
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 130–140
November 4-9, 2025 ©2025 Association for Computational Linguistics

GLiNER2: An Efficient Multi-Task Information Extraction System
with Schema-Driven Interface

Urchade Zaratiana, Gil Pasternak, Oliver Boyd
George Hurn-Maloney, Ash Lewis

Fastino AI
{uz,gil,o8,g,ash}@fastino.ai

Abstract
Information extraction (IE) is fundamental to
numerous NLP applications, yet existing solu-
tions often require specialized models for differ-
ent tasks or rely on computationally expensive
large language models. We present GLiNER2,
a unified framework that enhances the orig-
inal GLiNER architecture to support named
entity recognition, text classification, and hi-
erarchical structured data extraction within a
single efficient model. Built pretrained trans-
former encoder architecture, GLiNER2 main-
tains CPU efficiency and compact size while
introducing multi-task composition through an
intuitive schema-based interface. Our exper-
iments demonstrate competitive performance
across extraction and classification tasks with
substantial improvements in deployment ac-
cessibility compared to LLM-based alterna-
tives. We release GLiNER2 as an open-source
pip-installable library with pre-trained mod-
els and documentation at github.com/fastino-
ai/GLiNER2.

1 Introduction

Information extraction (IE) (Okurowski, 1993;
Weischedel et al., 1996) represents one of the most
fundamental and practically important tasks in nat-
ural language processing, involving the identifica-
tion and extraction of structured information from
unstructured text. While large language models
(OpenAI, 2024) have demonstrated remarkable ca-
pabilities across various IE tasks (Wang et al., 2025;
Han et al., 2024), their deployment presents signifi-
cant practical challenges that limit their accessibil-
ity and adoption. Smaller models (Touvron et al.,
2023; Jiang et al., 2023; Yang et al., 2025) (eg.
Llama-2-7b) require GPU acceleration to achieve
reasonable inference speeds, making CPU-based
deployment prohibitively slow for production use.
The availability of GPU resources can be a barrier
for organizations and researchers operating under
resource constraints.

Beyond computational requirements, LLMs
present additional deployment challenges. Al-
though API costs have decreased significantly in
recent years, they can pose serious privacy and se-
curity concerns (Shanmugarasa et al., 2025; Wu
et al., 2025), particularly when processing sensitive
data containing personally identifiable information
(PII), financial records, or proprietary business in-
formation. Many organizations in the healthcare, fi-
nance, and government sectors require on-premises
deployment to maintain data sovereignty and com-
ply with regulations such as GDPR, HIPAA, or
industry-specific compliance requirements (Lareo,
2023; Zhang et al., 2024; CNIL, 2024). Further-
more, the recurring costs associated with API usage
may remain prohibitive for researchers, startups,
and practitioners in developing countries, creating
inequitable access to advanced NLP capabilities.
Our goal is to address these issues specifically in
the context of information extraction.

GLiNER (Zaratiana et al., 2024) was proposed
to address these fundamental limitations specifi-
cally for named entity recognition (NER) tasks.
GLiNER (Zaratiana et al., 2024) introduced a
paradigm shift by enabling zero-shot NER using a
small transformer encoder architecture trained on
diverse, LLM-annotated datasets (Zhou et al., 2024;
Bogdanov et al., 2024). This approach yielded
remarkable results, achieving performance that
matched or surpassed contemporary LLMs while
running efficiently on standard CPU hardware with-
out requiring GPUs. Furthermore, it maintains a
parameter count under 500 million, enabling de-
ployment in edge computing scenarios, resource-
constrained environments, and privacy-sensitive
applications. GLiNER gained particular traction
in the PII redaction domain (Segbroeck, 2024; Pre-
sidio, 2024), where its combination of competitive
performance, CPU efficiency, and straightforward
local deployment made it an ideal solution for han-

130

https://github.com/fastino-ai/GLiNER2
https://github.com/fastino-ai/GLiNER2

Characteristic GLiNER GLiNER2 Open LLMs Closed LLMs

Features
Scope NER only Various IE & Classification General General
Label description ✗ ✓ ✓ ✓
CPU Deployment ✓ ✓ ✗ ✗
Privacy Preserving ✓ ✓ ✓ ✗
No API Costs ✓ ✓ ✓ ✗
Fine-tuning Support ✓ ✓ ✓ ∼
Technical Specifications
Parameters 195M 205M 7B-175B Unknown
Model Architecture Encoder Encoder Decoder Decoder
Context Length 512 tokens 2048 tokens 2K-1M tokens 8K-10M tokens

Usage & Licensing
License Type Apache 2.0 Apache 2.0 Various Proprietary
Commercial Use ✓ ✓ ∼ ✓

Table 1: Comprehensive comparison across system categories. ✓= full support, ∼= partial/limited support, ✗= no
support.

dling sensitive data.
Following GLiNER’s release, several special-

ized adaptations emerged for different information
extraction tasks. GLiREL (Boylan et al., 2025) ex-
tended the approach to relation extraction, while
GLiClass (Knowledgator, 2025) adapted it for zero-
shot text classification. Domain-specific variants
included GLiNER-BioMed (Yazdani et al., 2025)
for biomedical entity recognition, OpenBioNER
(Cocchieri et al., 2025) for lightweight biomed-
ical NER through entity type descriptions, and
GLiDRE (Armingaud, 2025) for document-level
relation extraction in French. However, each adap-
tation required separate model development and
deployment, leading to fragmentation as practition-
ers needed multiple specialized models for compre-
hensive information extraction pipelines.

In this work, we introduce GLiNER2, a Python
library that transforms the focused capabilities of
its predecessors into a universal information ex-
traction system. Rather than requiring separate
models like GLiNER1, GLiREL2, and GLiClass3,
GLiNER2 unifies entity recognition, structured ex-
traction, and text classification within a single ar-
chitecture. GLiNER2 maintains the core efficiency,
running on CPU, while dramatically expanding
functionality beyond simple NER to support: entity
recognition with natural language type descriptions
and nested/overlapping spans, document-level clas-
sification with configurable single or multi-label
outputs, and complex extraction schemas that cap-

1https://github.com/urchade/GLiNER
2https://github.com/jackboyla/GLiREL
3https://huggingface.co/knowledgator/

GLiClass

ture hierarchical structures with parent-child re-
lationships and repeated patterns. The library’s
Python API allows developers to define extraction
schemas declaratively, compose multiple tasks in a
single inference call, and deploy models with just
a few lines of code. By unifying these capabili-
ties, GLiNER2 replaces multiple specialized mod-
els with a single efficient solution. GLiNER2 is
available through pip installation (pip install
gliner2) with pre-trained weights hosted on
Hugging Face, and it is released under the Apache
2.0 license.

