
Proceedings of the 6th Workshop on Computational Approaches to Discourse, Context and Document-Level Inferences (CODI 2025), pages 54–63
November 9, 2025 ©2025 Association for Computational Linguistics

Stance Detection on Nigerian 2023 Election Tweets Using BERT: A
Low-Resource Transformer-Based Approach

Mahmoud Said Ahmad1 and Habeebah A. Kakudi2∗
1Federal University of Technology Babura, Jigawa, Nigeria

2Bayero University Kano, Kano, Nigeria
msahmad.cs@futb.edu.ng, hakakudi.cs@buk.edu.ng

∗Corresponding author

Abstract

This study investigates stance detection on
Nigerian 2023 election tweets by comparing
transformer-based and classical machine learn-
ing models. A balanced dataset of 2,100 anno-
tated tweets was constructed, and BERT-base-
uncased was fine-tuned to perform stance clas-
sification into three categories: Favor, Neutral,
and Against. The model achieved strong re-
sults, with 98.1% accuracy on a stratified 80/20
split and an F1-score of 96.9% under 5-fold
cross-validation. To contextualize these out-
comes, baseline models including Naïve Bayes,
Logistic Regression, Random Forest, and Sup-
port Vector Machines (SVM) were also eval-
uated. While several baselines demonstrated
competitive performance (with SVM reaching
an F1-score of 97.6%), BERT proved more ro-
bust in handling noisy, sarcastic, and ambigu-
ous text, making it better suited for real-world
applications. The findings highlight both the
competitiveness of classical methods on cu-
rated datasets and the scalability of transformer-
based models in low-resource African NLP con-
texts.

1 Introduction

Democratic governance depends on citizen partici-
pation and empowerment. These elements play a
vital role in addressing long-standing social, eco-
nomic, and political imbalances (Bandyopadhyay
and Green, 2012).

The rapid growth of social media has trans-
formed how individuals express and disseminate
political opinions. Platforms such as Twitter and
Facebook provide quick and affordable means
of gathering real-time perspectives from diverse
groups (Ceron et al., 2014; Díaz et al., 2016). These
platforms complement traditional data collection
methods and are now widely applied in political
prediction and analysis (Liu et al., 2021).

A central application of this trend is stance de-
tection, which involves determining whether a user

supports, opposes, or remains neutral toward a spe-
cific topic (Küçük and Can, 2020). Unlike sen-
timent analysis, which measures emotional tone,
stance detection explicitly links opinions to their
targets. This distinction makes it especially valu-
able for monitoring misinformation, examining po-
larization, and analyzing the dynamics of political
discourse (Hardalov et al., 2022; Zhao and Yang,
2020; Liu et al., 2024).

In highly polarized contexts such as Nigeria’s
2023 presidential election, stance detection offers
critical insights into public opinion toward candi-
dates and the broader nature of online debates.

Despite significant progress in natural language
processing (NLP), African electoral contexts re-
main underrepresented in stance detection research.
Previous studies highlight the need for localized
datasets and tailored approaches to capture elec-
toral behaviors in decentralized political systems
(Khan et al., 2024).

However, notable challenges persist. The ab-
sence of annotated datasets, the prevalence of code-
switching and informal discourse on social me-
dia, and limited computational resources restrict
progress in this area. Moreover, large language
models such as Mistral require substantial GPU
infrastructure and are trained on English data that
arguably under-represent African dialects.

While, at the moment, we can only speculate as
to the reason, this paper provides evidence that at
least one LLM performs very poorly in zero-shot as
well as few-shot evaluations, making them unsuit-
able for low-resource environments. Nevertheless,
LLMs do have a constructive role to play through
supervised fine-tuning.

This study presents a CPU-efficient stance
detection model for the 2023 Nigerian presi-
dential election. A balanced dataset of 2,100
tweets was constructed, and the resource-efficient
BERT-base-uncased model was fine-tuned to clas-
sify stances into Favor, Neutral, and Against. The
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specific contributions of this work are as follows:

• Construction of a balanced dataset of 2,100
annotated tweets.

• Demonstration of effective stance detection
using BERT on CPU-only hardware.

• Empirical evidence showing 98.1% accuracy
with F1-scores above 0.98 across stance cate-
gories.

These contributions demonstrate that, with
careful dataset curation and model selection,
transformer-based models as simple as BERT
can achieve high performance in resource-limited
African NLP contexts. This research expands the
reach of computational political analysis in under-
represented regions. In the following section, re-
lated work on stance detection and transformer-
based approaches is reviewed.

