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Abstract

We present SciClaims, an interactive web-
based system for end-to-end scientific claim
analysis in the biomedical domain. Designed
for high-stakes use cases such as systematic
literature reviews and patent validation, Sci-
Claims extracts claims from text, retrieves rele-
vant evidence from PubMed, and verifies their
veracity. The system features a user-friendly
interface where users can input scientific text
and view extracted claims, predictions, sup-
porting or refuting evidence, and justifications
in natural language. Unlike prior approaches,
SciClaims seamlessly integrates the entire sci-
entific claim analysis process using a single
large language model, without requiring addi-
tional fine-tuning. SciClaims is optimized to
run efficiently on a single GPU and is publicly
available for live interaction1.

1 Introduction

Systematic Literature Review (SLR) plays a critical
role in biomedical research and the pharmaceutical
industry, supporting clinical decisions, regulatory
submissions, and R&D pipelines. A central task
in SLR is the validation of scientific claims, en-
suring that assertions made in scientific texts are
supported by prior peer-reviewed research. How-
ever, this task is labor-intensive, prone to errors,
and increasingly difficult to scale as the number of
scientific publications grows.

We present SciClaims, a fully automated sys-
tem that addresses this challenge by providing an
end-to-end scientific claim analysis pipeline in an
interactive, user-friendly interface. The system ex-
tracts factual claims from scientific texts, retrieves
evidence from a curated biomedical corpus, and
verifies the validity of each claim using large lan-
guage models (LLMs). To improve transparency,

1https://labdemos.expertcustomers.ai/health_
claims (user: guest / password: acldemos2025)

SciClaims also offers natural language rationales
and highlights key supporting or refuting evidence.

SciClaims is optimized for real-world deploy-
ment and operates efficiently on a single GPU, sup-
ports high-throughput processing, and handles doc-
uments of up to 10,000 characters. It is accessible
through a web-based interface, allowing users to
analyze both preloaded and custom input texts.

In this demonstration, we showcase SciClaims
as a useful tool to enable users to validate scien-
tific claims in real time, facilitating trustworthy
knowledge discovery in high-stakes domains like
biomedicine and pharmaceuticals. A how-to video2

and all the code3 used in this project have been pub-
lished and made publicly available.

2 Related Work

The task of analyzing scientific claims from real-
world texts based on background knowledge con-
sists of three primary components: claim extrac-
tion, evidence retrieval from a document corpus,
and verifying or fact-checking the claims against
the evidence (Eldifrawi et al., 2024; Vladika and
Matthes, 2023). However, solving this pipeline
end-to-end across all three stages remains an open
challenge.

Several studies have addressed the challenge
of extracting claims from scientific texts. Some
frameworks based on zero-shot models (Pan et al.,
2021; Wright et al., 2022) have achieved promis-
ing results, primarily focusing on generating claim
datasets from raw texts to train fact-checking mod-
els in specific domains. However, these methods
rely on multi-stage NLP pipelines that are prone
to failure and tend to produce a large number of
claims per document, making their integration into
an end-to-end system difficult. In contrast, recent

2www.youtube.com/watch?v=jyms_Ey0YSQ
3www.github.com/expertailab/sciclaims-backend

and www.github.com/expertailab/sciclaims-frontend
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Figure 1: System Architecture.

approaches based on LLMs extract atomic factual
units (Min et al., 2023; Chern et al., 2023), which
serve as concise, interpretable summaries of the
source texts.

For the evidence retrieval phase, dense passage
retrieval methods, such as ColBERT (Khattab and
Zaharia, 2020), have emerged due to their ability
to retrieve highly relevant documents from large
corpora with great precision. However, these meth-
ods are computationally expensive and therefore
less practical for real-time, lightweight applications.
Thus, simpler approaches such as BM-25 (Robert-
son and Zaragoza, 2009) and tools like Elastic-
search, known for their balance between retrieval
quality and computational efficiency, are still pre-
ferred for deployment in production environments.

The release of several claim verification
datasets has spurred the development of nu-
merous models aimed at addressing this chal-
lenge. VERT5ERINI (Pradeep et al., 2021),
PARAGRAPHJOINT (Li et al., 2021), and Mul-
tiVerS (Wadden et al., 2022) have achieved
promising results on scientific benchmarks like
SciFact (Wadden et al., 2020) and CLIMATE-
FEVER (Diggelmann et al., 2021). However, these
approaches still leave room for improvement and
typically rely on large, labeled datasets, which lim-
its their scalability across domains. In parallel,
recent advances in LLMs have led to increased in-
terest in verifying automatically generated content.
Frameworks such as FactScore (Min et al., 2023),
FacTool (Chern et al., 2023), and LLM Oasis (Scirè
et al., 2024) focus on assessing the factuality of

LLM-generated text rather than existing, human-
written passages. Nonetheless, their techniques,
such as extracting atomic knowledge units and us-
ing zero-shot LLMs for claim extraction and ver-
ification, can be extended to real-world scientific
texts, offering a promising direction for scalable,
data-efficient claim analysis.

