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Abstract

Understanding the strategies that make expert-
led explanations effective is a core challenge
in didactics and a key goal for explainable Al
To study this computationally, we introduce
ReWIRED, a large corpus of explanatory di-
alogues annotated by education experts with
fine-grained, span-level teaching acts across
five levels of explainee knowledge. We use this
resource to assess the capabilities of modern
language models, finding that while few-shot
LLMs struggle to label these acts, fine-tuning
is a highly effective methodology. Moving be-
yond structural annotation, we propose and val-
idate a suite of didactic quality metrics. We
demonstrate that a prompt-based evaluation us-
ing an LLM as a “judge” is required to cap-
ture how the functional quality of an explana-
tion aligns with the learner’s expertise — a nu-
ance missed by simpler static metrics. Together,
our dataset, modeling insights, and evaluation
framework provide a comprehensive methodol-
ogy to bridge pedagogical principles with com-
putational discourse analysis.

1 Introduction

Effective teaching is a masterclass in communi-
cation, where an expert dynamically adapts their
language and strategy to guide a learner toward
understanding. This process unfolds as a com-
plex, structured dialogue, yet the specific discourse
mechanisms that make an explanation effective,
especially when tailored to different audiences,
are not well understood from a computational
perspective. While insights from education and
psychology define what constitutes good teaching
(Miller, 2019; Kulgemeyer, 2018), we lack the fine-
grained datasets and evaluation frameworks needed
to model these principles in natural language.
This paper addresses that gap through a multi-
faceted approach, as illustrated in Figure 1. First,
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Figure 1: Our workflow: We begin by having education
experts create span-level annotations of teaching acts in
explanatory dialogues. We then experiment with various
LLMs to automate this annotation. Finally, we conduct
a qualitative evaluation, using both human experts and
LLMs, to assess the quality of the explanations based
on didactic principles.

we introduce ReWIRED, a new corpus resource
that significantly extends the WIRED dataset
(Wachsmuth and Alshomary, 2022). Our contribu-
tion lies in a new layer of span-level annotations
of teaching acts, provided by education domain
experts, across dialogues tailored to five distinct
knowledge levels (from child to colleague). This
provides an empirical foundation for studying ped-
agogical discourse structure (§3).

Second, we explore the feasibility of automating
the detection of these acts. We evaluate a range of
language models and prompting techniques, reveal-
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ing that while few-shot LLMs struggle with this
nuanced task, models fine-tuned on our data—even
smaller ones—can achieve near-perfect accuracy.
This establishes a robust methodology for analyz-
ing instructional dialogues at scale (§4).

Finally, we move from structural annotation
to quality assessment. We employ and extend
IXQUISITE, a suite of metrics grounded in didactics,
to evaluate explanation quality. We validate these
metrics with our expert annotators and demonstrate
that a prompt-based evaluation using LLMs as
“judges” is significantly more effective at captur-
ing the functional quality of instructional discourse
than traditional static methods. This provides a
new paradigm for evaluating pedagogically-aware
systems (§5).

Together, these contributions — a richly anno-
tated corpus, a validated modeling approach, and a
nuanced evaluation framework — provide a compre-
hensive methodology for bridging educational the-
ory with computational discourse analysis, paving
the way for Al systems that can generate more
effective, human-like explanatory dialogues '.

2 Background and related work

Instructional explanations are intended to transfer
knowledge by introducing a new cognitive frame-
work for understanding a concept or performing a
task, bridging the gap between a knowledgeable
individual and someone lacking that understand-
ing. In science education, such explanations are
considered both a fundamental activity and a goal
of scientific practice, aimed at systematically ad-
dressing “how” and “why”” questions (Kulgemeyer,
2018). The authors highlight the separation of two
interpretations for the term explanation: One is
an explanation seen as activity, whose goal is to
“engender understanding” between an explanation
holder and an explainee; the other is a more philo-
sophical understanding explanation, as that which
connects explanans and explanandum (Zhu and
Rudzicz, 2023). Although most studies concern-
ing explainability have focused on the latter, we
focus on its execution as a social, dialogical prac-
tice (Miller, 2019). In this view, the sequence of
communicative acts, the choice of examples, and
the adaptation to the learner are all crucial elements
of the dialogue’s discourse structure.

Modeling Pedagogical Strategies with Anno-

The dataset, code, and test suite are available at
https://github.com/nfelnlp/InstruX.

tation Schemata. To analyze this structure compu-
tationally, we draw from established feaching mod-
els from education science (Oser and Baeriswyl,
2002; Krabbe et al., 2015). These models are not
just abstract theories; they provide a blueprint for
effective instructional sequences. For instance, a
common pattern is to first assess prior knowledge,
then introduce a concept, provide an example, and
finally test for understanding. We operationalize
these pedagogical principles as a set of nine span-
level teaching acts (Table 1). This approach treats
teaching strategies as a form of domain-specific dis-
course annotation, allowing us to model the under-
lying functional structure of the dialogue beyond
surface-level linguistics.

Corpora for Educational Dialogue and Expla-
nation Quality. Several corpora have paved the
way for analyzing educational dialogues. Datasets
like CIMA (Stasaski et al., 2020), TSCC-2 (Caines
et al., 2022), and NCTE (Demszky and Hill, 2023)
capture teacher-student interactions, but often fo-
cus on general dialogue moves rather than the spe-
cific pedagogical functions within an explanation.
The work closest to ours is the WIRED corpus
(Wachsmuth and Alshomary, 2022) and its anal-
ysis by Alshomary et al. (2024), which includes
annotations for high-level explanation and dialogue
moves. Our work significantly extends this by: (1)
doubling the dataset size; (2) providing more gran-
ular, span-level annotations of teaching acts rather
than turn-level classifications; and (3) using do-
main experts in education for annotation, increas-
ing the validity of the labels. This finer granularity
is crucial for understanding how different teach-
ing strategies are woven together within a single
conversational turn.

