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Abstract
The ability to track entities is fundamental
for language understanding, yet the internal
mechanisms governing this capability in Small
Language Models (SLMs) are poorly under-
stood. Previous studies often rely on indirect
probing or complex interpretability methods,
leaving a gap for lightweight diagnostics that
connect model behavior to performance. To
bridge this gap, we introduce a framework to
analyze entity tracking by measuring the atten-
tion flow between entity and non-entity tokens
within SLMs. We apply this to analyze models
both before and after Parameter-Efficient Fine-
Tuning (PEFT). Our analysis reveals two key
findings. First, SLMs’ attentional strategies
vary significantly with text type, but entities
consistently receive a high degree of focus. Sec-
ond, we show that PEFT – specifically QLoRA
– dramatically improves classification perfor-
mance on entity-centric tasks by increasing the
model’s attentional focus on entity-related to-
kens. Our work provides direct evidence for
how PEFT can refine a model’s internal mech-
anisms and establishes attention analysis as a
valuable, lightweight diagnostic tool for inter-
preting and improving SLMs1.

1 Introduction

A fundamental aspect of natural language under-
standing is the ability to track entities as a dis-
course unfolds (Grosz et al., 1995). This ability is
a prerequisite for maintaining coherence, perform-
ing complex reasoning, and succeeding in a wide
array of downstream natural language processing
(NLP) tasks. For language models to generate co-
herent text or answer questions accurately, they
must implicitly recognize entities and update their
states based on new information (Grosz and Sidner,
1986).

*This work was conducted while Sungho Jeon was at Hei-
delberg Institute of Theoretical Studies.

1Our code is available at https://github.com/
sdeva14/codi25_entity_attn_tracking_slm

Despite the remarkable capabilities demon-
strated by modern Large and Small Language Mod-
els (LLMs and SLMs) (Brown et al., 2020), the
internal mechanisms by which these models man-
age and track entities remain largely unexplained
(Li et al., 2024), especially in SLMs, which are of-
ten deployed for efficiency and on-device AI. These
models are often treated as “black boxes”. While
SLMs may replicate human-like output behavior,
it is not clear whether they rely on linguistically
grounded cues—such as noun phrases—or whether
their performance stems from spurious correlations
learned during pretraining.

Efforts to interpret model behavior typically fall
into one of three categories: (i) evaluating input-
output behaviors on benchmark tasks (Schuster and
Linzen, 2022; Kim and Schuster, 2023), (ii) prob-
ing hidden state representations to see if they en-
code entity information (Loáiciga et al., 2022), or
(iii) modifying architectures to better handle dis-
course entities (Fagnou et al., 2024). While these
approaches provide valuable insights, they often
leave a gap. They either do not directly inspect
the internal mechanisms of standard architectures
or they require complex, computationally inten-
sive analysis. A direct, lightweight method for
analyzing how the native attention mechanism fa-
cilitates entity tracking, particularly in the widely
used Transformer architecture, is less explored.

This paper addresses this gap by proposing
a novel framework to investigate entity tracking
through the lens of attention scores. We treat atten-
tion as a direct, interpretable signal of the model’s
focus during processing (Section 2.2). Our cen-
tral hypothesis is that the allocation of attention
to entity tokens is a direct correlate of a model’s
entity tracking capability and that performance im-
provements from fine-tuning can be explained by
specific, measurable shifts in these attention pat-
terns. By systematically analyzing the attention
scores between entity tokens and their surrounding
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context, we aim to build a mechanistic bridge be-
tween an observable performance change and an
internal model behavior.

This research makes the following contributions:

• A systematic analysis of entity-centric atten-
tion patterns in several modern SLMs, reveal-
ing how attentional strategies adapt to differ-
ent text types and qualities.

• A key finding that Parameter-Efficient Fine-
Tuning (PEFT) with QLoRA (Dettmers et al.,
2023) substantially improves performance on
an entity-centric classification task by mech-
anistically intensifying the model’s attention
on entity tokens.

• A demonstration of attention analysis as a
valuable and accessible diagnostic tool for
understanding and explaining the effects of
fine-tuning on a model’s internal mechanisms.

2 Related Work

Our work is situated at the intersection of three
active research areas: entity tracking in language
models, the use of attention for interpretability, and
the mechanistic understanding of fine-tuning.