Although individual components have seen sub-
stantial progress, an integrated system capable
of seamlessly connecting these steps remains an
open problem. Many existing systems, such as
FactDetect (Jafari and Allan, 2024), CliVER (Liu
et al., 2024), and more recently (Liang and Son-
ntag, 2025; Vladika et al., 2025), focus on claims
that are already identified, neglecting the crucial
first step of extracting relevant claims from raw,
real-world texts. As a result, these systems are lim-
ited to pre-identified claims rather than addressing
the full pipeline of claim extraction, retrieval, and
verification.

Given the complexity of this problem, our ap-
proach aims to optimize each stage of the pipeline
to ensure both efficiency and accuracy in real-world
biomedical claim analysis. In this work, we tap on
the strengths of modern LLMs to address previous
limitations, specifically in the claim extraction and
verification stages, and integrate our results as a
robust online system.

3 System Description

SciClaims is an interactive, end-to-end system for
scientific claim analysis, comprising three main
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Figure 2: Screenshot of the SciClaims Demo.

components: claim extraction, evidence retrieval,
and claim verification. It is optimized to run effi-
ciently on a single 24GB VRAM GPU, enabling
real-time performance via a web-based interface.

The system architecture (Figure 1) is built
around a Llama3 8B Instruct model (Grattafiori
et al., 2024) and an Elasticsearch-based retrieval
engine. It processes biomedical or scientific text in-
put and outputs a list of extracted claims, their veri-
fication status, relevant evidence, and a natural lan-
guage rationale. The model is set up using vLLM
(Kwon et al., 2023), which enables high-throughput
processing in inference. Next, we present the main
building blocks of SciClaims.

Claim extraction: This first module extracts
potential claims from the source text. A claim is
characterized by a specific set of properties detailed
in section 5. The Claim Extraction module calls
the Llama3 8B Instruct model twice: first, to gen-
erate an initial list of claims, and second, to refine
and filter them, improving the quality of the result-
ing claims. All the prompts used in our pipeline
are provided in Appendix A. Based on our evalu-
ation, we made adjustments to the initial prompts
to improve claim extraction performance. Further
details on this refinement can be found in section 5.

Document retrieval: The second module re-
trieves potentially relevant documents from the
verification dataset, using the claim as a query
to the Elasticsearch index. The verification
dataset contains 4.7 million abstracts from PubMed

(2000–2022) that were curated using the Seman-
tic Scholar’s Highly Influential Citations met-
ric (Valenzuela et al., 2015), ensuring that each
article is backed by at least three highly influential
citations. This selection criterion helps prioritize
documents that have been extensively referenced
in the academic community, enhancing the quality
and relevance of retrieved information for verifica-
tion. We chose not to filter documents based on
Elasticsearch’s scoring mechanism to maximize re-
call. Instead, the subsequent verification module is
responsible for discarding irrelevant documents.

Claim verification: The final module performs
fact-checking by making another call to the LLM,
providing the claim along with the retrieved re-
lated documents. The model assigns one of the
following three labels: 1) SUPPORT if the claim is
verified by the document, 2) REFUTE if the claim
is refuted by the document, or 3) NEI (not enough
information) if the document lacks sufficient evi-
dence or is not relevant to the claim. To improve
transparency and interpretability, we also request
the model to provide a rationale for its decision,
including identifying the most relevant sentence(s)
that support its conclusion.

4 User interface

In this section, we demonstrate the functionality of
our approach through a web-based claim analysis
tool that allows users to easily interact with the
system and analyze claims within relevant texts,
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leveraging the backend architecture presented in
the previous section. The demo showcases the com-
plete workflow, from entering a scientific passage
to obtaining fact-checking results with supporting
evidence and explanations.

The user interface provides a drop-down menu
featuring over 30 pre-selected examples from
various domains, including biomedicine papers,
COVID-related news, social media, and patents
(see Figure 2). These examples were chosen to rep-
resent a broad spectrum of platforms and relevant
disciplines, allowing users to explore diverse con-
texts. By selecting any example from the list, the
corresponding text will be displayed in the text box
below, with a hyperlink to the original source. The
text box is fully editable, enabling users to modify
the content and analyze their own text. While the
application can process texts up to 10,000 charac-
ters, we recommend keeping the input under 2,000
characters for faster results.

As shown in Figure 2, once the user has selected
or entered a text, they can click the Analyze but-
ton to initiate the claim analysis process. Results
are presented as a list of identified claims, each of
which can be expanded to reveal detailed informa-
tion. For each claim, the interface shows:

Prediction label: Whether the claim is sup-
ported (green) or refuted (red). Results labeled
as Not Enough Information by the LLM are not
presented to the user.

