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Abstract

We introduce UniRST, the first unified RST-
style discourse parser capable of handling 18
treebanks in 11 languages without modifying
their relation inventories. To overcome inven-
tory incompatibilities, we propose and evalu-
ate two training strategies: Multi-Head, which
assigns separate relation classification layer
per inventory, and Masked-Union, which en-
ables shared parameter training through selec-
tive label masking. We first benchmark mono-
treebank parsing with a simple yet effective
augmentation technique for low-resource set-
tings. We then train a unified model and show
that (1) the parameter efficient Masked-Union
approach is also the strongest, and (2) UniRST
outperforms 16 of 18 mono-treebank base-
lines, demonstrating the advantages of a single-
model, multilingual end-to-end discourse pars-
ing across diverse resources.'

1 Introduction

Rhetorical Structure Theory (RST) (Mann and
Thompson, 1987) represents discourse as a hier-
archical tree of elementary discourse units (EDUs)
connected by rhetorical relations. Over the years,
RST has inspired the creation of multiple discourse
treebanks across different languages. However,
large-scale annotated corpora are scarce and pre-
dominantly available in English. For other lan-
guages, the high cost of annotation and inconsistent
guidelines have resulted in smaller, heterogeneous
resources with incompatible relation inventories.
The English RST Discourse Treebank (RST-DT)
(Carlson et al., 2001), the primary benchmark for
RST parsing, defines 56 fine-grained rhetorical rela-
tions, usually mapped to 18 coarse-grained classes
for training and evaluation. Many discourse tree-
banks in other languages define considerably fewer

'Our models and code: https://github.com/tchewik/
UniRST.

relations. Aligning them with the RST-DT inven-
tory often requires collapsing relations, such as
merging CAUSE with EFFECT, CONTRAST with
CONCESSION, or ELABORATION with ENTITY-
ELABORATION. This process erases distinctions
that can be crucial for downstream applications
such as coreference resolution, narrative analysis,
and opinion mining. Moreover, when no direct
equivalents exist, alignment is frequently based on
surface-level label similarity, which compromises
annotation reliability across languages.
End-to-end RST parsing involves three intercon-
nected subtasks: EDU segmentation, tree struc-
ture prediction, and nuclearity and relation label-
ing. The definitions of these tasks are shaped by
the relation inventory and constraints of each tree-
bank. For instance, segmentation decisions can be
influenced by fine-grained intra-sentential relations.
Mono- or multinuclearity of certain overlapping
relations (LABEL_NS, LABEL_SN, LABEL_NN)
varies across treebanks. When datasets with dif-
ferent inventories are merged and collapsed into a
coarser label set, inconsistencies in relation defi-
nitions and nuclearity distributions can introduce
substantial noise into both training and evaluation.
Despite these challenges, training on multiple
treebanks offers clear benefits. RST-style parsers
are known to generalize poorly across domains (Liu
and Zeldes, 2023), and training a unified parsing
model on all available treebanks may yield broader
applicability. The skewed label distributions within
individual corpora complicate model training, par-
ticularly in low-resource settings; pooling datasets
with overlapping labels can mitigate this issue. Al-
though larger treebanks provide sufficient data for
accurate EDU segmentation and local relation la-
beling, they remain too small to support robust
learning of global document structures. Leverag-
ing all annotated structures across corpora can thus
strengthen structural prediction. Altogether, these
considerations motivate the development of univer-
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sal discourse parsers that effectively integrate all
available resources, regardless of language, genre,
or domain.

In this work, we propose methods for building a
unified RST parser from heterogeneous treebanks.
Our contributions are:

1. The first large-scale RST parsing study cover-
ing 18 treebanks in 11 languages.

2. Data augmentation technique allowing for
strong end-to-end mono-treebank RST pars-
ing baselines even in low-resource settings.

3. Two strategies for jointly modeling divergent
relation inventories: Multi-Head and Masked-
Union.

4. Evaluations showing that: (i) dataset-specific
segmentation heads are essential for handling
varying EDU definitions; (ii) the Masked-
Union approach enables sufficient model train-
ing by leveraging label overlap while respect-
ing treebank-specific relation inventories, and
(iii) our unified model outperforms 16 out of
18 mono-treebank baselines.