2.1 Probing Entity Representations in
Language Models

The study of how language models manage entities
has evolved from linguistic tests to sophisticated
analyses of internal model states. Earlier work
identified significant challenges, showing that even
large models struggle with fundamental aspects of
discourse, such as recognizing when a new entity
is introduced (Schuster and Linzen, 2022). Sub-
sequent research shifted from model outputs to
internal representations, finding a disconnect be-
tween a model’s latent knowledge of entities and
its ability to apply it effectively (Loáiciga et al.,
2022). More recent work has created benchmarks
to test dynamic entity tracking, discovering that
this ability can be taught via fine-tuning (Kim and
Schuster, 2023). Other studies propose architec-
tural changes to better handle dynamic entity track-
ing (Fagnou et al., 2024). Unlike these prior ap-
proaches, our framework interprets entity track-
ing behavior through the model’s native attention
weights, which directly reflect token-level interac-
tions in Transformer models.

2.2 Attention as an Interpretability Tool

The attention mechanism, introduced as the core
component of the Transformer architecture, was
initially proposed as a window into the model’s
reasoning process. Early work suggested that visu-
alizing attention weights could serve as a proxy for
interpreting model decisions. However, this view
was contested by a line of research arguing that “at-
tention is not explanation” (Jain and Wallace, 2019;
Serrano and Smith, 2019). These studies demon-
strated that attention weights could be manipulated
without significantly affecting model output, sug-
gesting they might be a symptom of the model’s
reasoning rather than its cause.

Nevertheless, more recent work has revealed that
specific attention heads often specialize in mean-
ingful linguistic functions, including syntactic rela-
tions and coreference resolution (Clark et al., 2019).
This suggests that attention, when interpreted sys-
tematically, offers insight into the model’s inter-
nal processing. Rather than treating attention as a
complete explanation, we adopt a pragmatic per-
spective: we use it as a measurable correlate of
focus, with a particular emphasis on how attention
is distributed over discourse entities. In doing so,
we aim to reconcile the interpretability of attention
with its utility as a diagnostic signal.

2.3 Mechanistic Insights into
Parameter-Efficient Fine-Tuning

Parameter-Efficient Fine-Tuning (PEFT) methods
such as Low-Rank Adaptation (LoRA) (Hu et al.,
2022) enable the adaptation of large pretrained
models to specific tasks by modifying only a small
subset of parameters. While PEFT methods are val-
ued for their efficiency and scalability, their effect
on the internal computations of language models
has only recently begun to receive systematic atten-
tion.

Recent work attempts to reverse-engineer fine-
tuned models using circuit analysis and other mech-
anistic tools (Wang et al., 2023; Prakash et al.,
2024). These studies identify sub-network path-
ways responsible for specific behaviors, but their
analyses are computationally intensive and often
require considerable expertise. In contrast, our
framework uses attention interactions to trace the
effects of PEFT on entity focus directly. We show
that LoRA fine-tuning leads to measurable shifts in
attention toward entity tokens, which correspond to
improved task performance. Our approach is both
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Figure 1: This example illustrates tokenization and mapping to noun phrases using the subword tokenizer of
“google/gemma-2-2b-it”. The misspelling of “developpement” results in two subword tokens, “develop” and
“pement”, a phenomenon commonly observed in real-world data.

computationally efficient and grounded in linguis-
tic theory, making it suitable for broader adoption
in small-model development and evaluation.

3 A Framework for Analyzing
Entity-Centric Attention

In this section, we introduce a lightweight, lin-
guistically motivated framework to analyze how
Small Language Models (SLMs) allocate attention
to entities during text processing. Our method
is grounded in the assumption that coherent lan-
guage understanding involves selectively focus-
ing on salient discourse elements—primarily noun
phrases—while integrating relevant context. We
capture this behavior by systematically quantify-
ing attention flows between entity and non-entity
tokens.

3.1 Identifying and Mapping Entity Tokens

A primary challenge in analyzing the internal pro-
cessing of linguistic phenomena is the discrepancy
between human-readable words or phrases and the
subword tokens that models actually operate on (Ta-
ble 5). To bridge this gap, our framework employs
a two-stage mapping process: first identifying lin-
guistic units, then mapping them to model tokens.

3.1.1 Noun Phrase Extraction
For the purposes of this study, we define an “en-
tity” as a noun phrase. This simplification provides
a consistent and scalable method for identifying
key subjects and objects across a large corpus. We
use the Stanza constituency parser2, which seg-
ments input texts into syntactic constituents and

2https://stanfordnlp.github.io/stanza/

extracts noun phrases based on their syntactic la-
bels. We impose a constraint that limits the length
of extracted noun phrases to a maximum of four
words to reduce structural complexity and exclude
deeply nested constructions. In cases of nested
noun phrases, we retain only the outermost phrase
to maintain consistent granularity across analyses.