Prediction score: A normalized probability
score that represents the confidence level of the
model in its prediction. This score is derived from
the statistical outputs of the model, particularly
the tokens representing the label string, and it is
expressed as a percentage.

Evidence: The related document selected by the
retrieval module, along with its DOI. The specific
sentence(s) in the abstract of the paper that were
most influential for the prediction according to the
LLM are highlighted.

Rationale: A justification of the reasoning be-
hind the classification, providing additional insight
into the decision-making process carried out by the
model.

This interactive interface provides an intuitive
and user-friendly environment for testing and ex-
ploring claim analysis in various health-related
texts. The analysis goes through the entire pipeline,
offering a label for the claims extracted along with
the retrieved evidence. When a claim receives con-
flicting labels from different pieces of evidence,

our system returns all relevant pairs, allowing users
to assess which is more accurate. Since scientific
knowledge evolves, evidence considered true at
one time may later be contradicted. We recognize
the value of providing all supporting and refuting
evidence along with their publication dates.

5 Experimentation and Results

We evaluate our system following a three-stage
approach. First, we evaluate SciClaims’ modules
against some baselines using SciFact as benchmark.
Then, we evaluate the performance of the system
at every step of the pipeline using an LLM as a
judge. Finally, we perform a human evaluation for
the whole system.

5.1 Evaluation in SciFact

We use SciFact, a benchmark dataset focused on
biomedical literature, to evaluate SciClaims. It
includes 1,400 expert-authored scientific claims,
each linked to evidence-containing abstracts and
annotated with a verification label.

SciFact supports two complementary evalua-
tions: (1) claim extraction, by comparing system-
generated claims to human-written ones using
shared source documents, and (2) claim verifica-
tion, by assessing how accurately the system labels
claim-evidence pairs.

5.1.1 Claim extraction
To evaluate the claim extraction module, we con-
sider the expert-written claims from SciFact as the
ground truth for each source paragraph.

Method Rouge1 Rouge2 RougeL Similarity Score
Sentence tokenizer 0.3313 0.1980 0.3030 0.7211
(Pan et al., 2021) 0.2780 0.1334 0.2555 0.6561
(Wright et al., 2022) 0.2525 0.0762 0.2220 0.6475
Noun Phrases Gen 0.2567 0.0953 0.2293 0.6693
SciClaims 0.3387 0.1896 0.3084 0.7250

Table 1: Claim quality scores in SciFact

As a first baseline, we select a sentence tokenizer,
treating each sentence in the source paragraph as
a claim. Next, we select two baselines (Pan et al.,
2021; Wright et al., 2022) that use a pipeline with
two transformer models to generate claims from
the source paragraph through entity extraction. The
first model generates a question-answer pair, where
the answer is the entity, while the second reformu-
lates it as a claim. We also introduce a method
where we propose to build the claims around noun
phrases rather than named entities.
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We evaluate the quality of claim generation by
matching each system-generated claim with its
most similar gold claim from the same paragraph.
We discard pairs with a Levenshtein similarity
score below 0.3, a threshold empirically tuned to
balance recall and noise. For valid matches, we
compute ROUGE-1, ROUGE-2, ROUGE-L, and a
semantic similarity score using a DeBERTa model
fine-tuned on the STS-B dataset. As shown in Ta-
ble 1, SciClaims achieves the highest scores in
ROUGE-1, ROUGEL, and semantic similarity, in-
dicating more faithful and informative claim gener-
ation.

5.1.2 Claim verification
We evaluate SciClaims on SciFact’s test set, com-
paring its label accuracy for claim-evidence pairs
with existing approaches.

Architecture Precision Recall F1-Score
Roberta-base* 0.4662 0.5963 0.5220
MultiVerS* 0.7286 0.7321 0.7303
SciClaims (LLaMA3 8B Instruct) 0.7034 0.6863 0.6788
SciClaims (Qwen2 7B Instruct) 0.6649 0.6677 0.6439
SciClaims (Phi3 Small 8K) 0.7100 0.6894 0.6525
SciClaims (OLMO2 7B Instruct) 0.6379 0.6118 0.5886

Table 2: Precision, recall and F1-Scores in Claim Verifi-
cation of SciFact test set. RoBERTa-base and MultiVerS
are fine-tuned models, while SciClaims is zero-shot. In
parenthesis, the backbone used in each SciClaims con-
figuration

We compare SciClaims with two strong base-
lines: a RoBERTa-base classifier (Liu et al., 2019)
and MultiVerS (Wadden et al., 2022), a longformer-
based model for claim verification. Both base-
lines are fine-tuned on SciFact. While MultiVerS
achieves the highest F1-score, SciClaims performs
competitively despite operating in a zero-shot set-
ting. As shown in Table 2, the relatively narrow
performance gap demonstrates SciClaims’ strong
generalization ability without task specific train-
ing. Furthermore, as shown in Table 2, we evaluate
SciClaims with different LLMs with similar sizes
as backbone, being LLaMA3 8B Instruct the one
which offered the best performance.