2 Related Work

Cross-Lingual RST Parsing  Cross-lingual
rhetorical structure parsing has gained increasing
attention in recent years. Braud et al. (2017) intro-
duced a unified set of coarse-grained (harmonized)
rhetorical relations and presented the first data-
driven cross-lingual RST parser, transferring across
English, Brazilian Portuguese, Spanish, German,
Basque, and Dutch. Their study demonstrated that
rhetorical structure parsing from pre-segmented
texts successfully transfers beyond English and
across typologically diverse languages. Building
on this foundation, Liu et al. (2020) leveraged mul-
tilingual embeddings and proposed EDU-level ma-
chine translation to enrich training data. Subse-
quently, Liu et al. (2021) introduced DMRST, a
unified framework performing joint EDU segmen-
tation and discourse tree parsing, enabling end-to-
end RST parsing evaluation across multiple lan-
guages under harmonized inventories. Extending
this line of work, Chistova (2024) applied DMRST
to parallel English—Russian data, highlighting the
importance of aligned corpora for assessing cross-
lingual transfer in the context of RST treebank in-
compatibilities.

Training on Incompatible Treebanks Research
on integrating incompatible treebanks has largely
focused on syntax parsing. Early work by Johans-
son (2013) introduced two adaptation techniques
for training syntax parsers on treebanks with differ-
ing annotation schemes. Their methods involved
concatenating the feature spaces of two treebanks
and using a parser trained on one treebank to guide
the other. These approaches were applied to tree-
banks pairs within the same language (German,
Swedish, Italian, and English). Stymne et al. (2018)
explored three strategies: treebank concatenation
with and without fine-tuning, and the inclusion
of treebank-specific embeddings. Their results
showed consistent improvements in dependency
parsing for most of the nine languages evaluated
when using treebank-specific embeddings. A sim-
ilar approach was applied by Barry et al. (2019)
to train a cross-lingual parser for low-resource
Faroese syntax parsing. Johansson and Adesam
(2020) trained a Swedish constituency parser on
six incompatible treebanks by sharing word repre-
sentations across corpora while maintaining sepa-
rate neural parsing modules for each treebank, thus
accommodating both constituency and dependency
annotations. Kankanampati et al. (2020) lever-
aged two Arabic dependency treebanks to build
a parser with a unified attachment scorer. Sayyed
and Dakota (2021) conducted multilingual experi-
ments with treebank-specific biaffine parsing layers
for UD and SUD syntactic annotations, ultimately
finding that combining distinct annotation schemes
could degrade parsing performance.

Notably, in syntactic parsing, terminal nodes cor-
respond to words, so efforts to resolve annotation
inconsistencies are confined to structure building
and label assignment. In contrast, rhetorical struc-
ture parsing additionally requires segmentation,
which is affected by treebank-specific constraints
on elementary discourse units. In our work, we aim
to develop the first end-to-end RST parser benefit-
ing from each annotation scheme in a wide range
of diverse discourse treebanks.

3 UniRST

We address joint training over heterogeneous RST
corpora while preserving each treebank’s native
relation inventory, EDU segmentation, and rela-
tional definitions. Building on the DMRST ar-
chitecture (Liu et al., 2021), we explore exten-
sions that enable training across incompatible tree-
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Figure 1: Model variants in the UniRST framework. (a) Multi-Head: independent classifiers per relation inventory.
(b) Masked-Union: shared classifier with treebank-specific label masking.

banks. Specifically, we propose two strategies:
Multi-Head (MH), which maintains separate clas-
sification heads per inventory, and Masked-Union
(MU), which uses a single classifier constrained by
treebank-specific masks. For reference, we addi-
tionally implement Unmasked-Union (UU), which
lacks label masking and serves as a lower bound.
Unless otherwise noted, models use treebank-
specific segmentation heads, though shared seg-
mentation is also tested. Figure 1 illustrates the
architectures.

3.1 DMRST

DMRST (Liu et al., 2021) is an end-to-end RST
parsing model that integrates EDU segmentation,
discourse tree construction, and relation/nuclearity
labeling. Its pipeline has four stages: (1) a pre-
trained language model encodes input tokens, (2)
an LSTM-CRF module detects EDU boundaries,
(3) a recurrent pointer network decoder constructs
the discourse tree, and (4) a biaffine classifier as-
signs nuclearity and relation labels. The model
is trained jointly, with dynamically weighted loss
balancing segmentation, structure prediction, and
labeling. This unified design enables consistent
end-to-end parsing.