3.1.2 Tokenization and Mapping
Once noun phrases are identified, we must align
them with the subword tokens generated by the
target model’s tokenizer. This alignment is a non-
trivial task, as tokenization schemes like Byte-Pair
Encoding (BPE) can fragment single words and
handle whitespace in model-specific, often propri-
etary ways. To address this, we developed a map-
ping algorithm which uses the character-level spans
of each noun phrase to identify all subword tokens
within its boundaries. As illustrated in Figure 1,
this process creates a definitive mapping from each
linguistic entity to a set of token indices, a crit-
ical step that enables our subsequent analysis of
attention flow.

3.2 Quantifying Attention Flow Across
Linguistic Boundaries

With entities mapped to tokens, we can now quan-
tify how the model allocates attention with respect
to these linguistic categories (Figure 2).

3.2.1 Attention Score Extraction
We extract attention values from the final layer of
the model’s Transformer architecture. This layer
is chosen because it represents the culmination of
the model’s processing, where representations are
expected to be the most semantically rich and task-

44

https://stanfordnlp.github.io/stanza/


Is

Is

_it

_it

_better

_for

_oneself

_develop

pement

_to

_have

_have

s

'

Type1 = Sum(Blue)

          = A(_it, Is) + A(_it, better) + ...

          + A(_oneself, Is) + ....

          + A(', Is) + ...

          + A(s, Is) + ...

          + A(_develop, Is) + ...

          + (pement, Is) + ... 

NP_all = {_it, _oneself, ', s, _develop, pement}

NonNP_all = {Is, _better, _for, _to, _have}

A t ntion Matrix

Normalized for Upper Triangle

Sum(R d+Blue) = 1.0

Figure 2: Example of calculating Attention Type 1: between entities and non-entities. The word “developpement” is
a typo found in a real TOEFL dataset, and it causes the subword tokenizer to split it into multiple subword tokens.

relevant. While individual attention heads may
specialize in different functions (Clark et al., 2019),
we average the attention scores across all heads
in the final layer to obtain a holistic measure of
the model’s aggregate focus. This provides a ro-
bust, high-level signal of information flow. The
raw attention scores are normalized via softmax
for each query token. The final averaged attention
score between a query token ta and a key token tb
is calculated as:

ĀLlast
(ta, tb) =

1

|H|
∑

h∈H
ALlast,h(ta, tb) (1)

where Llast denotes the last layer, H is the set
of all attention heads, and ALlast,h

(ta, tb) is the
attention score from token ta to token tb in the
last layer and head h. Additionally, we investigate
the different attention interaction patterns across
various layers in our evaluation to provide a more
comprehensive understanding.

3.3 Analysis of Attention Score Interactions
Using the extracted attention values and the LLM
tokens that match noun phrases, we measure three
distinct types of interactions. This helps us under-
stand how the LLM processes context. For each
interaction type, we define which tokens are in-
volved and how we combine their attention scores.

In terms of formulation, for any input text, let
N be the total number of LLM tokens: T =
{t1, t2, ..., tN}. Let NPk be the LLM tokens for
the k-th noun phrase: NPk = {ti1 , ti2 , ..., tim}.
Let NPall be the set of all tokens that are part of
any noun phrase (entity): NPall =

⋃
k NPk. Let

NonNPall be the set of all tokens that are not part
of any noun phrase (non-entities): NonNPall =

T \ NPall. The attention score from token ta to
token tb is written as ĀLlast

(ta, tb). As detailed in
Section 3.1, we focus on the last layer.

When investigating the interactions between dif-
ferent tokens, we focus on unique pairs of elements,
effectively excluding self-attention (diagonal ele-
ments) and avoiding duplicate pairs (e.g., consider-
ing (ta, tb) and (tb, ta) as a single interaction). This
is conceptually equivalent to considering only the
upper triangle of the attention matrix and summing
the attention for each unique pair. Each interac-
tion type captures the ratio of attention taken by
these specific pairs of tokens, normalized by the
total amount of attention values between all distinct
pairs of tokens in the sequence. Let Attn_Total
be the sum of all attention values between distinct
token pairs in the sequence, considering both direc-
tions for each unique unordered pair:

Attn_Total =
∑

tx∈T

∑

ty∈T,tx<ty

(Ā(tx, ty)) (2)

Our analysis focuses on three specific types of in-
teractions: 1) between entities and non-entities, 2)
between tokens of entities, and 3) between tokens
of non-entities. This structured approach allows us
to isolate and quantify specific linguistic phenom-
ena, providing insights into how LLMs encode and
leverage different types of relationships.