2 System design

Our architecture builds upon the foundational de-
sign principles of the original GLiNER (Zaratiana
et al., 2024), which prompts a pretrained trans-
former encoder (Devlin et al., 2019; He et al., 2023)
with entity types for zero-shot named entity recog-
nition. We extend this prompting approach to han-
dle more complex schemas that encompass mul-
tiple information extraction tasks. The core inno-
vation lies in our unified input formulation that
enables diverse extraction tasks through carefully
designed prompt templates. The general input for-
mat follows:

[Task Prompt]⊕[SEP]⊕[Input Text]

where ⊕ denotes concatenation. The [Task
Prompt] specifies what to extract (e.g., entity
types like "person, location" or class labels like
"positive, negative"), [SEP] is a special sepa-
rator token, and [Input Text] is the text to
be analyzed, which is a sequence of text tokens

131

https://github.com/urchade/GLiNER
https://github.com/jackboyla/GLiREL
https://huggingface.co/knowledgator/GLiClass
https://huggingface.co/knowledgator/GLiClass

Dataset Task Type # Labels
GPT-4o

OpenAI (2024)
>100B

GLiClass
Knowledgator (2025)

190M

DeBERTa-v3
Laurer et al. (2024)

435M

GLiNER2
Our model

205M

SNIPS Intent 7 0.97 0.80 0.77 0.83
Banking77 Intent 77 0.78 0.21 0.42 0.70
Amazon Intent Intent 31 0.72 0.51 0.59 0.53

SST-2 Sentiment 2 0.94 0.90 0.92 0.86
IMDB Sentiment 2 0.95 0.92 0.89 0.87

AG News Topic 4 0.85 0.68 0.68 0.74
20 Newsgroups Topic 20 0.68 0.36 0.54 0.49

Average — — 0.84 0.63 0.69 0.72

Table 2: Zero-shot text classification performance across various benchmarks.

x1, x2, . . . , xN . Complete task prompt formats for
each extraction type are detailed in Appendix A.

GLiNER2 comprises the following tasks:

• Entity Recognition: We support entity type
descriptions alongside labels, allowing richer
semantic understanding through natural lan-
guage definitions.

• Hierarchical Structure Extraction: We
introduce structured schemas that capture
parent-child relationships between entities
and their attributes, enabling extraction of
complex nested information.

• Text Classification: We add text classifica-
tion capabilities with support for both single-
label and multi-label, along with label descrip-
tion.

• Task Composition: Most significantly, we en-
able composition of multiple extraction tasks
within a single forward pass, allowing simul-
taneous entity recognition, text classification,
and structured extraction with shared contex-
tual understanding.

This unified approach maintains the efficiency
advantages of the original GLiNER while dramat-
ically expanding its capabilities to handle diverse
information extraction scenarios. Detailed architec-
tural specifications and mathematical formulations
are provided in Appendix A.

3 Experiments

3.1 Training Data
We trained our model on 254,334 examples, com-
bining real-world documents and synthetic data,
with balanced coverage of entity recognition, hier-
archical extraction, and classification tasks. The

real-world set consists of 135,698 documents from
news articles, Wikipedia, legal texts, PubMed ab-
stracts, and ArXiv papers, representing a wide
range of writing styles and entity types. All docu-
ments were automatically annotated with GPT-4o
using task-specific prompts and validated for qual-
ity. To address gaps and improve robustness, we
generated 118,636 synthetic examples with GPT-
4o targeting common business and personal use
cases, including email threads, text messages, pro-
fessional documents, social media posts, transac-
tional data, and domain-specific texts; each syn-
thetic example includes complete annotations for
all tasks to support effective multi-task learning.
Full dataset statistics and distribution are provided
in Appendix B.1.

3.2 Results

We conducted comprehensive zero-shot evaluations
on standard benchmarks for both text classification
and named entity recognition to assess the effec-
tiveness of our approach. Hierarchical structure
extraction was not evaluated due to the absence of
established zero-shot benchmarks for this task type,
which we plan to address in future work. Details
on all baseline models and evaluation protocols are
provided in Appendix B.

We evaluate zero-shot classification on seven
public benchmarks covering sentiment (SST-2
(Socher et al., 2013), IMDB (Maas et al., 2011)),
intent (SNIPS (Coucke et al., 2018), Banking77
(Casanueva et al., 2020), Amazon-Intent (FitzGer-
ald et al., 2022)), and topic classification (AG News
(Zhang et al., 2016), 20 Newsgroups (Lang, 1995)).
GLiNER2 achieves the highest average accu-
racy among open-source baselines, outperform-
ing GLiClass on five datasets and DeBERTa-v3
on three. It performs particularly well on intent

132

Dataset GPT-4o GLiNER-M GLiNER2

AI 0.547 0.518 0.526
Literature 0.561 0.597 0.564
Music 0.736 0.694 0.632
Politics 0.632 0.686 0.679
Science 0.518 0.581 0.547

Average 0.599 0.615 0.590

Table 3: Zero-shot F1 scores on CrossNER benchmark.

classification, scoring 0.83 on SNIPS and 0.70
on Banking77, compared to DeBERTa’s 0.77 and
0.42, respectively. On Amazon-Intent and 20 News-
groups, GLiNER2 trails DeBERTa-v3 slightly (by
6 and 5 points), but GLiNER2 is significantly faster
as shown in Table 4. On sentiment benchmarks,
GLiNER2 scores 0.86–0.87, close to DeBERTa-
v3’s 0.89–0.92 and within 10 points of GPT-4o.
While GPT-4o leads across all tasks, this supe-
rior performance is expected given its substantially
larger scale and extensive pretraining on diverse
text corpora. Overall, GLiNER2 offers competi-
tive accuracy across a range of classification set-
tings and consistently closes the gap between task-
specific baselines and large proprietary models.

For NER evaluation, we use the CrossNER
benchmark (Liu et al., 2020), which measures zero-
shot generalization across five specialized domains:
AI, Literature, Music, Politics, and Science. As
shown in Table 3, GLiNER2 closely matches
GPT-4o in overall F1 score (0.590 vs. 0.599) and
achieves higher scores in AI (0.526 vs. 0.547) and
Literature (0.564 vs. 0.561). While GLiNER2 trails
GLiNER-M in categories like Science and Music,
it maintains strong performance in Politics (0.679),
suggesting robustness across diverse entity types.
Considering that GLiNER2 is a general-purpose
model supporting multiple tasks, this level of NER
performance with only modest drop-offs compared
to a dedicated entity recognition system, demon-
strates the effectiveness of our unified architecture.

3.3 Efficiency
We evaluate GLiNER2’s computational efficiency
by measuring inference latency on text classifi-
cation tasks across different numbers of labels.
All models are evaluated on CPU except GPT-4o,
which uses the OpenAI API. Table 4 presents la-
tency measurements in milliseconds for varying
numbers of classification labels. GLiNER2 demon-
strates strong computational efficiency, achieving
latency comparable to GLiClass while providing

significantly better performance than DeBERTa-
based zero-shot classification. The key advan-
tage becomes evident when comparing against De-
BERTa, which performs a separate forward pass
for each label, resulting in linear scaling with the
number of labels and substantially higher latency
(6.8× slower with 20 labels). In contrast, GLiNER2
processes all labels simultaneously in a single for-
ward pass, maintaining consistent performance re-
gardless of label count. Both GLiNER2 and GLi-
Class achieve approximately 2.6× speedup over
GPT-4o while running on standard CPU hardware,
demonstrating the practical advantages of compact,
specialized models for production deployment sce-
narios where latency and computational resources
are critical considerations.

#L GPT-4o DeBERTa GLiClass GLiNER2

5 358 1714 137 130
10 382 3404 131 132
20 425 6758 140 163
50 463 16897 190 208

x 1.00× 0.10× 2.75× 2.62×

Table 4: CPU Latency (ms) comparison for text classifi-
cation with varying number of labels.

4 Artifacts

4.1 Python Package
We provide a Python package that makes GLiNER2
accessible through an intuitive API. The gliner2
library can be easily installed via pip and pro-
vides seamless integration with the Hugging Face
ecosystem for model distribution and loading.
The model can be loaded using the standard
.from_pretrained method, with weights
hosted on Hugging Face Hub for convenient ac-
cess.