UniRST extends this backbone to multi-treebank
training. The pretrained encoder and recurrent de-
coder are shared across corpora, while segmenta-
tion and relation classification are treebank-tailored.
This design aims to achieve robust structural pre-
diction while respecting each corpus’s definitions
and constraints.

3.2 Multi-Head (MH)

Our first method for multi-inventory RST pars-
ing assigns a separate classification head to each
distinct relation inventory. Given the set of in-
ventories G = {Gi,...,Gp}, treebanks shar-
ing the same inventory (e.g., eng.gum, rus.rrg,
zho.gcdt) share a relation/nuclearity classifier
W) e RAXIGml 1In this configuration, cross-
treebank information about relation and nuclearity
is exchanged only implicitly, through fine-tuning of
the language model and shared structural decoder.

3.3 Masked-Union (MU)

Let U = |J, L7, be the unified set of all rela-
tion types across treebanks. MU employs a sin-
gle shared classifier W € R that predicts
over this unified label space. To enforce inven-
tory constraints, for each treebank 7}, we apply a
binary mask m*) € {—1 x 10,1}/ to the clas-
sifier logits. This parameter-efficient design pro-
motes explicit parameter sharing and enables direct
transfer for overlapping relations (e.g., ELABORA-
TION_NS) across all components of the model.

3.4 Unmasked-Union (UU)

UU mirrors the MU architecture but omits the
treebank-specific masking, thereby allowing predic-
tions over the entire concatenated label set without
restriction. Consequently, it can produce labels that
do not exist in the target corpus, limiting its practi-
cal utility. We include UU scores as a lower-bound
baseline.
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Treebank Language #Docs # Tokens #EDUs # Labels # Classes # Rels
ces.crdt (2024) Czech 54 14,623 1,345 23 34 1,288
deu.pcc (2014) German 176 32,836 2,842 25 37 2,665
eng.gentle (2023) (test only) English 26 17,799 2,328 15 27 2,552
eng.gum v11.1 (2025) English 255 250,290 34,428 15 27 32,173
eng.oll (2008) English 327 46,177 3,026 21 35 2,716
eng.rstdt (2002) English 385 205,829 21,789 18 42 21,404
eng.sts (2008) English 150 70,422 3,208 21 35 3,058
eng.umuc (2024) English 87 61,292 5,421 28 46 5,334
eus.ert (2013) Basque 88 45,780 2,509 24 31 2,421

fas.prstc (2021) Persian 150 66,694 5,789 18 26 5,638
fra.annodis (2012) French 86 32,699 3,307 18 20 3,221

nld.nldt (2012) Dutch 80 24,898 2,326 27 45 2,246
por.cstn (2011) Portuguese 140 58,793 5,527 22 38 5,387
rus.rrg (2024) Russian 213 172,405 25,222 15 27 25,010
rus.rrt (2017) Russian 233 262,495 28,247 17 25 25,892
spa.rststb (2011) Spanish 267 58,717 3,351 29 43 3,084
spa.sctb (2018) Spanish 50 16,515 744 20 26 694

zho.gedt (2022) Chinese 50 62,905 9,403 15 28 9,345
zho.sctb (2018) Chinese 50 15,496 744 20 26 684

Table 1: Treebank statistics.
4 Data remain underutilized due to limited training data.

This study leverages training data from 18 RST
treebanks covering 11 languages, aiming to cre-
ate the most universal end-to-end RST parser to
date. The treebanks span Czech, German, En-
glish, Basque, Persian, French, Dutch, Brazilian
Portuguese, Russian, Spanish, and Chinese. Tree-
bank statistics are summarized in Table 1.

For the English RST-DT benchmark, we adopt
the coarse-grained relation labels used in prior
work. Corpora annotated using the GUM RST
schema (eng.gum, zho.gcdt, rus.rrg) retain
their predefined coarse-grained labels. For other
corpora, if applicable, we merged infrequent
classes (less than 10 instances) with related ones
based on nuclearity, following the mapping sug-
gested by Braud et al. (2017). This ensures both la-
bel diversity and sufficient representation for train-
ing. Detailed class distributions are illustrated in
Appendix B.