1.1 Problem Statement
Despite notable progress in natural language pro-
cessing (NLP), stance detection remains an under-
explored area in the context of African elections,
particularly in Nigeria. The 2023 Nigerian pres-
idential election generated extensive online dis-
course on platforms such as Twitter, often char-
acterized by colloquial language, slang, and fre-
quent code-switching. However, no locally anno-
tated datasets or computationally optimized models
currently exist to address this setting. Moreover,
state-of-the-art large language models, such as Mis-
tral 7B, require substantial GPU resources and, as
we will show in Section 4.4, perform poorly in
zero-shot and few-shot settings, rendering them
impractical for low-resource environments.

This gap highlights the urgent need for an effi-
cient and reliable stance detection system that can
be trained using widely available CPU hardware
while still achieving high accuracy in classifying
political stances as Favor, Neutral, or Against.

2 Related Work

The stance detection task has gained growing inter-
est in natural language processing (NLP), with the
heightened role of social media in political discus-
sion. Stance detection, unlike sentiment analysis
that involves the assessment of emotional tone, in-
volves determining if a speaker or author is support-
ive of, against, or neutral about a particular topic
(Mohammad et al., 2016). This makes it highly

applicable to electoral research and political align-
ment studies (Al-Dayel and Magdy, 2021).

2.1 Traditional Methods
Early stance detection used classifiers like Support
Vector Machines, logistic regression, and Naive
Bayes (Mohammad et al., 2016). These relied on
hand-crafted features such as n-grams and senti-
ment lexicons. While they worked well in some
cases, they often struggled with sarcasm, slang, and
the informal language commonly found on social
media.

2.2 Transformer-based Architectures
The introduction of transformers, especially BERT
(Devlin et al., 2018). improved stance detection by
capturing the full context of sentences through self-
attention. BERT has outperformed CNN, LSTM,
and ensemble systems in benchmarks like SemEval-
2016 and COVID-19 stance detection (Sirrianni
and Zhang, 2021; Davydova and Dutta, 2024). It
shows a strong ability to recognize implicit and
subtle opinions.

2.3 New Large Language Models
Recent models like ChatGPT, LLaMA, and Mis-
tral advance NLP, with frameworks such as COLA
Lan et al. (2024) supporting multi-agent stance
recognition. However, these systems need a lot
of computational power, which limits their use in
low-resource environments.

2.4 Zero-shot and Transfer Learning
Approaches

Zero-shot and few-shot methods purport to re-
duce the need for large labeled datasets. Exam-
ples include Multi-Perspective Transferable Fea-
ture Fusion (Zhao et al., 2024, MTFF) and Cross-
Target with Text and Network embeddings (Khia-
bani et al., 2024, CT-TN) which use both textual
and network signals for stance detection across tar-
gets. While these methods are generally considered
to be effective, they require complex prompts and
careful tuning, making them more challenging to
use in limited settings.

2.5 Model Selection: BERT
We chose BERT-base-uncased as our main model.
We made this choice not because we believe it is the
best overall option, but due to its practical benefits:

• It has shown strong previous results in stance
detection studies (Sirrianni and Zhang, 2021);
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• It works well in CPU-based environments.

• It performs reliably on medium-scale, bal-
anced datasets.

• Hugging Face’s Trainer API provided a simple
interface to batch train, validate, and log.

2.6 African NLP and Low-Resource Contexts

Beyond general stance detection, recent African
NLP efforts such as Masakhane (Orife et al.,
2020), MasakhaNER 2.0 (Adelani et al., 2022),
and AfriSenti (Abdulmumin et al., 2023) have em-
phasized the importance of building datasets and
benchmarks tailored to African languages. These
initiatives highlight the challenges of low-resource
settings, code-switching, and domain-specific bi-
ases, issues that are also evident in our Nigerian
election dataset. Our work extends this line of
research by focusing on stance detection in a politi-
cally charged African context.

This choice supports the need for resource-
efficient NLP in African contexts. It shows how
careful dataset preparation and thoughtful model
selection can enable effective stance detection with-
out the need for expensive infrastructure.