Installation: pip install gliner2
from gliner2 import GLiNER2

Load from Hugging Face
extractor = GLiNER2.from_pretrained("gliner/gliner2-base")

--- Entity Extraction ---

text = "Apple Inc. CEO Tim Cook announced new products in Cupertino."

entities = ["company", "person", "location", "product"]
results = extractor.extract_entities(text, entities)
{'entities': {'company': ['Apple Inc.'],
'person': ['Tim Cook'],
'location': ['Cupertino']}}

entity_descriptions = {
 "company": "Business organizations and corporations",
 "person": "Names of individuals including executives",
 "location": "Geographical places including cities"
}
results = extractor.extract_entities(text, entity_descriptions)

--- Schema Extraction ---

text = "..."

product_schema = (
 extractor.create_schema()
 .structure("product")
 .field("name", "str", "Product name and model")
 .field("price", "str", "Product cost")
 .field("features", "list", "Key features")
 .field("category", "str", "Product category",
 choices=["electronics", "software", "hardware"])
)
results = extractor.extract(text, product_schema)

multi_schema = (
 extractor.create_schema()
 .structure("product")
 .field("name", "str")
 .field("price", "str")
 .structure("company")
 .field("name", "str")
 .field("headquarters", "str")
)

--- Classification ---

text = "This movie was absolutely fantastic! Great acting and plot."

labels = ["positive", "negative", "neutral"]
results = extractor.classify_text(text, {"sentiment": labels})
{'sentiment': 'positive'}

tasks = {
 "aspects": {
 "labels": ["acting", "plot", "visuals", "music"],
 "multi_label": True,
 "descriptions": {
 "acting": "Quality of character performances",
 "plot": "Story structure and narrative",
 "visuals": "Cinematography and visual effects",
 "music": "Soundtrack and audio design"
 }
 }
}
results = extractor.classify_text(text, tasks)
{'aspects': ['acting', 'plot']}

results = extractor.classify_text(text, {
 "sentiment": ["positive", "negative", "neutral"],
 "genre": ["comedy", "drama", "action", "thriller"]
})

Figure 1: Model loading.

Named Entity Recognition Named entity recog-
nition can be performed through multiple ap-
proaches to accommodate different use cases and
complexity levels. The simplest method requires
only the input text and a list of target entity types.
Moreover, users can provide entity types with natu-
ral language descriptions using a dictionary format,

133

where keys represent entity types and values con-
tain descriptive text that helps the model better
understand the extraction target. The process and
various usage patterns are illustrated in Figure 2.

Installation: pip install gliner2
from gliner2 import GLiNER2

Load from Hugging Face
extractor = GLiNER2.from_pretrained("gliner/gliner2-base")

--- Entity Extraction ---

text = "Apple Inc. CEO Tim Cook announced new products in Cupertino."

entities = ["company", "person", "location", "product"]
results = extractor.extract_entities(text, entities)
{'entities': {'company': ['Apple Inc.'],
'person': ['Tim Cook'],
'location': ['Cupertino']}}

entity_descriptions = {
 "company": "Business organizations and corporations",
 "person": "Names of individuals including executives",
 "location": "Geographical places including cities"
}
results = extractor.extract_entities(text, entity_descriptions)

--- Schema Extraction ---

text = "..."

product_schema = (
 extractor.create_schema()
 .structure("product")
 .field("name", "str", "Product name and model")
 .field("price", "str", "Product cost")
 .field("features", "list", "Key features")
 .field("category", "str", "Product category",
 choices=["electronics", "software", "hardware"])
)
results = extractor.extract(text, product_schema)

multi_schema = (
 extractor.create_schema()
 .structure("product")
 .field("name", "str")
 .field("price", "str")
 .structure("company")
 .field("name", "str")
 .field("headquarters", "str")
)

--- Classification ---

text = "This movie was absolutely fantastic! Great acting and plot."

labels = ["positive", "negative", "neutral"]
results = extractor.classify_text(text, {"sentiment": labels})
{'sentiment': 'positive'}

tasks = {
 "aspects": {
 "labels": ["acting", "plot", "visuals", "music"],
 "multi_label": True,
 "descriptions": {
 "acting": "Quality of character performances",
 "plot": "Story structure and narrative",
 "visuals": "Cinematography and visual effects",
 "music": "Soundtrack and audio design"
 }
 }
}
results = extractor.classify_text(text, tasks)
{'aspects': ['acting', 'plot']}

results = extractor.classify_text(text, {
 "sentiment": ["positive", "negative", "neutral"],
 "genre": ["comedy", "drama", "action", "thriller"]
})

Figure 2: GLiNER2 for Named Entity Recognition with
simple and enhanced approaches

Hierarchical Structure Extraction Hierarchical
structure extraction is performed by defining a
schema as shown in Figure 3. The schema defines
a parent entity (termed a structure) containing
multiple child fields using GLiNER2’s field
specification syntax. Each field follows the pat-
tern field_name::type::description,
where type specifies either str for single
values or list for multiple values. Fields may
incorporate choice constraints through the format
field_name::[option1|option2]::type,
exemplified by the category field restricted to
electronics, software, or hardware.

from gliner2 import GLiNER2

--- Load Extractor ---
extractor = GLiNER2.from_pretrained("gliner/gliner2-base")

--- Entity Extraction ---

text = "Apple Inc. CEO Tim Cook announced new products in Cupertino."

entities = ["company", "person", "location", "product"]
results = extractor.extract_entities(text, entities)
{'entities': {'company': ['Apple Inc.'],
'person': ['Tim Cook'],
'location': ['Cupertino']}}

entity_descriptions = {
 "company": "Business organizations and corporations",
 "person": "Names of individuals including executives",
 "location": "Geographical places including cities"
}
results = extractor.extract_entities(text, entity_descriptions)

--- Schema Extraction ---

text = "..."

product_schema = (
 extractor.create_schema()
 .structure("product")
 .field("name", "str", "Product name and model")
 .field("price", "str", "Product cost")
 .field("features", "list", "Key features")
 .field("category", "str", "Product category",
 choices=["electronics", "software", "hardware"])
)
results = extractor.extract(text, product_schema)

multi_schema = (
 extractor.create_schema()
 .structure("product")
 .field("name", "str")
 .field("price", "str")
 .structure("company")
 .field("name", "str")
 .field("headquarters", "str")
)

--- Classification ---

text = "This movie was absolutely fantastic! Great acting and plot."

labels = ["positive", "negative", "neutral"]
results = extractor.classify_text(text, {"sentiment": labels})
{'sentiment': 'positive'}

tasks = {
 "aspects": {
 "labels": ["acting", "plot", "visuals", "music"],
 "multi_label": True,
 "descriptions": {
 "acting": "Quality of character performances",
 "plot": "Story structure and narrative",
 "visuals": "Cinematography and visual effects",
 "music": "Soundtrack and audio design"
 }
 }
}
results = extractor.classify_text(text, tasks)
{'aspects': ['acting', 'plot']}

results = extractor.classify_text(text, {
 "sentiment": ["positive", "negative", "neutral"],
 "genre": ["comedy", "drama", "action", "thriller"]
})

--- Structure Extraction (Product only) ---

text = "The new MacBook Pro costs $1999..."

product_schema = {
 "product": [
 "name::str::Product name and model",
 "price::str::Product cost",
 "features::list::Key product features",
 "category::[electronics|software|hardware]::str"
]
}
results = extractor.extract_json(text, product_schema)

--- Structure Extraction (Product + Company) ---

text = "Apple Inc., based in Cupertino..."

multi_schema = {
 "product": [
 "name::str",
 "price::str"
],
 "company": [
 "name::str",
 "headquarters::list"
]
}
results = extractor.extract_json(text, multi_schema)

Figure 3: Hierarchical structure extraction with field
constraints and descriptions

The framework supports multiple structures
within a single schema for complex extraction sce-
narios. For instance, Figure 4 shows how users
can define two structures, product and company, in
a single query. This enables simultaneous extrac-
tion of product details (name and price) alongside
company information (name and headquarters), all
processed efficiently in a single forward pass.