To ensure consistency and reproducibility, we
use the standardized training, validation, and test
splits? provided by the DISRPT 2025 shared task
for segmentation, connective identification, and
relation classification across discourse annotation
frameworks.

4.1 Data Augmentation

While several large RST treebanks dominate end-
to-end discourse parsing research, smaller corpora
2We employ the open version of eus.ert treebank from

https://ixa2.si.ehu.eus/diskurtsoa/en/, containing
88 annotations.

To address this gap and establish strong mono-
treebank baselines, we propose a simple yet ef-
fective data augmentation technique to improve
performance in low-resource settings. Crucially,
our method enriches training data without modify-
ing the original texts or local annotations.

DMRST model employs a recurrent structure
prediction module that relies heavily on contex-
tual signals. As each annotated tree yields a sin-
gle training instance, the number of examples is
limited, particularly in smaller treebanks. To ad-
dress this, we introduce an augmentation approach
based on extracting structurally coherent subtrees
from annotated documents. While these subtrees
omit full-document context, their internal discourse
structure remains valid and informative.

Our procedure involves: (1) identifying sentence
boundaries to avoid extracting subtrees spanning
sentence fragments; (2) extracting all connected
subtrees not spanning sentence fragments and in-
cluding at least three rhetorical relations; and (3)
sampling a proportion p,,e of these subtrees for
augmentation. Sampling is critical to prevent over-
fitting, particularly for the segmentation subtask.

This augmentation allows the model to train on
a wider range of partial structures, potentially im-
proving end-to-end RST parsing training in low-
resource settings. We set payg to 50% to enrich the
training data multifold.?

3For RST-DT, pae = 50% produces 5.4 times more train-
ing samples. Over all treebanks, it multiplies number of train-
ing samples by 7.7.
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60.2
68.7
73.3
65.9
77.5
46.5
68.8
71.0
65.0
62.5
63.8
76.0
71.2
79.7
68.1
66.7
76.3
66.7

ces.crdt
deu.pcc
eng.gum
eng.oll
eng.rstdt
eng.sts
eng.umuc
eus.ert
fas.prstc
fra.annodis
nld.nldt
por.cstn
rus.rrg
rus.rrt
spa.rststb
spa.sctb
zho.gedt
zho.sctb

31.1
38.8
60.5
48.2
66.6
35.1
50.8
47.3
51.3
51.6
47.4
62.2
57.2
61.4
52.2
41.5
58.1
37.7

18.2
24.7
52.6
29.5
56.1
21.7
33.1
29.9
40.2
33.0
30.7
50.9
49.4
51.5
35.0
35.2
52.3
32.1

16.9
23.6
51.5
29.3
54.6
21.1
324
29.2
40.1
33.0
29.1
50.8
48.2
51.3
35.0
35.2
50.7
32.1

90.1
95.2
95.5
89.7
97.6
89.7
89.6
89.7
93.8
92.1
96.3
93.9
97.2
91.1
91.5
74.1
91.2
91.1

47.3
58.9
66.9
51.4
73.8
38.2
51.2
54.8
55.3
53.2
58.2
68.2
67.6
62.8
54.9
34.3
61.0
56.3

24.0
33.9
55.4
36.7
63.4
28.8
36.9
38.0
44.6
44.7
42.9
53.3
54.3
49.0
40.9
25.4
46.1
34.3

13.7
21.0
48.3
21.9
53.3
18.2
24.3
23.1
34.4
28.6
28.5
43.9
47.1
41.4
28.1
23.1
40.9
28.5

12.3
20.0
47.4
21.5
51.8
18.0
23.7
22.7
34.4
28.6
26.9
43.8
46.0
41.3
28.1
23.1
39.6
28.5

58.9
67.2
72.8
61.8
78.3
44.1
67.1
66.5
65.3
62.5
61.7
76.1
70.3
80.0
71.1
66.7
75.3
60.2

31.1
42.7
59.9
43.2
67.5
32.9
48.4
44.5
50.9
51.4
46.4
61.6
55.9
61.9
54.4
43.6
58.2
40.9

18.0
26.4
52.6
29.0
57.0
20.5
31.8
25.7
40.7
32.9
30.6
49.9
47.9
52.2
38.9
31.7
51.9
32.3