5.2 Evaluation with a judge model

The second stage of our evaluation provides a com-
prehensive assessment of the entire system using a
LLM as judge. Based on the Judge Arena leader-
board4, we select Qwen 2.5 72B turbo as judge,

4https://huggingface.co/spaces/AtlaAI/judge-arena

since it is the first ranked model with open weights
and a higher parameter count than our system’s
LLM (Llama3 8B Instruct). We chose its 4-bit
quantization version (Qwen2.5 72B AWQ5) due
to hardware limitations. For the evaluation sam-
ple, we randomly select 120 documents from the
PubMed dataset presented in section 3. The evalu-
ation is conducted in three phases: Claim quality,
document retrieval, and claim verification and full-
system evaluation.

5.2.1 Claim quality evaluation
In this phase, we evaluate the quality of the claims
generated by SciClaims and compare it to other
methods, using the same baselines mentioned in
Section 5.1.

We devised a questionnaire consisting of eight
yes/no questions (see Appendix B) to capture the
desired properties in a correct claim and ask the
judge model to answer it. The first question re-
quires context from the source paragraph, while
the remaining questions focus solely on the claim.
Correct claims need to receive a Yes to all ques-
tions. Table 3 shows that our LLM-based system
outperforms all other methods, scoring 15 points
higher than the second-best, the sentence tokenizer.

To further enhance the results, we refined our
claim extraction prompts with two optimizations:

Claim Definition Properties (CDP). Here we
enhance the prompt by incorporating the charac-
teristics of a claim, such as precision, conciseness,
or check-worthiness. These characteristics are de-
rived from the questionnaire used to evaluate the
quality of the claims. The goal is to guide the LLM
to adhere to these criteria when generating the list
of claims.

Claim Refinement (CR): This upgrade involves
a follow-up call to the LLM in order to refine the
initial list of claims. For each candidate claim, we
pair it with the source paragraph and ask the LLM
to refine the claim based on the same criteria (pre-
cision, conciseness, check-worthiness, etc.). This
step aims to eliminate poorly formed claims and
reinforce the application of the specified criteria.

These two upgrades result in an additional 29-
point increase in the percentage of correct claims
generated by SciClaims while reducing the num-
ber of candidate claims generated by our approach.
Notably, QA-oriented baselines, such as (Wright
et al., 2022) and our noun phrase-based generation

5huggingface.co/Qwen/Qwen2.5-72B-Instruct-AWQ
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Method Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Correct Claims (%) Candidate claims

Sentence tokenizer 0.9987 0.9100 0.8436 0.8709 0.9322 0.9009 0.3703 0.9596 32.46 767
(Pan et al., 2021) 0.2449 0.1303 0.1618 0.1371 0.2112 0.1169 0.0337 0.1641 3.15 445
(Wright et al., 2022) 0.8043 0.4714 0.5040 0.3842 0.5593 0.4829 0.1641 0.6249 11.28 4175
Noun Phrases Gen 0.3001 0.1562 0.1857 0.1209 0.2388 0.1320 0.0316 0.2203 2.42 4335

SciClaims 0.9949 0.9474 0.9718 0.9089 0.9320 0.9345 0.5238 0.9756 47.37 779
SciClaims+CDP 0.9942 0.9690 0.9845 0.9380 0.9574 0.9593 0.5930 0.9903 55.43 516
SciClaims+CDP+CR 0.9923 0.9787 0.9884 0.9845 0.9806 0.9748 0.7810 0.9903 76.36 516

Table 3: Claim extraction (phase 1) evaluation results with a judge model (Qwen2.5 72B AWQ).

Claims All Claims Correct Claims

R@1 R@3 R@5 R@1 R@3 R@5

Sentence tokenizer 0.5591 0.7205 0.7795 0.6265 0.7390 0.7871
(Pan et al., 2021) 0.2970 0.4653 0.5248 0.6429 0.7143 0.7143
(Wright et al., 2022) 0.5860 0.7474 0.8038 0.7113 0.8365 0.8726
Noun Phrases Gen 0.4634 0.6456 0.7013 0.6286 0.7619 0.8095

SciClaims 0.5045 0.6645 0.7135 0.5257 0.6938 0.7344
SciClaims+CDP 0.5146 0.6940 0.7466 0.5944 0.7448 0.7867
SciClaims+CDP+CR 0.4727 0.6250 0.6777 0.5102 0.6675 0.7107

Table 4: Document retrieval (phase 2) evaluation results
with a judge model (Qwen2.5 72B AWQ).

method, generate significantly larger quantities of
claims compared to the other methods in Table 3.