3 Dataset and Preprocessing

The study aims at stance analysis in Twitter posts
about Nigeria’s 2023 presidential election, par-
ticularly tweets mentioning four principal candi-
dates: Atiku Abubakar, Bola Ahmed Tinubu, Peter
Obi, and Rabiu Kwankwaso. The methodological
pipeline involved data collection, noise removal,
dataset enlargement, model selection, and evalua-
tion processes.

The resultant corpus contained 2,100 prepared
tweets, balanced across three stance labels favor,
neutral, and against. Tweets were scraped through
focused hashtag searches and filtered using hand-
engineered rules to remove off-topic or ambiguous
posts.

3.1 Dataset Collection and Balancing Strategy

We collected tweets with candidate-specific hash-
tags such as #atiku4president, #tinubu2023, and
#obidatti2023. The initial distribution revealed se-
vere class imbalances, particularly in the under-
representation of some stance categories for other
candidates. Table 1 shows the skewed nature of the
raw dataset.

Candidate Total Tweets Favor Neutral Against

Atiku 47,508 175 175 80
Tinubu 23,456 175 175 80
Peter Obi 59,212 199 — —
Kwankwaso 8,702 171 — —

Table 1: Initial distribution of scraped tweets showing
class imbalance

Candidate Favor Neutral Against

Atiku 175 175 175
Tinubu 175 175 175
Peter Obi 175 175 175
Kwankwaso 175 175 175

Table 2: Final balanced dataset following augmentation
(Total: 2,100 tweets)

To address these imbalances and ensure that the
dataset could be reliably used for training a super-
vised classifier, a set of balancing techniques was
applied. These included heuristic labeling, rule-
based annotation, and multiple data augmentation
methods.

The final training dataset was uniformly struc-
tured, with each candidate having an equal number
of tweets in each stance category, 175 per class.
This resulted in a balanced dataset of 2,100 tweets
in total. The complete breakdown is presented in
Table 2.

For a clearer overview of this transformation,
a pie chart (Figure 1) was included to illustrate
the final stance distribution. Each class—Favor,
Neutral, and Against—is represented equally, with
700 tweets each.

Figure 1: Final distribution of stance categories after
dataset balancing
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To achieve the target level of 700 tweets per can-
didate (175 per stance category), a sequence of en-
richment and refinement processes was employed
to expand the dataset:

• Rule-Based Labeling: Sentiment words,
hashtags, and user mentions were used as
heuristics to assign initial stance labels.

• Keyword-Based Weak Supervision: Tweets
with overt expressions of support or disap-
proval were labeled "favor" or "against," while
posts lacking explicit evaluative content were
placed in the "neutral" category.

• Data Augmentation: A set of augmentation
techniques was applied to increase the linguis-
tic richness and balance of the dataset.

a. Expansion of the Dataset by Augmentation
To counteract low samples in some classes, most
prominently "favor" and "against," the following
augmentation methods were employed:

• Synonym Substitution: Synonyms were
incorporated in tweets using WordNet and
NLTK libraries to create natural variants.

• Back-Translation: Tweets were automati-
cally translated into another language and
back into English to generate paraphrased ver-
sions.

• Template-Based Generation: Stance-bias
sentence templates were completed with can-
didate names and contextual phrases to in-
crease diversity.

This multi-step approach ensured that the final
dataset was not only balanced but also linguisti-
cally rich and representative of actual social media
language.

3.2 Data Cleaning and Preprocessing
For the sake of data quality and interpretability of
models, each tweet was preprocessed with uniform
text preprocessing that consisted of:

• Normalization of all characters to lowercase

• Erasure of URLs, mentions, hashtags, punctu-
ation, and redundant spaces

• Lexical analysis to identify richness and detect
anomalies

It aided in holding input consistent and removing
noise, which is particularly required in social media
settings.

3.3 Tokenization and Data Formatting

Tweets were tokenized with the
bert-base-uncased tokenizer, padding and
truncating to a fixed maximum token length of
128. The stance labels were numerically encoded
using LabelEncoder. The dataset was loaded into
Hugging Face’s Dataset format. A balanced split
of the dataset into training and test sets in the ratio
80-20 was used to preserve even class distribution
in both sets.

3.4 Model Configuration and Training

The stance classifier was built by fine-tuning the
BERTForSequenceClassification model. Train-
ing was done using Hugging Face’s Trainer class,
with parameters to configuration tweaked for CPU-
based systems:

TrainingArguments(
output_dir="./bert_stance_output",
num_train_epochs=2,
per_device_train_batch_size=16,
per_device_eval_batch_size=16,
logging_dir="./bert_logs",
logging_steps=10,
save_steps=100,
logging_strategy="steps",
load_best_model_at_end=False

)

This setup allowed the model to be effectively
trained without requiring access to GPUs.