3.3.1 Type 1: Between entities and
non-entities

This quantifies the attention flow between any sub-
word token identified as part of an entity and any
subword token identified as a non-entity. This cap-
tures how entities interact with their broader non-
entity context within the sentence.
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We calculate the average attention where tokens
are from NPall and tokens are from NonNPall,
then normalize by TotalAttention.

RatioE-NE =
1

TotalAttention
×

∑

ta∈NPall
tb∈NonNPall

(Ā(ta, tb))
(3)

3.3.2 Type 2: Between tokens of entities
This measures the ratio of attention among subword
tokens within the collective set of all entities, rela-
tive to the total attention in the sequence. It reflects
the internal coherence and interconnectedness of
all identified entities in the text.

We calculate the sum of attention between dis-
tinct tokens within NPall, considering both direc-
tions for each unique unordered pair, then normal-
ize by TotalAttention.

RatioE-E =
1

TotalAttention
×

∑

ta∈NPall
tb∈NPall,ta<tb

(Ā(ta, tb))
(4)

3.3.3 Type 3: Between tokens of non-entities
This quantifies the ratio of attention among sub-
word tokens within the collective set of all non-
entities, relative to the total attention in the se-
quence. It reflects the internal coherence and inter-
connectedness of the non-entity context.

We calculate the sum of attention between dis-
tinct tokens within NonNPall, considering both
directions for each unique unordered pair, then nor-
malize by TotalAttention.

RatioNE-NE =
1

TotalAttention
×

∑

ta∈NonNPall
tb∈NonNPall,ta<tb

(Ā(ta, tb))
(5)

4 Experimental Setup

We evaluate our attention-based analysis frame-
work in the context of two representative classifica-
tion tasks using Small Language Models (SLMs).
Our goal is to examine how SLMs allocate atten-
tion over entity and non-entity tokens across dif-
ferent discourse settings and how this distribution
changes under Parameter-Efficient Fine-Tuning
(PEFT). This section describes the datasets, models,
and evaluation metrics used in our experiments.

4.1 Datasets
To ensure generalizability across different textual
domains and discourse structures, we select two
datasets that differ markedly in length, coherence
structure, and task type.

• SST-5 (Stanford Sentiment Treebank): A
benchmark for fine-grained sentiment anal-
ysis, consisting of 11,855 individual movie
review sentences3 (Socher et al., 2013). The
task involves assigning one of five sentiment
labels: “very negative” to “very positive”.
These short texts typically contain a small
number of entities, often representing film
titles or actors. Thus, SST-5 enables us to
analyze attention patterns when entity infor-
mation is concentrated in compact, sentiment-
focused utterances.

• TOEFL11: A dataset for proficiency-level
classification, composed of essays written by
English language learners (Blanchard et al.,
2013). Each essay is labeled with a language
proficiency score (low, medium, or high).
With an average length of over 400 words, the
dataset provides a setting for analyzing long-
form discourse. The essays include multiple
entities and exhibit varied discourse organiza-
tion, making it suitable for studying attention
flow over extended contexts.

4.2 LLM Models for Evaluation
We perform our experiments on a representative
set of modern, instruction-tuned SLMs available
via the HuggingFace Hub. These models vary in
parameter size, tokenizer behavior, and pretrain-
ing objectives, offering a diverse testbed for our
attention analysis:

• google/gemma-2-2b-it

• meta-llama/Llama-3.2-1B-Instruct

• meta-llama/Llama-3.2-3B-Instruct

• microsoft/Phi-3.5-mini-instruct

• Qwen/Qwen2.5-1.5B-Instruct

To evaluate the effects of fine-tuning, we apply
Low-Rank Adaptation (LoRA) (Hu et al., 2022), a
parameter-efficient tuning technique. LORA intro-
duces trainable low-rank matrices into the model’s

3https://huggingface.co/datasets/SetFit/sst5
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attention projections while keeping the original
model weights frozen. We fine-tune each model on
the SST-5 dataset using LoRA and analyze the re-
sulting changes in both performance and attention
allocation.