5.2.2 Document retrieval evaluation
We assess document relevance by asking the judge
model whether each retrieved paragraph aids claim
verification. Recall is evaluated at k = 1,3,5 re-
trieved documents per claim. As shown in Table
4, claims generated by (Wright et al., 2022) re-
trieve more potentially relevant documents than
SciClaims. However, SciClaims performs well, re-
trieving at least one relevant document in 75% of
cases when fetching five documents per claim, a
common real-world scenario. This highlights its
balance between claim accuracy and document rel-
evance. QA-oriented methods generate more com-
pact, less specific claims than LLMs, increasing
the likelihood of retrieving related documents.

5.2.3 Claim verification and full-system
The verification task involves predicting the ve-
racity of claim-evidence pairs, classifying each
as SUPPORT, REFUTE, or NOT ENOUGH IN-
FORMATION (NEI). Thus we evaluate our sys-
tem’s label accuracy by asking to the judge model
whether the assigned label is correct. We compare
SciClaims results with MultiVerS (Wadden et al.,
2022).

SciClaims demonstrates superior claim verifica-
tion accuracy, outperforming the fine-tuned Mul-
tiVerS (Wadden et al., 2022) model despite operat-
ing in a zero-shot setting. As shown in Table 5, Sci-
Claims consistently produces more accurate labels

across all claim generation methods, except (Pan
et al., 2021). Notably, SciClaims returns signifi-
cantly fewer NEI labels than MultiVerS, providing
greater value to users by delivering more defini-
tive SUPPORT or REFUTE labels. The unusually
high accuracy of (Pan et al., 2021). likely stems
from its excessive NEI labels, which simplify label
selection. Furthermore, the SciClaims+CDP+CR
system achieves the highest overall performance,
correctly labeling 50% of generated claims, outper-
forming the next-best MultiVerS-based system by
over five points.

Table 5 also reports the average processing time
per document for each system configuration. Sys-
tems using MultiVerS as the verification module
tend to be the fastest overall, with the exception
of those paired with claim extraction modules like
(Wright et al., 2022) and Noun Phrases Genera-
tion, which produce a high number of claims and
thus increase runtime. Among all configurations,
those using SciClaims+CDP+CR for claim gener-
ation—paired with either SciClaims or MultiVerS
for verification—offer the best trade-off between
predictive accuracy and time efficiency. Impor-
tantly, only the configuration that uses SciClaims
as both the generation and verification module can
run on a single 24GB GPU, making it uniquely
suitable for real-world deployment.

5.3 Human evaluation

To complement our automated evaluation with
LLMs, we conducted a human evaluation to assess
the quality, relevance, and usability of SciClaims
outputs. Five NLP-experts independently reviewed
a sample of 154 PubMed documents processed by
the system. The annotation tasks were divided into
three phases, following the same structure as our
LLM-based evaluation (see Section 5.2).

Claim quality evaluation. Annotators were
shown an input paragraph and one randomly se-
lected claim extracted by SciClaims. They an-
swered the same eight binary questions used in the
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System All Claims Correct Claims
Extraction Module Verification Module Label Accuracy Not NEI (%) Label Accuracy Not NEI (%) System Score Time/doc (secs.)

Sentence tokenizer MultiVerS 0.5494 4.77 0.5127 4.82 0.1664 2.36
(Pan et al., 2021) MultiVerS 0.7591 2.31 0.5714 11.90 0.0180 2.17
(Wright et al., 2022) MultiVerS 0.5015 5.53 0.4268 8.35 0.0482 14.25
Noun Phrases Gen MultiVerS 0.5965 3.08 0.4825 6.67 0.0117 15.01

SciClaims MultiVerS 0.5944 6.02 0.5709 6.50 0.2704 2.86
SciClaims+CDP MultiVerS 0.5867 5.71 0.5361 5.60 0.2971 1.82
SciClaims+CDP+CR MultiVerS 0.6204 3.72 0.5922 7.44 0.4522 2.93
Sentence tokenizer SciClaims 0.6041 61.20 0.6693 59.17 0.2173 11.72
(Pan et al., 2021) SciClaims 0.6568 39.60 0.619 71.43 0.0195 7.61
(Wright et al., 2022) SciClaims 0.6397 69.44 0.7098 74.66 0.0801 65.28
Noun Phrases Gen SciClaims 0.6608 53.02 0.6762 70.48 0.0164 68.01

SciClaims SciClaims 0.6361 58.49 0.6567 59.71 0.3111 12.38
SciClaims+CDP SciClaims 0.6296 58.87 0.6364 62.47 0.3527 8.13
SciClaims+CDP+CR SciClaims 0.6589 53.06 0.6574 54.23 0.5020 9.24

Table 5: Verification evaluation (phase 3) results with a judge model (Qwen2.5 72B AWQ). The table shows the
label accuracy of each combination of extraction and verification module. The Correct Claims column counts only
those considered correct in the Phase 1 questionnaire. Not NEI represents the proportion of claim–evidence pairs
labeled as SUPPORT or REFUTE, rather than NEI (Not Enough Information). The last two columns summarize
system-level performance: Processing Time per Document is the average time (in seconds) each system takes to
process a single document, and System Score reflects the ratio of correctly labeled and well-formed claims across
the system.