3.5 Evaluation Framework

The model performance was compared to com-
monly used classification metrics:

• Accuracy – proportion of correct predictions

• Precision – precision among positive predic-
tions

• Recall – proportion of actual positives cor-
rectly identified

• F1-Score – harmonic mean of precision and
recall
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Evaluation Metric Result

Accuracy 98.10%
Precision 98.10%
Recall 98.10%
F1-Score 98.09%
Evaluation Loss 0.1433

3.6 Error Analysis of Predictions

The below detailed confusion matrix shows how
accurately each stance class was predicted.

• Against: 139 correctly predicted, 1 misla-
beled as Neutral.

• Neutral: 139 correct, 1 mislabeled as Favor.

• Favor: 134 correctly predicted; 4 were pre-
dicted as Against, 2 as Neutral.

While overall performance was good, the major-
ity of misclassifications were between proximate
categories (e.g., Favor and Neutral). That likely
stems from the vagueness and informality of social
media use. Nevertheless, the strength of the model
in discriminating among fine-grained categories is
very high.

Identified
Challenge

Applied Resolution

Failure of
Mistral 7B to
make stance
predictions

Replaced by BERT for local fine-
tuning on labeled data

Imbalance
in Favor and
Against exam-
ples

Treated using multiple augmenta-
tion techniques (e.g., templates, syn-
onyms)

GPU limi-
tations on
Google Colab

Fine-tuned on CPU with optimized
parameters for learning in small
batches

Noisy or
inconsistent
labeling in
the primary
dataset

Cleaned using rule-based heuristics
and manual quality checks

Risk of overfit-
ting due to re-
liance on a sin-
gle split

Addressed by performing 5-fold
cross-validation to confirm robust-
ness

Table 3: Overview of experimental difficulties, correc-
tive strategies, and validation measures

3.7 Model Overview

This study employed the bert-base-uncased
model configuration within the Hugging Face
Transformers library (Wolf et al., 2019). BERT’s

architecture includes 12 transformer encoder lay-
ers with multi-head self-attention to encode rich
contextualized information from text input.

The modeling pipeline had the following neces-
sary steps:

• Tokenization: Raw text of tweets was to-
kenized into subword units using a BERT-
compatible tokenizer.

• Embedding: Tokens were converted into nu-
merical vectors that represent lexical and po-
sitional context.

• BERT Encoder: A series of transformer
layers was applied to the embeddings to
learn contextualized relationships within each
tweet.

• Dropout: A dropout layer with a rate of 0.1
was added to lower the danger of overfitting.

• Classification Layer: A Softmax over a linear
output layer mapped BERT outputs to proba-
bilities across the three classes.

Model training was performed using the Hug-
ging Face-offered Trainer utility. The most signif-
icant training parameters were:

• Epochs: 2

• Batch size: 16

• Learning rate: 5e-5

• Optimizer: AdamW

Training was done using the cross-entropy loss
function, which is widely used for multi-class clas-
sification problems. Despite utilizing only CPU
resources to the fullest, high performance was
achieved due to proper implementation, efficiency,
and dataset readiness.

Input Tokenizer Embedding BERT

Dropout

Classifier

Stance

Figure 2: Compact Diagram of the Fine-Tuned BERT
Pipeline
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3.8 Training and Evaluation with
Cross-Validation

For testing generalization, the data was split into
training and test sets through a balanced 80/20
split. This meant that the proportionate distribu-
tion of the three stance labels—Favor, Neutral, and
Against—was preserved in both partitions.

Training employed the Hugging Face Trainer
framework, with the ability for model fine-tuning,
evaluation, and logging. Training was executed
only twice across two epochs, at a batch size of
16 with the AdamW optimizer at a learning rate of
5e-5. The loss function employed was the categori-
cal cross-entropy one, which suited addressing the
three discrete stances.

Intermediate evaluation was carried out after
each epoch. Logging and checkpointing routines
were activated to help ensure training reproducibil-
ity and allow progress to be picked up in the event
of need.