Hyperparameters used during fine-tuning (e.g.,
rank, learning rate, and epochs) are listed in Ap-
pendix A.2. All fine-tuning experiments are con-
ducted using a consistent setup across models to
ensure comparability.

4.3 Evaluation Metrics
We assess our framework using both interpretabil-
ity metrics derived from attention interactions and
standard performance metrics for classification.

• Attention Analysis: The core of our inter-
pretability analysis relies on the three atten-
tion interaction ratios (RatioE-NE, RatioE-E,
and RatioNE-NE) defined in Section 3.3. These
values quantify the internal focus of the model
and allow us to track systematic shifts in at-
tention behavior across datasets and tuning
conditions.

• Classification Performance: We measured
model performance on the SST-5 test set us-
ing standard metrics for multi-class classifica-
tion: Accuracy, Linear Weighted Kappa (κL),
and Quadratic Weighted Kappa (κQ). Kappa
scores are particularly important as they cor-
rect for agreement that could occur by chance
and are sensitive to the ordinal nature of the
sentiment labels (e.g., misclassifying “posi-
tive” as “very positive” is less of an error than
misclassifying it as “negative”).

5 Evaluations

Our evaluation proceeds in three stages. First, we
analyze baseline attention patterns in SLMs across
different textual domains. Second, we examine
how attention patterns vary with text granularity
and writing quality. Finally, we investigate the
impact of Parameter-Efficient Fine-Tuning (PEFT)
using LoRA on both performance and attention
allocation. Our findings demonstrate that entity-
centric attention is a consistent and informative
signal for tracking discourse focus and that LoRA
fine-tuning meaningfully enhances this behavior.

For SST-5, we treat each review as a single
unit, as reviews are typically single sentences.
For TOEFL11, we analyze each sentence indepen-
dently rather than encoding entire essays, allowing
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Figure 3: Attention allocation in pre-trained SLMs on
the short-text SST-5 dataset. Entity-related interactions
(Type 1) dominate.
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Figure 4: Attention allocation in pre-trained SLMs on
the long-text TOEFL dataset. Attention is more dis-
tributed compared to SST-5.

us to capture fine-grained variations in local atten-
tion and entity focus across discourse units.

5.1 Entity Focus Depends on Text Length and
Quality

We first examine how pretrained SLMs allocate
attention scores across entity and non-entity tokens
in two different textual settings: short-form reviews
in SST-5 and long-form essays in TOEFL11. Our
goal is to determine whether the model’s internal
focus shifts based on text length and discourse com-
plexity.

Dependence on Discourse Granularity: On
the short, sentiment-focused sentences of the SST-
5 dataset, all models dedicated the vast majority of
their attention to interactions involving entities. As
shown in Figure 3, the sum of Entity-NonEntity
(RatioE-NE) and Entity-Entity (RatioE-E) interac-
tions consistently accounts for over 70% of the total
attention. This indicates that for concise, opinion-
ated text, entities serve as the primary attentional
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3 Attention Interaction Types on Different Qualities of TOEFL

Types: Attention Intraction
Type 1: Between Entities and Others
Type 2: Between Entities
Type 3: Between Non-Entities

Figure 5: Attention patterns across different qualities
of TOEFL essays. As text quality improves, the rela-
tive attention on Entity-NonEntity interactions (Type 1)
slightly decreases.

anchors for the model. In contrast, on the long-
form essays of the TOEFL dataset (Figure 4), atten-
tion is more distributed. Entity-related interactions
still command a significant share but constitute a
smaller portion of the total, ranging from 20% to
30%. This suggests that in complex, descriptive
prose, models balance their focus between key en-
tities and broader contextual and structural cues.

Effect of Writing Quality: To analyze whether
attention patterns are sensitive to writing quality,
we examine the TOEFL11 subset with labeled pro-
ficiency levels (“low”, “medium”, “high”). After
controlling for essay length and sentence count,
we observe a subtle inverse correlation: as writ-
ing quality improves, the proportion of Entity-
NonEntity attention (Type 1) slightly decreases.
Figure 5 illustrates this trend, with low-quality es-
says exhibiting approximately 26% Type 1 interac-
tion, compared to 23% for high-quality essays.

This observation aligns with previous findings
that well-written texts exhibit richer lexical diver-
sity and syntactic variety (Louis and Nenkova,
2013), allowing models to rely on a broader set
of discourse cues. Hence, entity tracking remains
essential but is less dominant when more reliable
and structured context is available.