Text Classification Like NER, text classification
functionality provides both streamlined and highly
customizable interfaces to accommodate various
application requirements. For quick deployment,
users need only provide the input text and a dic-
tionary mapping task names (e.g., "sentiment") to

from gliner2 import GLiNER2

--- Load Extractor ---
extractor = GLiNER2.from_pretrained("gliner/gliner2-base")

--- Entity Extraction ---

text = "Apple Inc. CEO Tim Cook announced new products in Cupertino."

entities = ["company", "person", "location", "product"]
results = extractor.extract_entities(text, entities)
{'entities': {'company': ['Apple Inc.'],
'person': ['Tim Cook'],
'location': ['Cupertino']}}

entity_descriptions = {
 "company": "Business organizations and corporations",
 "person": "Names of individuals including executives",
 "location": "Geographical places including cities"
}
results = extractor.extract_entities(text, entity_descriptions)

--- Schema Extraction ---

text = "..."

product_schema = (
 extractor.create_schema()
 .structure("product")
 .field("name", "str", "Product name and model")
 .field("price", "str", "Product cost")
 .field("features", "list", "Key features")
 .field("category", "str", "Product category",
 choices=["electronics", "software", "hardware"])
)
results = extractor.extract(text, product_schema)

multi_schema = (
 extractor.create_schema()
 .structure("product")
 .field("name", "str")
 .field("price", "str")
 .structure("company")
 .field("name", "str")
 .field("headquarters", "str")
)

--- Classification ---

text = "This movie was absolutely fantastic! Great acting and plot."

labels = ["positive", "negative", "neutral"]
results = extractor.classify_text(text, {"sentiment": labels})
{'sentiment': 'positive'}

tasks = {
 "aspects": {
 "labels": ["acting", "plot", "visuals", "music"],
 "multi_label": True,
 "descriptions": {
 "acting": "Quality of character performances",
 "plot": "Story structure and narrative",
 "visuals": "Cinematography and visual effects",
 "music": "Soundtrack and audio design"
 }
 }
}
results = extractor.classify_text(text, tasks)
{'aspects': ['acting', 'plot']}

results = extractor.classify_text(text, {
 "sentiment": ["positive", "negative", "neutral"],
 "genre": ["comedy", "drama", "action", "thriller"]
})

--- Structure Extraction (Product only) ---

text = "The new MacBook Pro costs $1999..."

product_schema = {
 "product": [
 "name::str::Product name and model",
 "price::str::Product cost",
 "features::list::Key product features",
 "category::[electronics|software|hardware]::str"
]
}
results = extractor.extract_json(text, product_schema)

--- Structure Extraction (Product + Company) ---

text = "Apple Inc., based in Cupertino..."

multi_schema = {
 "product": [
 "name::str",
 "price::str"
],
 "company": [
 "name::str",
 "headquarters::list"
]
}
results = extractor.extract_json(text, multi_schema)

Figure 4: Composing multiple hierarchical structures in
a single schema

lists of classification labels, as shown in the first ex-
ample of Figure 5. For more sophisticated applica-
tions, the library supports extensive customization
options including label descriptions and multi-label
classification capabilities. When multi-label clas-
sification is enabled, the model applies sigmoid
activation to allow multiple simultaneous label as-
signments, while single-label tasks use softmax
normalization for mutually exclusive predictions.

Installation: pip install gliner2
from gliner2 import GLiNER2

Load from Hugging Face
extractor = GLiNER2.from_pretrained("gliner/gliner2-base")

--- Entity Extraction ---

text = "Apple Inc. CEO Tim Cook announced new products in Cupertino."

entities = ["company", "person", "location", "product"]
results = extractor.extract_entities(text, entities)
{'entities': {'company': ['Apple Inc.'],
'person': ['Tim Cook'],
'location': ['Cupertino']}}

entity_descriptions = {
 "company": "Business organizations and corporations",
 "person": "Names of individuals including executives",
 "location": "Geographical places including cities"
}
results = extractor.extract_entities(text, entity_descriptions)

--- Schema Extraction ---

text = "..."

product_schema = (
 extractor.create_schema()
 .structure("product")
 .field("name", "str", "Product name and model")
 .field("price", "str", "Product cost")
 .field("features", "list", "Key features")
 .field("category", "str", "Product category",
 choices=["electronics", "software", "hardware"])
)
results = extractor.extract(text, product_schema)

multi_schema = (
 extractor.create_schema()
 .structure("product")
 .field("name", "str")
 .field("price", "str")
 .structure("company")
 .field("name", "str")
 .field("headquarters", "str")
)

--- Classification ---

text = "This movie was absolutely fantastic! Great acting and plot."

labels = ["positive", "negative", "neutral"]
results = extractor.classify_text(text, {"sentiment": labels})
{'sentiment': 'positive'}

tasks = {
 "aspects": {
 "labels": ["acting", "plot", "visuals", "music"],
 "multi_label": True,
 "descriptions": {
 "acting": "Quality of character performances",
 "plot": "Story structure and narrative",
 "visuals": "Cinematography and visual effects",
 "music": "Soundtrack and audio design"
 }
 }
}
results = extractor.classify_text(text, tasks)
{'aspects': ['acting', 'plot']}

results = extractor.classify_text(text, {
 "sentiment": ["positive", "negative", "neutral"],
 "genre": ["comedy", "drama", "action", "thriller"]
})

Figure 5: Text classification with simple and advanced
configuration options

The library supports multiple classification tasks
within a single call, as demonstrated in Figure 6.
Each classification task can be independently cus-
tomized with features such as label descriptions
and multi-label settings.

Installation: pip install gliner2
from gliner2 import GLiNER2

Load from Hugging Face
extractor = GLiNER2.from_pretrained("gliner/gliner2-base")

--- Entity Extraction ---

text = "Apple Inc. CEO Tim Cook announced new products in Cupertino."

entities = ["company", "person", "location", "product"]
results = extractor.extract_entities(text, entities)
{'entities': {'company': ['Apple Inc.'],
'person': ['Tim Cook'],
'location': ['Cupertino']}}

entity_descriptions = {
 "company": "Business organizations and corporations",
 "person": "Names of individuals including executives",
 "location": "Geographical places including cities"
}
results = extractor.extract_entities(text, entity_descriptions)

--- Schema Extraction ---

text = "..."

product_schema = (
 extractor.create_schema()
 .structure("product")
 .field("name", "str", "Product name and model")
 .field("price", "str", "Product cost")
 .field("features", "list", "Key features")
 .field("category", "str", "Product category",
 choices=["electronics", "software", "hardware"])
)
results = extractor.extract(text, product_schema)

multi_schema = (
 extractor.create_schema()
 .structure("product")
 .field("name", "str")
 .field("price", "str")
 .structure("company")
 .field("name", "str")
 .field("headquarters", "str")
)

--- Classification ---

text = "This movie was absolutely fantastic! Great acting and plot."

labels = ["positive", "negative", "neutral"]
results = extractor.classify_text(text, {"sentiment": labels})
{'sentiment': 'positive'}

tasks = {
 "aspects": {
 "labels": ["acting", "plot", "visuals", "music"],
 "multi_label": True,
 "descriptions": {
 "acting": "Quality of character performances",
 "plot": "Story structure and narrative",
 "visuals": "Cinematography and visual effects",
 "music": "Soundtrack and audio design"
 }
 }
}
results = extractor.classify_text(text, tasks)
{'aspects': ['acting', 'plot']}

results = extractor.classify_text(text, {
 "sentiment": ["positive", "negative", "neutral"],
 "genre": ["comedy", "drama", "action", "thriller"]
})

Figure 6: Simultaneous multi-task classification.