In addition to the 80/20 balanced split, we also
used a 5-fold balanced cross-validation to further
test the model’s strength. In this setup, we divided
the dataset into five folds, each with equal class
representation. Each fold acted as a test set once,
while the other four were used for training. We aver-
aged the model’s performance across the folds and
reported the mean accuracy, precision, recall, and
F1-scores along with standard deviations. This dual
evaluation method helped us present both detailed
single-split outcomes and broader cross-validation
results.

3.11 Methodology Summary

For clarity, we summarize the methodological
pipeline as follows:

Dataset
The dataset consisted of 2,100 tweets related to
Nigeria’s 2023 presidential election. Tweets were
heuristically labeled into three stance categories:
Favor, Neutral, and Against. Data augmentation
techniques such as synonym replacement, back-
translation, and sentence templating were used to
improve balance and diversity.

Dataset Split
We used two evaluation strategies:

1. A single 80/20 balanced split, chosen for re-
producibility and comparability with prior
studies.

2. Balanced 5-fold cross-validation, where the
dataset was divided into five folds with equal
class representation. Each fold was used once
as the test set while the remaining four served
as training data.

This dual setup allowed us to report both detailed
single-split results and robust average performance
across folds.

Model and Training Setup
We fine-tuned BERT-base-uncased using Hug-
ging Face’s Trainer API. Training was run on
CPU-only hardware to reflect resource-limited con-
ditions. The key parameters were: learning rate
2× 10−5, batch size 16, and 2 epochs.

Evaluation Metrics
Model performance was evaluated using accuracy,
precision, recall, and F1 score (weighted across
classes). Confusion matrices were generated for
error analysis. For cross-validation, mean and stan-
dard deviation were reported across the five folds.

4 Results

4.1 Baseline Models

To provide context for BERT’s performance, we
evaluated several classical machine learning base-
lines using TF–IDF features: Naïve Bayes, Logistic
Regression, Random Forest, and Support Vector
Machine (SVM). Table 4 summarizes their 5-fold
cross-validation performance.

Model Accuracy F1-score

Naïve Bayes (5-fold CV) 94.7% (±0.7) 0.947
Logistic Regression (5-fold CV) 96.6% (±0.7) 0.966
Random Forest (5-fold CV) 97.0% (±1.0) 0.970
SVM (5-fold CV) 97.6% (±0.6) 0.976

BERT (5-fold CV) 96.9% (±0.8) 0.969

Table 4: Comparison of classical ML baselines and
BERT on stance detection using 5-fold cross-validation.

The classical baselines performed strongly, with
Random Forest and SVM achieving F1-scores
above 97%. BERT’s performance (96.9% F1) was
comparable, but its main advantage lies in robust-
ness to noise, sarcasm, and domain shift, making
it more reliable for real-world deployment beyond
the controlled dataset. These results highlight that
while classical models remain competitive on bal-
anced datasets, pretrained transformers provide
scalability and adaptability.
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4.2 Performance on Single Split
On the balanced 80/20 split, our BERT-base-
uncased model achieved an accuracy of 98.1% with
weighted F1-scores above 0.98 across all stance cat-
egories. The confusion matrix (Figure 3) showed
that most misclassifications occurred in tweets with
ambiguous or sarcastic language. Table 5 reports
the detailed classification metrics.

Figure 3: Confusion matrix on the 80/20 stratified split.

Class Precision Recall F1-score

Against 0.97 0.99 0.98
Neutral 0.99 0.98 0.98
Support 0.99 0.97 0.98

Weighted Avg. 0.98 0.98 0.98

Table 5: Classification metrics on the 80/20 stratified
split.

4.3 Cross-Validation Results
To further validate robustness, we performed 5-fold
stratified cross-validation on the balanced dataset of
2,100 tweets. The model achieved a mean accuracy
of 96.9% (±0.8), precision of 96.9% (±0.8), recall
of 96.9% (±0.8), and F1-score of 96.9% (±0.8), as
shown in Table 6.

Metric Mean Std Dev

Accuracy 96.9% ±0.8
Precision 96.9% ±0.8
Recall 96.9% ±0.8
F1 Score 96.9% ±0.8

Table 6: 5-fold cross-validation performance of BERT
stance classifier.

The slight difference between the single-split re-
sult (98.1%) and the cross-validation mean (96.9%)
highlights the sensitivity of performance to dataset
partitioning. The single split demonstrates the
model’s potential under a particular train–test sce-
nario, while the cross-validation average provides a

more reliable estimate of real-world generalization
across multiple data splits.