5.2 Entities Receive Most Attention in
Complex Texts

To better understand how SLMs process long-form
texts, we conduct a fine-grained analysis of the
TOEFL11 dataset by expanding our attention scope
beyond noun phrases. Specifically, we compare
attention interactions between entities and verb
phrases (VPs), as well as between entities and other
non-labeled tokens.
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4 Attention Interaction Types on TOEFL
Types: Attention Intraction

Type 2: Between Entities
Type 4: Between Entities and VP
Type 5: Between Entities and Others
Type 6: Between VP and Others

Figure 6: Attention patterns across different qualities
of TOEFL essays. As text quality improves, the rela-
tive attention on Entity-NonEntity interactions (Type 1)
slightly decreases.

Our results reveal a clear attentional hierarchy.
As shown in Figure 6, interactions involving entity
tokens (e.g., Entity-Entity, Entity-VP, Entity-Other)
consistently account for more than 70% of total
attention: the sum of Type 2, 4, and 5. By contrast,
interactions between verb phrases and non-entity
tokens are minimal (approximately 2.5%). This
finding confirms that even in linguistically complex
environments, SLMs focus on entities as central
nodes in the discourse structure.

This behavior is in line with Centering Theory
(Grosz et al., 1995), which posits that entities serve
as coherence anchors during discourse progression.
Our results suggest that pretrained SLMs implic-
itly adopt a similar processing strategy, prioritizing
entities as focal elements in attention allocation.

5.3 PEFT Increases Entity Attention and
Improves Accuracy

We next investigate whether QLoRA-based PEFT
affects entity-focused attention behavior and model
performance. The attention layers of all models
are fine-tuned on the SST-5 training set (Appendix
B). We then compare their attention distributions
and classification accuracy on a balanced evalua-
tion set, which was constructed by sampling 200
instances from each label of the test set to address
class imbalance.

Performance Gains: Prior to fine-tuning, the
models perform poorly on the 5-class sentiment
classification task, with accuracy scores around
40%. After applying LoRA, we observe substantial
improvements in classification accuracy and kappa
scores (Table 1). In particular, PEFT let SLMs pre-
dict extreme emotions well, which was not possible

48



Very Negative Negative Neutral Positive Very Positive
Sentiment labels

0

100

200

300

400

Pr
ed
ict
io
ns
 fo
r e
ac
h 
la
be
l

0

460
447

93

0

244

152

188

228

188

All labels have 200 samples

Before and After PEFT on google/gemma-2-2b-it

Before Fine-Tuning
After Fine-Tuning
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before fine-tuning (Figure 7). The models become
better at distinguishing closely related sentiment
categories, such as “positive” vs. “very positive”,
confirming that LoRA tuning effectively enhances
task-specific capabilities.

Classification Performance before LORA

Acc Kappa-L Kappa-Q

gemma-2-2b-it 0.38 0.50 0.71
Llama-3.2-1B-it 0.26 0.16 0.27
Llama-3.2-3B-it 0.45 0.55 0.71
Qwen2.5-1.5B-it 0.41 0.54 0.71
Phi-3.5-mini-it 0.42 0.54 0.74

Classification Performance After LORA

Acc Kappa-L Kappa-Q

gemma-2-2b-it 0.60 0.73 0.88
Llama-3.2-1B-it 0.52 0.66 0.83
Llama-3.2-3B-it 0.52 0.66 0.83
Qwen2.5-1.5B-it 0.52 0.67 0.83
Phi-3.5-mini-it 0.61 0.74 0.88

Table 1: Classification performance on the SST-5 test
set before and after LoRA fine-tuning. PEFT leads to
substantial improvements in accuracy (Acc) and both
Linear (κL) and Quadratic (κQ) Weighted Kappa scores.

Shifts in Attention Patterns: Crucially, these
performance gains are accompanied by consistent
and measurable shifts in attention allocation. Table
2 shows that after LoRA fine-tuning, the propor-
tion of Type 2 interactions (Entity-Entity) increases
across all models. This suggests that LoRA encour-
ages the model to more explicitly model seman-
tic relationships between entities. Simultaneously,
the proportion of non-entity interactions (Type 3)

decreases, reflecting a redistribution of attention
toward discourse-salient elements.