Task Composition A key feature of the library is
its ability to efficiently compose multiple extraction
tasks within a single unified framework. Figure 8
demonstrates how to construct a comprehensive
schema that combines entity recognition, text clas-
sification, and structured extraction seamlessly in
one inference call.

134

Use via API · Construit avec Gradio

� GLiNER2
Compact • White Theme • Screenshot-Ready

Hierarchical Structure Extraction Named Entity Recognition Text Classification

Predict

The Acme Pro Laptop 15” features an Intel Core i7 processor, 16GB RAM, 512GB SSD, and a 15.6-inch 4K display. Priced at $1,499, it o�ers Wi-Fi 6,
Bluetooth 5.2, and a backlit keyboard.

Schema

{
 "product": [
 "name::str::Product name and model",
 "price::str::Product cost",
 "features::list::Key product features",
 "category::[electronics|software|hardware]::str"
]
}

1
2
3
4
5
6
7
8

⌄
⌄

Output

{
 "product": [
 {
 "name": "Acme Pro Laptop 15",
 "price": "$1,499",
 "features": [
 "backlit keyboard",
 "Bluetooth 5.2",
 "Wi-Fi 6",
 "Intel Core i7 processor",
 "16GB RAM",
 "512GB SSD",
 "15.6-inch 4K display"
],
 "category": "hardware"
 }
]
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

⌄
⌄
⌄

⌄

Input text

Figure 7: GLiNER2 Gradio demo interface showing hierarchical structure extraction.

Installation: pip install gliner2
from gliner2 import GLiNER2

Load from Hugging Face
extractor = GLiNER2.from_pretrained("gliner/gliner2-base")

--- Entity Extraction ---

text = "Apple Inc. CEO Tim Cook announced new products in Cupertino."

entities = ["company", "person", "location", "product"]
results = extractor.extract_entities(text, entities)
{'entities': {'company': ['Apple Inc.'],
'person': ['Tim Cook'],
'location': ['Cupertino']}}

entity_descriptions = {
 "company": "Business organizations and corporations",
 "person": "Names of individuals including executives",
 "location": "Geographical places including cities"
}
results = extractor.extract_entities(text, entity_descriptions)

--- Schema Extraction ---

text = "..."

product_schema = (
 extractor.create_schema()
 .structure("product")
 .field("name", "str", "Product name and model")
 .field("price", "str", "Product cost")
 .field("features", "list", "Key features")
 .field("category", "str", "Product category",
 choices=["electronics", "software", "hardware"])
)
results = extractor.extract(text, product_schema)

multi_schema = (
 extractor.create_schema()
 .structure("product")
 .field("name", "str")
 .field("price", "str")
 .structure("company")
 .field("name", "str")
 .field("headquarters", "str")
)

--- Classification ---

text = "This movie was absolutely fantastic! Great acting and plot."

labels = ["positive", "negative", "neutral"]
results = extractor.classify_text(text, {"sentiment": labels})
{'sentiment': 'positive'}

tasks = {
 "aspects": {
 "labels": ["acting", "plot", "visuals", "music"],
 "multi_label": True,
 "descriptions": {
 "acting": "Quality of character performances",
 "plot": "Story structure and narrative",
 "visuals": "Cinematography and visual effects",
 "music": "Soundtrack and audio design"
 }
 }
}
results = extractor.classify_text(text, tasks)
{'aspects': ['acting', 'plot']}

results = extractor.classify_text(text, {
 "sentiment": ["positive", "negative", "neutral"],
 "genre": ["comedy", "drama", "action", "thriller"]
})

Sample text for demonstration

text = """Apple Inc. CEO Tim Cook announced the new iPhone 15 Pro
at $999 in Cupertino yesterday. The device features advanced
camera technology and 5G connectivity. This is fantastic news
for tech enthusiasts! Contact sales@apple.com for inquiries."""

Multi-task extraction in a single forward pass
schema = (extractor.create_schema()
 # Named Entity Recognition
 .entities(["person", "company", "product", "location", "price"])

 # Text Classification
 .classification("sentiment", ["positive", "negative", "neutral"])
 .classification("urgency", ["low", "medium", "high"])

 # Hierarchical Structure Extraction
 .structure("product_info")
 .field("name", dtype="str", description="Product name")
 .field("price", dtype="str", description="Product cost")
 .field("features", dtype="list", description="Key features")
 .field("company", dtype="str", description="Manufacturer")
)

Extract all information simultaneously
results = extractor.extract(text, schema)

Figure 8: Comprehensive task composition combining
all extraction types

4.2 Interactive Gradio Demo

We provide a web-based demonstration interface
that allows users to interact with GLiNER2 without
writing code. The demo enables real-time exper-
imentation with entity types, classification labels,
descriptions and other parameters. The interface
consists of three tabs corresponding to GLiNER2’s
core capabilities. Figure 7 shows the hierarchi-
cal structure extraction tab, where users can define
schemas with multiple fields and data types to ex-
tract structured information from text.

5 Related Work

Several frameworks have addressed information
extraction tasks across different domains and ap-
proaches.

Traditional NLP Libraries: spaCy (Honnibal
et al., 2020), Stanford CoreNLP (Manning et al.,
2014), Stanza (Qi et al., 2020) provide comprehen-
sive toolkits for named entity recognition, part-of-
speech tagging, and dependency parsing. However,
these frameworks require separate models for each
task and lack unified architectures, and often does
not generalize to unseen labels.

LLM-based Extraction: XNLP (Fei et al., 2024)
demonstrated using large language models for di-
verse IE tasks through prompting strategies, while
NuExtract (NuMind, 2024) focused on fine-tuning
for JSON extraction. These approaches achieve
strong performance but require significant compu-
tational resources and GPU inference.

Encoder-based Approaches: GLiNER (Zara-
tiana et al., 2024) introduced an efficient paradigm
leveraging pretrained encoders fine-tuned on syn-
thetic data for zero-shot named entity recognition,
achieving fast CPU inference with competitive ac-
curacy. This approach inspired subsequent work
including GLiClass (Knowledgator, 2025) for text
classification and GLiREL (Boylan et al., 2025)
for zero-shot relation extraction. GLiNER2 ex-
tends this line of work by integrating multiple tasks
within a single efficient framework, enabling multi-
task composition while maintaining the computa-
tional advantages of compact encoder-based mod-
els.