LLM-based evaluation (see Appendix B), assessing
conciseness, precision, and other key dimensions.
Table 6 shows that human judgments closely align
with the judge model, with 70.5% of the claims
meeting all eight criteria.

Claim Quality Score Rationale Quality Score

Q1 (grounding) 0.9048
Q2 (grammar) 0.9810
Q3 (completeness) 0.9810 RQ1 (justification) 0.8571
Q4 (precision) 0.8667 RQ2 (relevance) 0.9206
Q5 (relevance) 0.8952 RQ3 (completeness) 0.7937
Q6 (conciseness) 0.8571
Q7 (self-contained) 0.9238
Q8 (contribution) 0.8857

Correct Claims (%) 70.47 Correct Rationales (%) 74.61

Table 6: Claim and rationale evaluation of SciClaims by
human annotators. Score indicates the overall ratio of
’yes’ responses to the question along the annotators.

Document retrieval evaluation. Annotators
were presented with a claim and its corresponding
retrieved paragraph from SciClaims. They were
asked whether the retrieved evidence provided suf-
ficient information to verify the claim. In 60% of
cases, annotators judged the paragraph as infor-
mative enough for claim verification, indicating
moderate effectiveness of the retrieval module in
real-world scenarios.

Claim verification evaluation. In this phase,
annotators were shown a claim, its evidence, the
system’s predicted label, and the corresponding
rationale. They rated the label’s accuracy on a
five-point scale, from 1 (completely inaccurate) to
5 (highly accurate). SciClaims achieved a strong

average score of 4.40, reflecting high alignment
between system predictions and human judgment.
Additionally, annotators evaluate the quality of the
generated rationale using three yes/no questions:
(RQ1) Is the label justified by the rationale? (RQ2)
Does the rationale focus on relevant information?
(RQ3) Does the rationale provide enough context to
understand the label?. As shown in Table 6, the re-
sponses from annotators indicate high satisfaction
with the relevance and justification of rationales,
though they also noted that completeness could be
improved.

6 Conclusion

We presented SciClaims, a practical, end-to-end
system for scientific claim analysis in the biomed-
ical domain. Through an interactive web-based
interface, users can extract, verify, and explore sci-
entific claims with evidence-backed rationales, all
powered by LLMs and a curated biomedical corpus.
SciClaims is designed for usability and speed, and
it is already being explored in real-world settings
such as pharmaceutical patent analysis and system-
atic literature reviews. By combining explainable
outputs with efficient infrastructure, it provides a
robust tool for researchers, clinicians, and analysts
who need to validate scientific information quickly
and reliably. The system is openly accessible and
ready for demonstration, offering an engaging ex-
perience to showcase the capabilities of modern
LLM-based scientific reasoning.
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A Prompts

A.1 SciClaims claim extraction first step

<| begin_of_text |><| start_header_id |>system<|
end_header_id|>

Your task is to generate a list with the main factual
claims stated in a text . A factual claim makes
an assertion about something regarding the
subject matter that can be proved or contradicted
with factual evidence . Factual claims must be

expressed as meaningful, self −contained sentences
. Do not include narrative context and disregard
absolutely ALL self− referential parts .

Arrange your output using the format :
−− claim
−− claim
−− claim.

<| begin_of_text |><| start_header_id |> user <|
end_header_id|>

TEXT: {text}

A.2 SciClaims+CDP

<| begin_of_text |><| start_header_id |>system<|
end_header_id|>

Identify and list the main scientific claims stated in
a passage . Each claim must satisfy the following
criteria :

− **Convey an insight , interpretation , or conclusion
drawn from the passage that is testable and
generalizable **: The claim should assert an

outcome, capability , or effect rather than merely
describing a method, aim, or process .

− Example (Good): "Neural networks outperform
decision trees in image classification tasks
." ( Testable outcome)

− Example (Bad): "The proposed method aims to use
neural networks for better image
classification ." ( Descriptive , not assertive )

− **Be expressed as a meaningful, self −contained
statement **: Each claim should be fully
understandable on its own, without needing
context from the passage or other claims . It
must convey a complete, independent idea . If
referencing a study , survey , result , or process ,
phrase it as a general , verifiable claim.

