilibili and give it a like. The and give it a like. The current and give it a like. After and give it a like. On the

current screen shows
prominent app icons on the
phone’s home screen. By
tapping the "Bilibili" icon,
can enter the app to proceed
with the task.

interface displays a list of
recommended videos.
Search Li Zigi's video and
click on it to start playing.

opening the Bilibili app, tap

the search
Ziqi"

bar and enter "Li

search page, enter "Li Ziqgi"
and tap the search button to
retrieve related videos.

XAction: {"POINT"[396,470]} J [X Action: {"POINT":[390,62]}

BETIS @ -

<(asFr

=) EE0S) PO

'»‘m.

AR
fn

T
8% 47 T
RRDE %

[CETTTEE TR

® 7A aER 00>

e

S0BH o S0

a

- Thought: The task is to
watch Li Zigi's latest video
and give it a like. In the
search results, Li Ziqgi
appears, tap to enter her
profile page and view the
latest video.

- Thought: The task is to
watch Li Zigi's latest video
and give it a like. The video
has started playing, tap the
"Like" button at the bottom of
the screen to like the video.

- Thought: The current task is
to watch Li Zigi's latest video
and give it a like. The video is
now playing, and the like task
has been completed.

xm:tion: {"POINT": [192,267]} } {x Action: {"POINT":[141,490]} } {X Action: {"STATUS":"finish"}

Figure 2: A demo case on the BiliBili.

179

User Task: Search and play the song "Xi/\28" on NetEase Cloud Music.

OV A, TR

2ol

L rENKiEEL
tayec., S, IN <3, EBEF.. %

e T
L
2 swuaA
3 ®Te 3 A
4 Lemon 4 REEL
L + xR
6 miEn 6 s
g [BR] ®
%9 ABC DEF @
o cH KL MNO B
I PQRS TWV wWxyZ O
ws o =
()

wom o m
< KHNE| e

wa

w

FHFe

AR

"

@iF

oF

s

F e
(BR] ®

#9 ABC DEF
, G KL MiO &R
| PORS TWY WxvZ 0
ol o [
&

6|

< AREH

S8 %8 T W BE

BT 5n
p X0

i e e ros

26 O

AABIK (L CANED 3
@@ s -w

(cover) (B 15)

HFE- (M)

a6

0 D ¢

xR

to enter the playback page.

Thought: In the search bar,
search "Ki/\E" and click

- Thought: After entering "X
3k/NE" in the search box,
tap the search button to look
for the song.

- Thought: The task is to play
“KIk/NE" via NetEase
Cloud Music. The current
screen shows the search
results, and | need to tap the
search button.

-j\ = Thought: The search results
display multiple related songs.

Select
playback.

"R /NFE" for

x Action: {"POINT":[356,63]}

|

X Action: {"TYPE""Xif/NE"}

.

X Action: {"POINT":[916,59]} J

x Action: {"POINT"[550,370]}

Thought: The current screen
is the playback interface of
NetEase Cloud Music,
showing that the song "X
INE" is playing. The task
was to search for and play
this song, and the interface
displays playback
information and control
buttons, indicating that the
song is being played. No
further actions are required,
the task is complete.

x Action: {"STATUS":"finish"}

Figure 3: A demo case on the NetEase Cloud Music.

180