6 Conclusion

We presented GLiNER2, which unifies entity recog-
nition, text classification, and hierarchical extrac-
tion in a single CPU-efficient model. Unlike exist-
ing approaches requiring separate models per task,
GLiNER2 enables multi-task extraction through
declarative schemas while maintaining under 500M
parameters for practical deployment. We release
GLiNER2 as an open-source Python library un-
der Apache 2.0 license, with pre-trained weights
on Hugging Face. By combining efficiency with
versatility, we hope our library makes advanced
information extraction accessible for both research
and production use.

135

References
Robin Armingaud. 2025. Glidre: Modèle généraliste

pour l’extraction de relations à l’échelle de docu-
ments. In EGC-Atelier TextMine.

Sergei Bogdanov, Alexandre Constantin, Timothée
Bernard, Benoit Crabbé, and Etienne P Bernard.
2024. NuNER: Entity recognition encoder pre-
training via LLM-annotated data. In Proceedings
of the 2024 Conference on Empirical Methods in
Natural Language Processing, pages 11829–11841,
Miami, Florida, USA. Association for Computational
Linguistics.

Jack Boylan, Chris Hokamp, and Demian Gholipour
Ghalandari. 2025. GLiREL - generalist model for
zero-shot relation extraction. In Proceedings of the
2025 Conference of the Nations of the Americas
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (Volume 1:
Long Papers), pages 8230–8245, Albuquerque, New
Mexico. Association for Computational Linguistics.

Iñigo Casanueva, Tadas Temčinas, Daniela Gerz,
Matthew Henderson, and Ivan Vulić. 2020. Efficient
intent detection with dual sentence encoders. In Pro-
ceedings of the 2nd Workshop on Natural Language
Processing for Conversational AI, pages 38–45, On-
line. Association for Computational Linguistics.

CNIL. 2024. AI and GDPR: the CNIL publishes new
recommendations to support responsible innovation.

Alessio Cocchieri, Giacomo Frisoni, Marcos
Martínez Galindo, Gianluca Moro, Giuseppe
Tagliavini, and Francesco Candoli. 2025. Open-
BioNER: Lightweight Open-Domain Biomedical
Named Entity Recognition Through Entity Type
Description. In Findings of the Association for
Computational Linguistics: NAACL 2025, pages
818–837, Albuquerque, New Mexico. Association
for Computational Linguistics.

Alice Coucke, Alaa Saade, Adrien Ball, Théodore
Bluche, Alexandre Caulier, David Leroy, Clément
Doumouro, Thibault Gisselbrecht, Francesco Calt-
agirone, Thibaut Lavril, Maël Primet, and Joseph
Dureau. 2018. Snips voice platform: an embedded
spoken language understanding system for private-by-
design voice interfaces. Preprint, arXiv:1805.10190.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Hao Fei, Meishan Zhang, Min Zhang, and Tat-Seng
Chua. 2024. XNLP: An Interactive Demonstration
System for Universal Structured NLP. In Proceed-
ings of the 62nd Annual Meeting of the Association

for Computational Linguistics (Volume 3: System
Demonstrations), pages 19–30, Bangkok, Thailand.
Association for Computational Linguistics.

Jack FitzGerald, Christopher Hench, Charith Peris,
Scott Mackie, Kay Rottmann, Ana Sanchez, Aaron
Nash, Liam Urbach, Vishesh Kakarala, Richa
Singh, Swetha Ranganath, Laurie Crist, Misha
Britan, Wouter Leeuwis, Gokhan Tur, and Prem
Natarajan. 2022. Massive: A 1m-example mul-
tilingual natural language understanding dataset
with 51 typologically-diverse languages. Preprint,
arXiv:2204.08582.

Ridong Han, Chaohao Yang, Tao Peng, Prayag Tiwari,
Xiang Wan, Lu Liu, and Benyou Wang. 2024. An
empirical study on information extraction using large
language models. Preprint, arXiv:2305.14450.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. 2023.
DeBERTav3: Improving deBERTa using ELECTRA-
style pre-training with gradient-disentangled embed-
ding sharing. In The Eleventh International Confer-
ence on Learning Representations.

Matthew Honnibal, Ines Montani, Sofie Van Lan-
deghem, and Adriane Boyd. 2020. spaCy: Industrial-
strength Natural Language Processing in Python.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7b. Preprint,
arXiv:2310.06825.

Knowledgator. 2025. gliclass-base-v1.0-lw. https:
//huggingface.co/knowledgator/
gliclass-base-v1.0-lw.

Ken Lang. 1995. Newsweeder: Learning to filter
netnews. In International Conference on Machine
Learning.

Xabier Lareo. 2023. Large language
models (llm). https://www.edps.
europa.eu/data-protection/
technology-monitoring/techsonar/
large-language-models-llm_en. Euro-
pean Data Protection Supervisor, TechSonar.

Moritz Laurer, Wouter van Atteveldt, Andreu Casas, and
Kasper Welbers. 2024. Building efficient universal
classifiers with natural language inference. Preprint,
arXiv:2312.17543.

Zihan Liu, Yan Xu, Tiezheng Yu, Wenliang Dai,
Ziwei Ji, Samuel Cahyawijaya, Andrea Madotto,
and Pascale Fung. 2020. Crossner: Evaluating
cross-domain named entity recognition. Preprint,
arXiv:2012.04373.

136

https://doi.org/10.18653/v1/2024.emnlp-main.660
https://doi.org/10.18653/v1/2024.emnlp-main.660
https://doi.org/10.18653/v1/2025.naacl-long.418
https://doi.org/10.18653/v1/2025.naacl-long.418
https://doi.org/10.18653/v1/2020.nlp4convai-1.5
https://doi.org/10.18653/v1/2020.nlp4convai-1.5
https://www.cnil.fr/en/ai-and-gdpr-cnil-publishes-new-recommendations-support-responsible-innovation
https://www.cnil.fr/en/ai-and-gdpr-cnil-publishes-new-recommendations-support-responsible-innovation
https://doi.org/10.18653/v1/2025.findings-naacl.47
https://doi.org/10.18653/v1/2025.findings-naacl.47
https://doi.org/10.18653/v1/2025.findings-naacl.47
https://doi.org/10.18653/v1/2025.findings-naacl.47
https://arxiv.org/abs/1805.10190
https://arxiv.org/abs/1805.10190
https://arxiv.org/abs/1805.10190
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2024.acl-demos.3
https://doi.org/10.18653/v1/2024.acl-demos.3
https://arxiv.org/abs/2204.08582
https://arxiv.org/abs/2204.08582
https://arxiv.org/abs/2204.08582
https://arxiv.org/abs/2305.14450
https://arxiv.org/abs/2305.14450
https://arxiv.org/abs/2305.14450
https://openreview.net/forum?id=sE7-XhLxHA
https://openreview.net/forum?id=sE7-XhLxHA
https://openreview.net/forum?id=sE7-XhLxHA
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://arxiv.org/abs/2310.06825
https://huggingface.co/knowledgator/gliclass-base-v1.0-lw
https://huggingface.co/knowledgator/gliclass-base-v1.0-lw
https://huggingface.co/knowledgator/gliclass-base-v1.0-lw
https://api.semanticscholar.org/CorpusID:1921714
https://api.semanticscholar.org/CorpusID:1921714
https://www.edps.europa.eu/data-protection/technology-monitoring/techsonar/large-language-models-llm_en
https://www.edps.europa.eu/data-protection/technology-monitoring/techsonar/large-language-models-llm_en
https://www.edps.europa.eu/data-protection/technology-monitoring/techsonar/large-language-models-llm_en
https://www.edps.europa.eu/data-protection/technology-monitoring/techsonar/large-language-models-llm_en
https://www.edps.europa.eu/data-protection/technology-monitoring/techsonar/large-language-models-llm_en
https://www.edps.europa.eu/data-protection/technology-monitoring/techsonar/large-language-models-llm_en
https://arxiv.org/abs/2312.17543
https://arxiv.org/abs/2312.17543
https://arxiv.org/abs/2012.04373
https://arxiv.org/abs/2012.04373

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning Word Vectors for Sentiment Analy-
sis. In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, pages 142–150, Portland,
Oregon, USA. Association for Computational Lin-
guistics.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The Stanford CoreNLP Natural Language
Processing Toolkit. In Proceedings of 52nd Annual
Meeting of the Association for Computational Lin-
guistics: System Demonstrations, pages 55–60, Bal-
timore, Maryland. Association for Computational
Linguistics.