This result supports our central hypothesis:
LoRA fine-tuning refines the model’s internal at-
tention mechanisms by enhancing focus on lin-
guistically meaningful units—specifically, entities.
It also validates the use of our attention analysis
framework as a lightweight, model-agnostic diag-
nostic tool for tracking internal behavioral changes
induced by fine-tuning.

Model ∆ E-NE ∆ E-E ∆ NE-NE

gemma-2-2b-it +0.95 -0.91 +0.63
Llama-3.2-1B-it +0.52 -0.94 +3.22
Llama-3.2-3B-it -0.27 -0.62 +0.26
Qwen2.5-1.5B-it +0.40 -0.49 +0.32
Phi-3.5-mini-it -0.02 +0.04 -0.16

Table 2: Change in attention allocation ratios (in per-
centage points, pp) on SST-5 after LoRA fine-tuning.
The columns show the change in Entity-NonEntity (∆ E-
NE), Entity-Entity (∆ E-E), and NonEntity-NonEntity
(∆ NE-NE) attention.

6 Conclusion

Our findings suggest that attention weights – often
dismissed as unreliable – can, when anchored in
syntactic structure, serve not only as effective diag-
nostic tools but also as a valuable clue for model
development. By tracing attention flow through
entity representations, we provide an interpretable
and lightweight method that not only probes the
internal behavior of SLMs but also points toward
directions for improving or tailoring such models
to better capture entity-based coherence.

We emphasize that our findings should not be
taken as a comprehensive explanation of how Small
Language Models operate. The scope of our exper-
iments is necessarily limited, and broader general-
izations would require further study. Nonetheless,
our work highlights an intriguing avenue: entity-
focused attention analysis provides a promising
perspective on model interpretability that may in-
spire future research. Extensions could include
multi-sentence coherence modeling, cross-lingual
entity behavior, or alignment of model outputs with
formal discourse theories.
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Limitations

This study, while providing clear findings, has sev-
eral limitations that offer avenues for future re-
search.

First, our definition of an “entity” as a noun
phrase is a pragmatic simplification. This approach
does not capture more abstract entities, such as
events or concepts, and a more sophisticated entity
identification method could yield further insights.

Second, our analysis treats attention as a diag-
nostic correlate, not a definitive causal mechanism.
The final output of a Transformer layer is also influ-
enced by the value vector transformations and the
computations within the feed-forward networks. A
complete mechanistic explanation would require
analyzing the interplay between all these compo-
nents, which was beyond the scope of this work.

Third, the scope of our study is confined to a
specific set of SLMs and two classification tasks.
While the consistency of our findings across multi-
ple models is encouraging, they may not generalize
to all model architectures (e.g., non-Transformers),
significantly larger models (LLMs), or different
task modalities, such as text generation.

Finally, our method of averaging attention scores
across all heads in the final layer provides a high-
level, aggregate view of the model’s focus. This
approach necessarily obscures the diverse and spe-
cialized functions that individual attention heads
are known to perform (Clark et al., 2019). A more
granular, head-level analysis could reveal which
specific heads are most affected by fine-tuning
and what linguistic roles they play, representing
a promising direction for future work.
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A Appendix: Dataset Details

The TOEFL11 dataset consists of 12,378 essays
written in response to eight distinct open-ended
prompts, which are detailed in Table 4. On average,
each essay is approximately 411 words long, with
further statistics provided in Table 3. The dataset is
labeled by proficiency, with a distribution of 1,308
low-quality, 6,568 medium-quality, and 4,502 high-
quality essays.

For our sentence-level analysis, we began with
a total of 128,549 sentences. We applied several
filtering criteria to ensure data quality, excluding:
2,046 sentences that lacked any identifiable enti-
ties; 1,970 sentences that our entity-subword map-
ping parser could not process correctly; and 3,545

Dataset #Texts Avg len (Std) Max len Scores
T-P1 1,656 401 (97) 902 1-3
T-P2 1,562 423 (97) 902 1-3
T-P3 1,396 407 (102) 837 1-3
T-P4 1,509 405 (99) 852 1-3
T-P5 1,648 424 (101) 993 1-3
T-P6 960 425 (101) 925 1-3
T-P7 1,686 396 (87) 755 1-3
T-P8 1,683 407 (92) 795 1-3

Table 3: Dataset statistics on tokenization: each TOEFL
prompt (T-P).

sentences shorter than five words. This filtering
process resulted in a final set of 120,999 sentences
used in our analysis.