Taken together, the single-split and cross-
validation experiments confirm that supervised fine-
tuning of BERT provides consistent and robust per-
formance across different partitions of the dataset.
However, recent advances in large language mod-
els (LLMs) have made it possible to attempt stance
detection without fine-tuning, through prompting
alone. To investigate this alternative approach, we
conducted few-shot prompting experiments, as de-
scribed in the next subsection.

4.4 Few-Shot Prompting Experiments

To explore whether large language models can
perform stance detection without supervised fine-
tuning, we conducted few-shot prompting experi-
ments using the Flan-T5-base model. The model
was evaluated in 0-shot, 5-shot, 10-shot, 20-shot,
and 60-shot settings. In each case, a small set of
labeled examples was provided in the prompt as
demonstrations before classifying unseen tweets.
Table 7 summarizes the results.

Setup Accuracy Macro F1

0-shot 54% 0.42
5-shot 52% 0.41
10-shot 52% 0.41
20-shot 38% 0.18
60-shot 38% 0.18

Table 7: Few-shot prompting performance of Flan-T5
on stance detection.

The results indicate that few-shot prompting
did not perform in the same league as supervised
methods. The best performance was achieved in
the 0-shot setting, with an accuracy of 54% and
macro F1 of 0.42. Adding more examples (5-shot
and 10-shot) yielded no improvement, while larger
prompts (20-shot and 60-shot) performed signifi-
cantly worse, likely due to input truncation from
the model’s limited context window.

An initial effort at zero-shot stance classification
using Mistral 7B Instruct, another large language
model, was confronted with its own drawbacks:

• Poor prediction scores: All the evaluation
metrics (precision, recall, and F1-score) had a
value of zero for stance classes.

• Total misclassification: The model made no
correct predictions on over 279,000 tweets.

60



• Bias against "favor" class: The model made
no outputs tagged as "favor," likely due to
biased prompt encoding or internal represen-
tation issues.

• Overcomputing demands: GPU memory
limitations in freely available platforms like
Google Colab rendered training impossible.

• Stable operation: Inference and loading cy-
cles that were slow resulted in frequent fail-
ures and crashing of the sessions.

Furthermore, across all prompting conditions,
the Support class was never predicted, highlighting
class imbalance issues. These findings suggest that
while instruction-tuned LLMs can perform stance
detection without fine-tuning, their performance is
inconsistent and substantially weaker than super-
vised approaches like BERT. This demonstrates the
limitations of relying solely on prompting-based
methods for nuanced political stance classification.

4.5 Error Analysis

Despite overall strong results, errors were observed
in tweets that used indirect references, irony, or
heavy code-switching between English and local
languages. Such cases remain challenging for trans-
former models and indicate areas for future dataset
expansion and multilingual model fine-tuning.

To illustrate these challenges more concretely,
Table 8 presents several example tweets where the
model made errors.

As shown, errors often arose from sarcasm, com-
parative statements, or mixed sentiments, which
remain difficult even for transformer-based models.
These examples highlight the importance of ex-
panding datasets with more nuanced cases and con-
sidering multilingual or context-aware approaches
in future work, We next interpret these results in
detail in the following discussion section.

5 Discussion

The results show that fine-tuning a transformer
model like BERT on a balanced and well-curated
dataset can achieve strong classification perfor-
mance in politically sensitive contexts. The model
reached 98.1% accuracy on an 80/20 split and main-
tained stable results under 5-fold cross-validation
(mean accuracy and F1-score of 96.9%). The small
gap between the two estimates suggests consis-
tent performance across dataset splits, with cross-

Tweet
(anonymized)

True La-
bel

Predicted Comment

“So after all this,
Obi still thinks he
can win? Nigeri-
ans know better.”

Against Neutral Sarcasm
confused
the model.

“Tinubu has his
flaws but at least
he has experi-
ence.”

Favor Neutral Subtle
support
phrased
cau-
tiously.

“#Atiku2023 we
deserve better
leaders!”

Against Favor Hashtag
misled
model
despite
negative
wording.

“Kwankwaso
is not bad, but
Obi remains my
choice.”

Neutral Favor Mixed
stance
with com-
parative
phrasing.

“I don’t care who
wins, same story
every time.”

Neutral Against Cynicism
mistaken
for oppo-
sition.

Table 8: Examples of challenging tweets where the
model made errors. Tweets have been anonymized and
paraphrased for clarity.

validation offering a more reliable measure of true
generalization.