NuMind. 2024. Nuextract: A framework for structured
data extraction. https://numind.ai/blog/nuextract-a-
foundation-model-for-structured-extraction.

Mary Ellen Okurowski. 1993. Information extraction
overview. In TIPSTER TEXT PROGRAM: PHASE
I: Proceedings of a Workshop held at Fredricksburg,
Virginia, September 19-23, 1993, pages 117–121,
Fredericksburg, Virginia, USA. Association for Com-
putational Linguistics.

OpenAI. 2024. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Presidio. 2024. Using gliner as an external pii model.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and
Christopher D. Manning. 2020. Stanza: A Python
Natural Language Processing Toolkit for Many Hu-
man Languages. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics: System Demonstrations, pages 101–108,
Online. Association for Computational Linguistics.

Maarten Van Segbroeck. 2024. Gliner models for pii
detection through fine-tuning on gretel-generated syn-
thetic documents.

Yashothara Shanmugarasa, Ming Ding, Mahawaga
Arachchige Pathum Chamikara, and Thierry Rako-
toarivelo. 2025. Sok: The privacy paradox of large
language models: Advancements, privacy risks, and
mitigation.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive Deep Models for
Semantic Compositionality Over a Sentiment Tree-
bank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 1631–1642, Seattle, Washington, USA. Asso-
ciation for Computational Linguistics.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,

Jude Fernandes, Jeremy Fu, Wenyin Fu, and 49 oth-
ers. 2023. Llama 2: Open foundation and fine-tuned
chat models. Preprint, arXiv:2307.09288.

Shuhe Wang, Xiaofei Sun, Xiaoya Li, Rongbin Ouyang,
Fei Wu, Tianwei Zhang, Jiwei Li, Guoyin Wang, and
Chen Guo. 2025. GPT-NER: Named entity recogni-
tion via large language models. In Findings of the
Association for Computational Linguistics: NAACL
2025, pages 4257–4275, Albuquerque, New Mexico.
Association for Computational Linguistics.

Ralph Weischedel, Sean Boisen, Daniel Bikel, Robert
Bobrow, Michael Crystal, William Ferguson, Allan
Wechsler, and The PLUM Research Group. 1996.
Progress in information extraction. In TIPSTER
TEXT PROGRAM PHASE II: Proceedings of a Work-
shop held at Vienna, Virginia, May 6-8, 1996, pages
127–138, Vienna, Virginia, USA. Association for
Computational Linguistics.

Yuhao Wu, Evin Jaff, Ke Yang, Ning Zhang, and
Umar Iqbal. 2025. An in-depth investigation of
data collection in llm app ecosystems. Preprint,
arXiv:2408.13247.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao,
Chengen Huang, Chenxu Lv, Chujie Zheng, Day-
iheng Liu, Fan Zhou, Fei Huang, Feng Hu, Hao
Ge, Haoran Wei, Huan Lin, Jialong Tang, and 41
others. 2025. Qwen3 technical report. Preprint,
arXiv:2505.09388.

Anthony Yazdani, Ihor Stepanov, and Douglas Teodoro.
2025. Gliner-biomed: A suite of efficient models for
open biomedical named entity recognition. Preprint,
arXiv:2504.00676.

Urchade Zaratiana, Nadi Tomeh, Pierre Holat, and
Thierry Charnois. 2024. GLiNER: Generalist model
for named entity recognition using bidirectional trans-
former. In Proceedings of the 2024 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies (Volume 1: Long Papers), pages 5364–5376,
Mexico City, Mexico. Association for Computational
Linguistics.

Dawen Zhang, Pamela Finckenberg-Broman, Thong
Hoang, Shidong Pan, Zhenchang Xing, Mark Staples,
and Xiwei Xu. 2024. Right to be forgotten in the era
of large language models: Implications, challenges,
and solutions. Preprint, arXiv:2307.03941.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2016.
Character-level convolutional networks for text clas-
sification. Preprint, arXiv:1509.01626.

Wenxuan Zhou, Sheng Zhang, Yu Gu, Muhao Chen, and
Hoifung Poon. 2024. UniversalNER: Targeted distil-
lation from large language models for open named
entity recognition. In The Twelfth International Con-
ference on Learning Representations.

137

https://aclanthology.org/P11-1015/
https://aclanthology.org/P11-1015/
https://doi.org/10.3115/v1/P14-5010
https://doi.org/10.3115/v1/P14-5010
https://doi.org/10.3115/1119149.1119164
https://doi.org/10.3115/1119149.1119164
https://arxiv.org/abs/2303.08774
https://microsoft.github.io/presidio/samples/python/gliner/
https://doi.org/10.18653/v1/2020.acl-demos.14
https://doi.org/10.18653/v1/2020.acl-demos.14
https://doi.org/10.18653/v1/2020.acl-demos.14
https://gretel.ai/blog/gliner-models-for-pii-detection
https://gretel.ai/blog/gliner-models-for-pii-detection
https://gretel.ai/blog/gliner-models-for-pii-detection
https://api.semanticscholar.org/CorpusID:279402631
https://api.semanticscholar.org/CorpusID:279402631
https://api.semanticscholar.org/CorpusID:279402631
https://aclanthology.org/D13-1170/
https://aclanthology.org/D13-1170/
https://aclanthology.org/D13-1170/
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://doi.org/10.18653/v1/2025.findings-naacl.239
https://doi.org/10.18653/v1/2025.findings-naacl.239
https://doi.org/10.3115/1119018.1119050
https://arxiv.org/abs/2408.13247
https://arxiv.org/abs/2408.13247
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2504.00676
https://arxiv.org/abs/2504.00676
https://doi.org/10.18653/v1/2024.naacl-long.300
https://doi.org/10.18653/v1/2024.naacl-long.300
https://doi.org/10.18653/v1/2024.naacl-long.300
https://arxiv.org/abs/2307.03941
https://arxiv.org/abs/2307.03941
https://arxiv.org/abs/2307.03941
https://arxiv.org/abs/1509.01626
https://arxiv.org/abs/1509.01626
https://openreview.net/forum?id=r65xfUb76p
https://openreview.net/forum?id=r65xfUb76p
https://openreview.net/forum?id=r65xfUb76p

A Architecture Details

Special Token Vocabulary Our architecture em-
ploys a set of learned special tokens, each serving
a specific semantic role:

• [P] (Prompt): Marks the beginning of task
specifications, signaling the model to interpret
subsequent tokens as task metadata

• [E] (Entity): Precedes each entity type in
NER tasks to create distinct embeddings for
entity categories

• [C] (Child/Component): Indicates attribute
fields in hierarchical structures and establishes
parent-child relationships

• [L] (Label): Denotes classification options,
with each label receiving a unique embedding
for scoring

• [SEP] (Separator): Delimits different input
segments to prevent information leakage be-
tween task specifications and content.