The Stanford Sentiment Treebank (SST-5)
dataset contains 5,992 movie reviews for 5-class
sentiment classification (from “very negative” to
“very positive”). The average sentence length is
23.44 subwords. From this initial set, we excluded
24 sentences shorter than five words and one sen-
tence that failed parsing, resulting in a final anal-
ysis set of 5,967 sentences (99.6% of the original
dataset).

B Appendix: LORA Hyperparameter
Details

The LoRA fine-tuning was conducted using the
HuggingFace PEFT library. We employed 4-bit
quantization (QLoRA) with the nf4 data type and
loaded the base models with fp16 precision. The
target modules for LoRA were the attention lay-
ers of the SLMs: “q_proj”, “k_proj”, “v_proj”,
“o_proj”. This results in 0.12% trainable param-
eters for google/gemma-2-2b-it, and 0.14% for
meta-llama/Llama-3.2-1B. The primary hyper-
parameters were set as follows: rank=16, alpha=32,
lora_dropout=0.05, and a learning rate of 1e-4 with
AdamW optimizer. Models were trained for 2
epochs with a batch size of 4.

C Appendix: Subwords Tokenization as
SLM

Our entity-subword mapping parser was designed
to handle model-specific tokenization schemes. We
observed that the SLMs in our study primarily use
one of two conventions to mark word boundaries:
a prefix _ (e.g., _word) or a special character “Ġ”
(e.g., “Ġ”word). Our parser correctly interprets
these conventions for each model to ensure accu-
rate alignment between linguistic noun phrases and
their corresponding subword tokens, as illustrated
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T-Prompt 1 Agree or Disagree: It is better to have broad knowledge of many academic subjects than to
specialize in one specific subject.

T-Prompt 2 Agree or Disagree: Young people enjoy life more than older people do.
T-Prompt 3 Agree or Disagree: Young people nowadays do not give enough time to helping their

communities.
T-Prompt 4 Agree or Disagree: Most advertisements make products seem much better than they really

are.
T-Prompt 5 Agree or Disagree: In twenty years, there will be fewer cars in use than there are today.
T-Prompt 6 Agree or Disagree: The best way to travel is in a group led by a tour guide.
T-Prompt 7 Agree or Disagree: It is more important for students to understand ideas and concepts than

it is for them to learn facts.
T-Prompt 8 Agree or Disagree: Successful people try new things and take risks rather than only doing

what they already know how to do well.

Table 4: Topic description: TOEFL (T).

in Table 5.
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Origin Text Is it better for oneself’s developpement to have broad knowledge of many aca-
demic subjects than to specialize in one specific subject?

google/gemma-2-2b-it
Tokenized-Ids tensor([[ 2, 2437, 665, 2525, 604, 63320, 235303, 235256, 2115, 227070, 577,

791, 7209, 5567, 576, 1767, 15459, 12749, 1178, 577, 78292, 575, 974, 3724,
5091, 235336]])

Tokenized-Subwords [‘<bos>’, ‘Is’, ‘_it’, ‘_better’, ‘_for’, ‘_oneself’, ‘’́, ‘s’, ‘_develop’, ‘pement’,
‘_to’, ‘_have’, ‘_broad’, ‘_knowledge’, ‘_of’, ‘_many’, ‘_academic’, ‘_subjects’,
‘_than’, ‘_to’, ‘_specialize’, ‘_in’, ‘_one’, ‘_specific’, ‘_subject’, ‘?’]

meta-llama/Llama-3.2-1B
Tokenized-Ids tensor([[128000, 3957, 433, 2731, 369, 57669, 596, 2274, 79, 1133, 311, 617,

7353, 6677, 315, 1690, 14584, 15223, 1109, 311, 48444, 304, 832, 3230, 3917,
30]])

Tokenized-Subwords [‘<|begin_of_text|>’, ‘Is’, ‘Ġit’, ‘Ġbetter’, ‘Ġfor’, ‘Ġoneself’, ‘’s’, ‘Ġdevelop’, ‘p’,
‘ement’, ‘Ġto’, ‘Ġhave’, ‘Ġbroad’, ‘Ġknowledge’, ‘Ġof’, ‘Ġmany’, ‘Ġacademic’,
‘Ġsubjects’, ‘Ġthan’, ‘Ġto’, ‘Ġspecialize’, ‘Ġin’, ‘Ġone’, ‘Ġspecific’, ‘Ġsubject’, ‘?’]

Table 5: Examples of different subword tokenization schemes deployed on SLMs.
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