17.1
25.6
51.4
28.4
55.2
19.6
31.2
25.7
40.4
32.9
28.8
49.9
46.8
51.9
38.9
31.7
50.4
32.3

90.6
96.0
95.2
91.2
97.7
88.4
89.0
89.0
93.8
91.5
96.4
94.0
96.8
91.0
91.9
84.1
91.9
92.5

46.2
59.7
66.1
54.1
74.9
33.5
49.1
52.3
55.3
52.4
57.2
66.3
65.6
63.0
57.7
47.5
64.0
52.3

23.4
36.9
54.3
36.4
64.5
24.5
35.1
35.3
42.9
43.3
42.8
53.3
52.2
49.9
44.0
35.3
49.5
38.1

11.5
21.7
47.9
24.5
54.6
16.1
24.3
19.9
34.3
27.6
28.9
43.0
44.9
42.5
32.8
27.3
43.5
29.6

11.2
21.2
46.9
24.0
52.9
15.7
24.0
19.8
34.0
27.6
27.3
43.0
43.9
42.3
32.8
27.3
42.3
29.6

Table 2: Performance of the treebank-specific models, with and without train data augmentation.

S Experimental Setup

We employ x1m-roberta-large as the multilin-
gual encoder across all experiments. The batch
size is set to 2, with a hidden size of 200 for the
segmenter and 512 for the parsing module. The
DMRST model is trained with a learning rate of
le-5, while the encoder is fine-tuned using a learn-
ing rate of 2e-5. Early stopping is set to a patience
of 5 in mono-treebank settings and reduced to 3 in
UniRST due to the larger concatenated dataset.

Evaluation follows the original Parseval met-
rics for rhetorical structure parsing, with micro
F1 scores reported for segmentation (Seg), span
(S), relation (R), nuclearity (N), and full structure
(Full). Each model is trained using three different
random seeds, and all reported results are averaged
across these runs.

6 Experimental Results

6.1 Mono-Treebank Evaluations

Table 2 reports the performance of treebank-
specific models trained with and without data aug-
mentation. Augmentation yielded substantial gains
on smaller corpora such as eng.oll, spa.sctb,
zho. scth, and zho. gcdt, but improvements were
not uniform across all treebanks. Interestingly,
on the eng.rstdt benchmark with diverse doc-
ument lengths, augmentation led to an average
1.1% F1 improvement in unlabeled structure pre-
diction (S), highlighting its potential even for larger
datasets. On the other hand, the data augmentation

In-treebank
Seg S N

90.5 495 245
96.0 59.7 369
955 669 554
912 54.1 354
97.7 749 645
89.7 38.2 32.6
89.6 51.2 369
89.7 54.8 38.0
93.8 583 44.6
92.1 532 447
964 57.0 439
94.1 68.8 572
972 67.6 543
91.0 63.0 499
919 57.7 440
84.1 475 353
919 64.0 495
925 523 38.1

All avg.
Seg S N

764 32.6 160
76.6 329 193
789 413 302
713 319 18.7
784 40.2 28.8
758 29.1 168
776 351 224
775 338 184
78.3 36.2 203
715 32.6 165
80.2 359 220
782 37.1 252
80.0 40.9 28.7
81.2 409 273
78.5 354 226
740 299 162
76.9 36.7 233
574 17.1 102

929 60.7 473

Model

ces.crdt
deu.pcc
eng.gum
eng.oll
eng.rstdt
eng.sts
eng.umuc
eus.ert
fas.prstc
fra.annodis
nld.nldt
por.cstn
rus.rrg
rus.rrt
spa.rststb
spa.sctb
zho.gedt
zho.sctb

UniRST

Table 3: Evaluation across all treebanks. We only assess
segmentation (Seg), unlabeled structure construction
(S), and nuclearity assignment (N), as relation invento-
ries are incompatible.