These tokens are randomly initialized and
learned during training, allowing the model to de-
velop task-specific representations.

Named Entity Recognition NER tasks follow
the input format:

[P] entities ([E] e1 [E] e2 ...
[E] en) [SEP] x1, x2, . . . , xN

During extraction, each [E] token generates an
embedding representing its entity type. The model
creates representations for all possible text spans
up to a maximum width, then computes matching
scores between span-entity pairs using:

score(si, ej) = sim(hsi ,hej) (1)

where hsi is the span representation, hej is the en-
tity type embedding, and sim(·, ·) is the dot product
with sigmoid activation.

For example, given [P] entities ([E]
person [E] location) and text "John
works in Paris", all span candidates (e.g., "John",
"works", "Paris", "works in") are scored against
the entity type embeddings (i.e., representations
of each [E] token). Spans with a predicted proba-
bility above 0.5 for any entity type are selected as
entities.

Hierarchical Structure Extraction Hierarchical
extraction uses the format:

[P] parent ([C] a1 [C] a2 ... [C]
am) [SEP] x1, x2, . . . , xN

The process operates in two stages. First, an
MLP processes the [P] token embedding to pre-
dict the number K of parent entity instances in the
text. This MLP performs 20-class classification
(for counts 0-19), trained using the ground-truth
instance counts during training. Then, the model
generates K distinct representations for each at-
tribute by conditioning the [C] token embeddings
on learned occurrence ID embeddings. Specifically,
for each instance k ∈ {1, ...,K}, the model com-
bines the base [C] embeddings with occurrence-
specific embeddings learned during training, pro-
ducing unique representations for each instance-
attribute pair. These K × m representations are
matched against text spans using the same scor-
ing mechanism as NER, ensuring each instance
maintains separate attribute values. Consider the
structured extraction task:

[P] product ([C] name [C] price)

Given input text: "iPhone costs $999. Galaxy is
$899." the model processes this in three steps:

1. Count Prediction: The MLP count predictor
processes the [P] token embedding and out-
puts K = 2, indicating two product instances
are present in the text.

2. Representation Generation: The count em-
bedding layer generates K sets of conditioned
representations for each attribute field. This
produces two distinct embeddings for [C]
name and two for [C] price, with each pair
corresponding to one product instance.

3. Span Extraction: Each conditioned repre-
sentation computes similarity scores with all
possible text spans as for NER. The model se-
lects the highest-scoring spans for each field
while maintaining instance coherence:

• Instance 1: {name: "iPhone", price:
"$999"}

• Instance 2: {name: "Galaxy", price:
"$899"}

This parallel processing enables efficient extrac-
tion of multiple structured entities while preserving
the semantic relationships between fields within
each instance.

138

Text Classification Classification tasks use the
format:

[P] task ([L] ℓ1 [L] ℓ2 ... [L]
ℓk) [SEP] x1, x2, . . . , xN

Each [L] token produces a label-specific em-
bedding that is refined through a classification head.
Specifically, for each label ℓi, the model computes:

logiti = MLP(hℓi) (2)

where hℓi is the contextualized embedding from
the [L] token for label ℓi, and MLP is a multi-
layer perceptron that projects these embeddings to
scalar logits representing label-text compatibility.
Single-label tasks apply softmax over all logits to
select the highest-probability label, while multi-
label scenarios use sigmoid activation on each logit
independently. Consider the text classification task:

[P] sentiment ([L] positive [L]
negative [L] neutral)

Given input text: "This movie is amazing!". The
model processes this in three steps:

1. Label Embedding Generation: Each [L]
token creates a distinct embedding for its cor-
responding label (positive, negative, neutral).

2. Classification Head: The label embeddings
are projected through an MLP to produce clas-
sification logits, which are then normalized
using softmax activation for single-label pre-
diction.

3. Label Selection: The model selects the
highest-scoring label, predicting "positive" for
the given input text.

For multi-label scenarios, sigmoid activation re-
places softmax, allowing multiple labels to be se-
lected simultaneously.

Task Composition Multiple tasks can be com-
posed for efficient multi-task inference using:

[Task1] ⊕ [SEP] ⊕ [Task2] ⊕ ...
⊕ [SEP] ⊕ [x1, x2, . . . , xN]

This enables simultaneous execution of multi-
ple extraction tasks in a single forward pass. For
instance, combining NER and sentiment classifica-
tion on "Steve Jobs loved the iPhone" extracts enti-
ties {person: ["Steve Jobs"], product: ["iPhone"]}
and sentiment "positive" in one computation, im-
proving efficiency over separate model runs.

B Experimental setup

Baselines We evaluate our approach against
several strong baselines. As an upper bound,
we use GPT-4o across all tasks. For classifica-
tion tasks, we compare against two state-of-the-
art open-source models with comparable parame-
ter counts: (1) GLiClass (knowledgator/gliclass-
base-v1.0) (Knowledgator, 2025), a classification-
specific adaptation of GLiNER, and (2) DeBERTa-
v3-base-zeroshot (MoritzLaurer/deberta-v3-large-
zeroshot-v2.0) (Laurer et al., 2024), the de facto
standard for zero-shot classification on Hugging
Face. For NER tasks, we use GLiNER-M perfor-
mance as reported in Zaratiana et al. (2024), which
represents the current state-of-the-art for generalist
entity recognition.

Hyperparameters We train our model for 5
epochs using the AdamW optimizer with differen-
tial learning rates: 2×10−5 for task-specific layers
and 1× 10−5 for the encoder backbone. This dif-
ferential approach allows fine-tuning of pretrained
representations while enabling faster adaptation of
task-specific components. We apply weight decay
of 0.01 for regularization and gradient clipping at
1.0 to ensure training stability. The learning rate
schedule includes 1,000 warmup steps with linear
scaling. Table 5 summarizes the training configura-
tion.

Hyperparameter Value

Epochs 5
Optimizer AdamW
Learning rate (backbone) 1× 10−5

Learning rate (task layers) 2× 10−5

Weight decay 0.01
Warmup steps 1,000
Gradient clipping 1.0

Table 5: Training hyperparameters used across all ex-
periments.

B.1 Training Data
Our training dataset comprises 254,334 examples
combining real-world texts and synthetic data. Ta-
ble 6 shows the distribution across domains.

Real-world data (135,698 examples) was col-
lected from news articles, Wikipedia, legal docu-
ments, ArXiv papers, and PubMed abstracts. All
texts were annotated using GPT-4o for entity recog-
nition, hierarchical extraction, and classification

139

Domain Count

Real-world Data
Law 19,798
PubMed 16,400
Wikipedia 17,909
ArXiv 7,135
News 74,456

Synthetic Data
Mixed Domains 118,636

Total 254,334

Table 6: Training data distribution across domains.

tasks. Synthetic data (118,636 examples) was gen-
erated using GPT-4o to cover practical use cases
including emails, text messages, resumes, social
media posts, e-commerce orders, banking records,
and sports commentary. Each example includes
annotations for all applicable task types.

140