To contextualize these findings, we compared
BERT with classical baselines. Interestingly, SVM
performed competitively (F1 score of 97.6% under
cross-validation), nearly matching BERT. This in-
dicates that the dataset is relatively learnable for
simpler models due to its balanced distribution and
clear stance signals. However, BERT remains more
scalable and robust, particularly in handling nu-
anced expressions, sarcasm, and noisy text com-
mon in political discourse.

Mistral 7B, while theoretically stronger, under-
performed in practice. It struggled with zero-
shot predictions and faced hardware limitations,
including memory overflows in free-tier environ-
ments. By contrast, BERT-base-uncased proved
efficient, resource-friendly, and easy to implement
with widely available tools like Hugging Face’s
Trainer.

Data preparation was a major challenge, as the
original stance labels were skewed toward nega-
tive tweets, with fewer neutral or supportive exam-
ples. To mitigate this, we applied data augmen-
tation techniques such as synonym substitution,
template rewriting, and back-translation. These
methods helped balance the dataset and improved
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generalization.
Error analysis revealed that most misclassifica-

tions occurred between Neutral and Favor classes,
reflecting the implicit nature of stance in political
text. These errors were relatively minor and had lit-
tle impact on overall accuracy. Preprocessing also
played a key role: text normalization, removal of
irrelevant tokens (e.g., links, mentions), and basic
linguistic filtering improved input quality and en-
sured that the model learned from the most relevant
features.

Despite strong results, limitations remain. The
dataset includes only English tweets, while much
Nigerian political discourse involves multiple lan-
guages and frequent code-switching. Moreover,
real-world distributions are more skewed and un-
stable than the curated dataset used here, which
may limit generalizability.

Overall, this study demonstrates that high-
performance stance detection is achievable with-
out large-scale hardware, provided the dataset is
carefully prepared and models are fine-tuned. The
comparison of classical baselines with transformer
models highlights the complementary value of both
approaches. Future work will extend this effort to
code-switched and multilingual stance detection in
Nigerian political discourse, building on African
NLP initiatives such as Masakhane, MasakhaNER,
and AfriSenti.

6 Conclusion

This study examined stance detection on Nige-
rian election tweets using BERT and classical ma-
chine learning baselines. The results show that
fine-tuning BERT on a balanced and augmented
dataset yields high accuracy, achieving 98.1% on a
stratified 80/20 split and 96.9% F1 on 5-fold cross-
validation. Classical baselines, including Logistic
Regression, Random Forest, and SVM, also per-
formed strongly, with SVM achieving 97.6% F1.
These findings suggest that while the dataset is
learnable with simpler models, transformers pro-
vide robustness to noisy and nuanced political lan-
guage, offering better generalization potential.

Error analysis revealed that most misclassifica-
tions occurred between Neutral and Support, often
due to sarcasm, subtlety, or code-switching. Al-
though BERT proved efficient and effective, lim-
itations remain: the dataset only covered English
tweets, and political discourse in Nigeria frequently
involves multiple languages and code-switching.

Future work will explore multilingual stance detec-
tion and context-aware transformers, building on
recent African NLP initiatives such as Masakhane,
MasakhaNER, and AfriSenti.

Overall, this research confirms that high-
performance stance detection is possible without
large-scale hardware, provided that data prepara-
tion is rigorous. Combining classical baselines
with transformer models provides a comprehensive
evaluation and demonstrates the potential of mod-
ern NLP approaches for political text classification
in low-resource African settings.

6.1 Limitations and Future Work

Although this study demonstrates the feasibility
of stance detection in a low-resource African elec-
toral context, several limitations remain. First, the
dataset consists of 2,100 tweets, which, while bal-
anced, is relatively small. The reliance on heuristic
labeling and data augmentation may also introduce
noise, and further validation with human-annotated
datasets would strengthen reliability.

Our experiments were restricted to English-
language tweets and a CPU-only training setup.
This excludes the widespread use of code-
switching and indigenous languages in Nigerian
political discourse, which may reduce real-world
applicability.

While BERT-base-uncased performed consis-
tently under cross-validation, the study did not com-
pare fine-tuned large language models (LLMs) due
to hardware constraints. Future research should ex-
plore multilingual transformer models, lightweight
LLM adaptations (e.g., quantization, distillation),
and larger annotated datasets to better capture the
complexity of political conversations in Nigeria
and other underrepresented regions.
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