− Example (Good): "The Amazon rainforest is home
to over 10 million species ."

− Example (Bad): "As mentioned earlier , the
Amazon is one of the most biodiverse places
in the world." (Requires prior context and
doesn' t stand alone .)

− **Emphasize generalization and scientific assertion
**: Avoid descriptive or narrative conclusions .

− Example (Good): "Exposure to blue light before
sleep can reduce melatonin production ." (
Generalized , testable assertion )

− Example (Bad): "The study investigates how
exposure to blue light before sleep affects
melatonin production ." ( Descriptive of
method, not a general claim)

− **Be clear and concise**: Use straightforward
language without unnecessary words.

− Example (Good): "The Eiffel Tower is in Paris ."
− Example (Bad): "The Eiffel Tower, which is one

of the most iconic landmarks in Europe and

attracts millions of tourists every year , is
located in Paris , France ."

− **Exclude narrative context **: Focus on the factual
assertion itself , not the surrounding story or
background information .

− Example (Good): "Water boils at 100C under
normal atmospheric pressure ."

− Example (Bad): "In many cultures , people have
believed for centuries that water boils at
100C, as scientists confirmed in the 18th
century ." ( Includes unnecessary background
information .)

− **Disregard all self − referential content **: Ignore
any statements referring to the passage itself or

the author intentions .
− Example (Good): "The Earth orbits the Sun."
− Example (Bad): "The study explains how the Earth

orbits the Sun." (This is self − referential
and refers to the passage itself .)

− **Be precise and objective **: Avoid ambiguity,
subjective interpretation , or vague statements .
Present claims as clear , verifiable facts .

− Example (Good): "The Great Wall of China
stretches approximately 13,000 miles ."

− Example (Bad): "The Great Wall of China is
pretty long ." (Vague and subjective .)

− **Be relevant to the broader debate or public
discourse **: Focus on verification −worthy claims
that introduce new information rather than merely

restating common knowledge.
− Example (Good): "The global temperature has

increased by about 1C since the late 19th
century ."

− Example (Bad): "The Earth is a planet ." (
Common knowledge and not contributing new,
verifiable information .)

Present the output using the following format :
−− claim
−− claim
−− claim

<| begin_of_text |><| start_header_id |> user <|
end_header_id|>

PASSAGE: {text}

A.3 SciClaims claim extraction second step
(refinement)

Now, using the information given by the passage ,
reformulate each individual claim to be fully
understandable by itself , even without having the
context from the passage or the rest of the

claims from the list . Change the terminology or
add context information to each claim if
necessary .

A.4 SciClaims+CDP+CR (refinement)

<| begin_of_text |><| start_header_id |>system<|
end_header_id|>

Given a claim and the passage it was extracted from,
reformulate the claim to fully adhere to **ALL
** the following criteria .

− **Convey an insight , interpretation , or conclusion
drawn from the passage that is testable and
generalizable **: The claim should assert an

outcome, capability , or effect rather than merely
describing a method, aim, or process .
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− Example (Good): "Neural networks outperform
decision trees in image classification tasks
." ( Testable outcome)

− Example (Bad): "The proposed method aims to use
neural networks for better image
classification ." ( Descriptive , not assertive )

− **Be expressed as a meaningful, self −contained
statement **: Each claim should be fully
understandable on its own, without needing
context from the passage or other claims . It
must convey a complete, independent idea . If
referencing a study , survey , result , or process ,
phrase it as a general , verifiable claim.

− Example (Good): "The Amazon rainforest is home
to over 10 million species ."

− Example (Bad): "As mentioned earlier , the
Amazon is one of the most biodiverse places
in the world." (Requires prior context and
doesn' t stand alone .)

− **Emphasize generalization and scientific assertion
**: Avoid descriptive or narrative conclusions .

− Example (Good): "Exposure to blue light before
sleep can reduce melatonin production ." (
Generalized , testable assertion )

− Example (Bad): "The study investigates how
exposure to blue light before sleep affects
melatonin production ." ( Descriptive of
method, not a general claim)

− **Be clear and concise**: Use straightforward
language without unnecessary words.

− Example (Good): "The Eiffel Tower is in Paris ."
− Example (Bad): "The Eiffel Tower, which is one

of the most iconic landmarks in Europe and
attracts millions of tourists every year , is
located in Paris , France ."

− **Exclude narrative context **: Focus on the factual
assertion itself , not the surrounding story or
background information .

− Example (Good): "Water boils at 100C under
normal atmospheric pressure ."

− Example (Bad): "In many cultures , people have
believed for centuries that water boils at
100C, as scientists confirmed in the 18th
century ." ( Includes unnecessary background
information .)