resulted in performance degradation on two large-
scale GUM-based corpora (eng.gum, rus.rrg),
likely due to segmenter overfitting on long doc-
uments. Overall, augmentation yielded the best
mono-treebank parsing performance on 10 of the
18 treebanks. For comparison, Appendix A summa-
rizes previous end-to-end RST parsing results on
eight treebanks. DMRST+ denotes the architecture
used as a baseline in this work.
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Method ~ Segmentation ¢ (;Old segR Full Seg S Endl-\?o-endR Full
MH single 73.5 584 47.6 46.6 934 634 507 417 4038
multiple 73.6  59.0 485 47.6 93.7 63.7 513 424 416
uuU single 73.8 58.7 47.0 46.8 934 643 519 428 418
MU single 74.1 593 48.8 47.8 937 645 521 432 423
multiple 744 59.6 493 483 939 64.8 52.1 434 425
Table 4: Performance of the UniRST model in different setups.
Treebank Seg S R Full
ces.crdt 94.2 (+4.1) 579 (+10.6) 38.6 (+14.6) 27.3(+3.3) 26.8 (+14.5)
deu.pcc 96.5 (+0.5)  66.3 (+6.6) 45.5 (+8.6) 32.8 (+11.1)  31.1(+9.9)
eng.gum 95.2 (-0.3)  66.7 (-0.2)) 54.7 (-0.7) 48.0 (-0.3) 46.9 (-0.5)
eng.oll 93.8 (+2.6)  56.7 (+2.6) 40.6 (+4.2) 27.6 (+3.1) 27.1 (+3.1)
eng.rstdt 97.8 (+0.1)  75.6 (+0.7) 65.1 (+0.6) 55.2 (+0.6) 53.5 (+0.6)
eng.sts 91.0 (+1.3) 40.4 (+2.2) 30.7 (+1.9) 19.4 (+1.2) 18.8 (+0.8)
eng.umuc  88.8 (-0.8)  52.0 (+0.8) 40.1 (+3.2) 26.1 (+1.8) 25.6 (+1.9)
eus.ert 92.0 (+2.3) 62.8 (+8.0) 47.4 (+9.4) 354 (+12.3) 353 (+12.6)
fas.prstc 94.6 (+0.8)  61.7 (+6.4) 50.2 (+5.6) 40.7 (+6.3) 40.5 (+6.1)
fra.anodis  90.9 (-1.2)  58.1 (+4.9) 47.3 (+2.6) 31.1 (+2.5) 30.7 (+2.1)
nld.nldt 97.6 (+1.2)  59.3 (+2.1) 45.3 (+2.5) 33.5 (+4.6) 31.7 (+4.4)
por.cstn 94.3 (+0.4) 67.7(-0.5) 54.9 (+1.6) 457 (+1.8) 45.4 (+1.6)
rus.rrg 96.5 (-0.7)  66.8 (-0.8) 53.5 (-0.8) 45.5 (-1.6) 44.1 (-1.9)
rus.rrt 90.6 (-0.4) 63.0 (0.0) 49.8 (-0.1) 42.6 (+0.1) 42.4 (+0.1)
spa.rststb 92.5 (+0.6)  63.5(+5.8) 50.1 (+6.1) 35.3(+2.5) 352 (+2.4)
spa.sctb 86.0 (+1.9) 55.8(+8.3) 48.0 (+12.7) 40.8 (+13.5) 40.8 (+13.5)
zho.gedt 92.1 (+0.2) 629 (-1.1) 48.7 (-0.8) 44.0 (+0.5) 42.7 (+0.4)
zho.sctb 943 (+1.8) 643 (+12.0) 50.5(+12.4) 407 (+11.1) 40.7 (+11.1)

Table 5: UniRST performance per treebank. Improvements over the strongest mono-treebank baseline, as listed in

Table 2, are shown in parentheses.

To assess generalization, each best-performing
treebank-specific model was evaluated on all 18
corpora. Table 3 reveals a consistent transferabil-
ity gap: models tend to overfit to treebank-specific
language, domains, relation usage, and document
styles. Segmentation scores also decline in transfer
settings, though less severely than Span or Nuclear-
ity scores. In certain cases, however (e.g., eng.oll,
eng.gum), segmentation drops sharply, reflecting
variation in EDU definitions across corpora. De-
spite strong in-treebank Span F1 (e.g., 74.9% for
eng.rstdt, 68.8% for por.cstn), transfer perfor-
mance degrades substantially (dropping to 40.2%
and 37.1%, respectively). This disparity demon-
strates that in-domain success is a poor indicator of
cross-corpus robustness and highlights the need for
more generalizable RST parsers, such as UniRST.

6.2 UniRST

Performance of the Multi-Head and Masked-Union
strategies is reported in Table 4. UniRST performs

best when segmentation is handled by treebank-
specific heads, which capture differences in EDU
annotation schemes, whereas a universal segmen-
tation head primarily learns broader segmentation
patterns. The Masked-Union (MU) strategy consis-
tently outperforms Multi-Head (MH), offering both
greater efficiency and higher parsing accuracy. Its
masking mechanism ensures that each treebank’s
inventory is respected, while still enabling transfer
for overlapping relations, which in turn improves
parsing performance over the unmasked baseline.
The strongest configuration is MU with treebank-
specific segmentation heads. We refer to this vari-
ant as “UniRST” throughout the remainder of the

paper.

As shown in Table 3, UniRST achieves higher
average performance across combined test set com-
pared to any mono-treebank parser. This demon-
strates the robustness of UniRST model as a cross-
lingual parser capable of learning shared represen-
tations that generalize effectively across diverse
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RST corpora.

Detailed results by treebank are provided in Ta-
ble 5. The unified model outperforms the strongest
mono-treebank baselines on 16 out of 18 tree-
banks. Notable improvements in end-to-end Full
F1 are observed across most datasets, particu-
larly for smaller-scale treebanks such as ces.crdt,
deu.pcc, eus.ert, spa.sctb, zho.gcdt, and
zho. scth. Similar to data augmentation in mono-
treebank training, joint training does not benefit the
large-scale eng.gum and rus. rrg corpora, whose
annotations appear sufficient on their own. Im-
portantly, the performance drop on eng. gum under
joint training remains marginal. The only corpus
where UniRST fails to exceed 50% Span F1 and
25% Full F1 is eng. sts. Given the limited docu-
mentation of this dataset, the cause is unclear, but
the low scores may stem from poor inter-annotator
agreement or inconsistently applied segmentation
and structural constraints. Joint training nonethe-
less improved performance, suggesting that it pro-
vides some stabilization even under noisy condi-
tions. Across nine corpora in English, Persian, Por-
tuguese, Russian, Spanish, and Chinese, UniRST
achieves more than 40% Full end-to-end F1 while
preserving original relation inventories.

To further assess out-of-domain generalization,
we evaluate GUM-compatible models on the GEN-
TLE benchmark, which follows GUM annotation
guidelines.* As shown in Table 6, UniRST achieves
the highest Full end-to-end parsing score. The
eng.gum model performs best in segmentation
(93.0% F1) and structure prediction (58.0%) due
to its alignment with GENTLE’s language and an-
notation conventions. However, UniRST outper-
forms it on Relation and Full F1, highlighting the
benefits of shared relation classification training
across multiple treebanks. Notably, UniRST sup-
ports 11 languages, while eng. gum is English-only.
Training on multiple multi-domain treebanks, in-
cluding five English treebanks, did not lead to a
substantial improvement in out-of-domain perfor-
mance over the GUM-specific model. These find-
ings highlight the importance of treebank-specific
annotation schemes and show that the universal
model remains most effective within the domains
and genres present in its training data.

*GENTLE includes annotations for eight unconventional
genres: dictionary entries, esports commentaries, legal docu-
ments, medical notes, poetry, mathematical proofs, syllabuses,
and threat letters. None of these genres are represented in the
training corpora used in this work.

Model Seg S N R Full

eng.gum 93.0 58.0 472 39.1 386
rus.Irg 852 447 349 288 283
zho.gedt 764 341 235 184 18.0
UniRST 927 574 460 399 394

Table 6: Performance of the GUM-compatible models
on GENTLE out-of-domain benchmark.

7 Conclusion

While previous approaches to multilingual pars-
ing have often advocated for reducing relation in-
ventories to a small standardized set of RST rela-
tions, such strategies fail to fully account for the
broader divergences among RST treebanks. These
include differences in discourse segmentation, the
treatment of mono- versus multinuclearity, and the
granularity, specificity, and definitions of rhetori-
cal relations. In this work, we introduced UniRST,
the first unified RST-style discourse parser capable
of effectively processing 18 treebanks across 11
languages without altering their original relation in-
ventories. To address the challenge of inventory in-
compatibility, we proposed two approaches: Multi-
Head and Masked-Union. Our results show that
the latter yields superior performance, particularly
when paired with treebank-specific segmentation
heads. UniRST outperforms 16 out of 18 mono-
treebank baselines, demonstrating that end-to-end
multilingual discourse parsing is achievable despite
considerable annotation diversity. The results indi-
cate that embracing annotation heterogeneity can
benefit multilingual discourse parsing.