− **Disregard all self − referential content **: Ignore
any statements referring to the passage itself or

the author intentions .
− Example (Good): "The Earth orbits the Sun."
− Example (Bad): "The study explains how the Earth

orbits the Sun." (This is self − referential
and refers to the passage itself .)

− **Be precise and objective **: Avoid ambiguity,
subjective interpretation , or vague statements .
Present claims as clear , verifiable facts .

− Example (Good): "The Great Wall of China
stretches approximately 13,000 miles ."

− Example (Bad): "The Great Wall of China is
pretty long ." (Vague and subjective .)

− **Be relevant to the broader debate or public
discourse **: Focus on verification −worthy claims
that introduce new information rather than merely

restating common knowledge.
− Example (Good): "The global temperature has

increased by about 1C since the late 19th
century ."

− Example (Bad): "The Earth is a planet ." (
Common knowledge and not contributing new,
verifiable information .)

Present the output using the following format :
{" original_claim ": <str >, " refined_claim ": <str >, "

rationale ": <str>}

<| begin_of_text |><| start_header_id |> user <|
end_header_id|>

CLAIM: {claim}
PASSAGE: {text}

A.5 SciClaims claim verification

<| begin_of_text |><| start_header_id |>system<|
end_header_id|>

You are a claim analyst . Upon receiving a claim and
an evidence , your task is to figure out if the
claim is either supported , contradicted or
unrelated based exclusively on the evidence .

− If you are confident that the claim is supported by
the evidence your answer will be "SUPPORT".

− If you are certain that the evidence directly
contradicts the claim, your answer will be "

CONTRADICT". Please note that if the claim is
just not mentioned in the evidence , or if it is
unrelated to the evidence , it does not mean it is

contradicted . For that cases , the answer will be
"NEI".

− If the evidence does not contain enough information
or if it is not related to the claim, your
answer will be "NEI", which stands for Not
Enough Information.

Arrange the output as a JSON dictionary with the keys
"response" and "evidence" and ensure your output
is JSON−valid.

− The "response" values can only be "SUPPORT", "
CONTRADICT" or "NEI".

− The "evidence" value must be a list of sentences
from the evidence which are more related to your
decision . If the decision is "NEI", this field
will be empty.

<| begin_of_text |><| start_header_id |> user <|
end_header_id|>

CLAIM: {claim}
EVIDENCE: {evidence}

A.6 Phase 1 evaluation with judge model (Q1)

<| begin_of_text |><| start_header_id |>system<|
end_header_id|>

Given a sentence and a paragraph , answer the following
question . Use exclusively the content of the

paragraph to answer the question .

Is the sentence supported by the paragraph?

Return your response as a json dictionary , following
this structure : {"answer":<Yes/No>, " rationale ":
<str>}

<| begin_of_text |><| start_header_id |> user <|
end_header_id|>

SENTENCE: {claim}
PARAGRAPH: {text}

A.7 Phase 1 evaluation with judge model
(Q2-8)
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Given a claim, answer the following question .

{QUESTION}

Return your response as a json dictionary , following
this structure : {"answer":<Yes/No>, " rationale ":
<str>}

<| begin_of_text |><| start_header_id |> user <|
end_header_id|>

CLAIM: {claim}

A.8 Phase 2 evaluation with judge model

<| begin_of_text |><| start_header_id |>system<|
end_header_id|>

Given a claim and a paragraph , answer the following
question .

Is the information contained in the paragraph useful
to verify the claim?

Return your response as a json dictionary , following
this structure : {"answer":<Yes/No>, " rationale ":
<str>}

<| begin_of_text |><| start_header_id |> user <|
end_header_id|>

CLAIM: {claim}
PARAGRAPH: {text}

A.9 Phase 3 evaluation with judge model

<| begin_of_text |><| start_header_id |>system<|
end_header_id|>

Given a claim and a paragraph , answer the following
question .

Is the claim {SUPPORTED/REFUTED} by the paragraph
?

Return your response as a json dictionary , following
this structure : {"answer":<Yes/No>, " rationale ":
<str>}

<| begin_of_text |><| start_header_id |> user <|
end_header_id|>

CLAIM: {claim}
PARAGRAPH: {text}
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B Claim Quality Questionnaire

Id Question
Q1 Is the claim grounded by the original text?
Q2 Is the claim grammatically correct?
Q3 Does the claim have all the necessary components

(subject, predicate, and relevant qualifiers) to form
a complete thought?

Q4 Is the claim precise and specific rather than vague?
Q5 Does the claim introduce new information rather

than just restating common knowledge?
Q6 Is the claim concise without losing essential infor-

mation?
Q7 Does the claim provide enough information to be

understood independently?
Q8 Would verifying the claim add value to public

knowledge?

Table 7: Questions asked to the LLM judge and hu-
man annotators to evaluate the quality of the generated
claims.
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