Limitations

The main limitation of a multilingual RST parser
that preserves multiple relation inventories lies in
the need to account for inventory differences in
downstream applications. This issue is not unique
to our approach, as it also arises when deploying
separate treebank-specific models per language or
domain. Even under label harmonization to a re-
duced set, variation in the number and distribution
of relations across languages can persist. While
UniRST demonstrates strong generalization across
most treebanks, it shows a marginal performance
drop on two large, multi-domain corpora (eng. gum,
rus.rrg), likely because their annotations are suffi-
cient to support strong mono-treebank models. Fur-
thermore, eng. sts remains the only dataset where
Span F1 remains below 50%, with both mono- and
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multi-treebank models performing poorly. These
observations suggest that data quality and annota-
tion consistency substantially affect performance,
and that future work may benefit from treebank
filtering or weighting.
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A Reference Results from Prior Work

Table 7 summarizes previously reported results for
end-to-end RST parsing. It is important to note
that prior results may differ in experimental setup,’
limiting direct comparability. All results reported
in Section 6.1 are obtained through single-treebank

SMost notably, in the use of multicorpus training with
harmonized label sets, or non-standard train/dev/test splits.
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training using the original relation sets and the stan-
dardized DISRPT 2025 splits. To the best of our
knowledge, the remaining treebanks are evaluated
here for the first time in a full end-to-end RST pars-
ing setting.

System Seg S N R Full
eng.rstdt

SegBot (2020) 922 623 50.1 407 39.6
Nguyen et al. (2021) 96.3 684 59.1 478 46.6
DMRST (2021) 963 684 59.1 478 46.6
DMRST+ (2024) 97.8 748 645 545 530
deu.pcc

DMRST (2021) 96.5 704 60.6 n/c n/c
eus.ert

DMRST (2021) 88.7 533 39.1 n/c n/c
nld.nldt

DMRST (2021) 955 623 46.6 nlc n/c
por.cstn

DMRST (2021) 92.8 625 51.6 nlc n/c
rus.rrg

DMRST+ (2024) 969 66.5 533 458 44.6
rus.rrt

DMRST+ (2024) 922 659 51.0 439 438
spa.rststb

DMRST (2021) 92.8 625 516 nlc n/c

Table 7: Reference end-to-end parsing evaluations
across RST treebanks. n/c indicates incompatible (har-
monized) label sets.

B Relation Classes across Treebanks

Figures 2 and 3 illustrate the distribution of all
relation labels across 19 treebanks (including the
test-only eng.gentle). UniRST handles all 96
unique LABEL_INUCLEARITY relations as they ap-
pear in each corpus. Note that while some tree-
banks (e.g., GUM-style and RST-DT) internally
group ANTITHESIS, CONTRAST, and CONCES-
SION as ADVERSATIVE, and CAUSE with RESULT
as CAUSAL, others treat some of these relations sep-
arately or organize them under alternative group-
ings.

During preprocessing, only relations with equiv-
alent definitions and comparable granularity were
unified under a single label (e.g., CONDITION
and CONTINGENCY; ADVERSATIVE and coarse-
grained CONTRAST). CONDITION is a coarse-
grained label encompassing, in most treebanks,
the underrepresented fine-grained relations OTH-
ERWISE, UNLESS, and UNCONDITIONAL, each of
which appears too infrequently to be modeled reli-
ably on its own. Labels without clear counterparts,
such as GRADATION_SN in ces.crdt (Polakova
et al.,, 2024) or FRAME_NS in fra.annodis
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(Muller et al., 2012), remain unique to their re-
spective treebanks.

Variations in the representation of overlapping
labels across treebanks reflect underlying genre and
linguistic differences. For instance, zho.gcdt fea-
tures more instances of ELABORATION_SN than
ELABORATION_NS, in stark contrast to other lan-
guages, where the satellite in ELABORATION typi-
cally follows the nucleus.
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Figure 2: Relation class frequency across treebanks.
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Relation Class Frequency (Continuation)
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Figure 3: Relation class frequency (continuation).
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