Recent work has also leveraged LLMs in ed-
ucation, for tasks like assessing student answers
(Carpenter et al., 2024) or cognitive engagement
(McClure et al., 2024), and in human-AlI tutoring
systems (Wang et al., 2024; Jurenka et al., 2024).
Evaluating the quality of these interactions remains
a challenge. While some metrics focus on general
dialogue quality (Mehri and Eskénazi, 2020) or tex-
tual features (McNamara et al., 2014), they often
miss the pedagogical dimension. Inspired by the
approach of Rooein et al. (2024), who use both
static and LLM-prompted metrics for readability,
we adopt and expand a suite of quality metrics to
specifically assess instructional explanations, con-
necting discourse phenomena to didactic principles.
This addresses the challenge noted by Xu et al.
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Teaching Act
TO1: ‘Assess Prior Knowledge ‘

Checking what the student knows before starting a lesson
TO02: Lesson Proposal UT
Proposing the steps that will be taken during the lesson

Providing the student with puzzle/question to explore;
(Student:) Interacting with a mental concept

TO04: Reflection PS

Finding gaps in knowledge or inconsistencies;
Asking questions about the experience or concept

T. MdI. |
CB, UT

CB, UT

TO5: ‘ Knowledge Statement PS
Stating the concept(s) being taught via rules or facts
TO06: Comparison UT

Considering similarities and differences between
the main concept and other related topics or facts
TO07: Generalization CB, PS
Exploring how the concept applies to new scenarios,
experiences and situations outside of the lesson topic

TO08: Test Understanding CB

Finding out if the concept previously established
was received correctly and is properly understood

T09: ‘ Engagement Management ‘

Maintaining the classroom context to facilitate effective
teaching, creating rapport between teacher and student

Table 1: Teaching acts in the ReWIRED dataset (with
descriptions and their connection to a teaching model
from didactics: Teaching as problem solving (PS), teach-
ing as concept building (CB) (Krabbe et al., 2015),
and unified teaching choreographies (UT) (Oser and
Baeriswyl, 2002).

(2024) that LLMs excel at simple evaluation but
struggle with complex teaching practices without
proper guidance.

3 The ReWIRED dataset

To study instructional strategies in explanatory di-
alogues, we introduce ReWIRED, a new corpus
resource featuring a novel layer of expert-provided,
span-level annotations. We build upon and signif-
icantly extend an existing dataset of instructional
dialogues, enriching it with annotations grounded
in pedagogical theory to facilitate fine-grained dis-
course analysis.

3.1 Source data: Explanation dialogues

Our starting point is the WIRED corpus
(Wachsmuth and Alshomary, 2022), which con-
tains transcripts from the 5-Levels video series?.
These videos provide a unique setting for discourse
analysis, as they feature a domain expert explaining
a complex STEM topic to five different explainees
of progressively higher expertise: (1) a child, (2)
a teenager, (3) an undergraduate, (4) a graduate
student, and (5) a colleague (a fellow expert).

2https://www.wired.com/video/series/5-1levels

#  Topic #  Topic

1 Music harmony 14 Memory

2 Blockchain 15 Zero-knowledge
proofs

3 Virtual reality 16 Black holes

4 Connectome 17 Quantum computing

5  Black holes 18 Quantum sensing

6  Lasers 19 Fractals

7  Sleep science 20 Internet

8  Dimensions 21 Moravecs Paradox

9  Gravity 22 Infinity

10 Computer hacking 23  Algorithms

11 Nanotechnology 24 Nuclear fusion

12 Origami 25 Time

13 Machine learning 26 Chess

Table 2: Topics in ReWIRED. 14-26 (yellow) are tran-
scripts that were not part of the original WIRED dataset
(Wachsmuth and Alshomary, 2022). The topic “black
holes” is explained in two different videos, resulting
in the duplicate (5, 16). Chess (26) applies distinctive
knowledge levels (novice, intermediate, FIDE master,
Grandmaster, and Al expert), as educational background
doesn’t imply a player’s capability.

We expanded this resource by transcribing and
incorporating 13 additional topics released after the
original corpus’ publication, effectively doubling
the dataset size. ReWIRED now comprises 130
dialogues across the 26 topics shown in Table 2.
This expansion broadens the dataset’s scope and en-
riches the variety of linguistic phenomena available
for analysis.

3.2 Annotation of Teaching Acts

The primary contribution of our work is a new
layer of annotation. We argue that to model how in-
struction is delivered, we need annotations that are
more granular than turn-level labels. Pedagogical
strategies are often embedded within a single utter-
ance or can overlap. Therefore, we adopt a span-
labeling approach to precisely identify segments
corresponding to nine distinct teaching acts, as de-
fined in Table 1. This annotation scheme allows
us to capture the fine-grained, and often nested,
discourse structure of instructional explanations.

Annotation Process and Quality. To ensure the
validity of our annotations, we recruited four an-
notators, all of whom hold a Master of Educa-
tion degree or equivalent and have practical in-
classroom teaching experience. Annotators were
onboarded through a detailed process that included
a written guide with definitions and examples for
each act (see Appendix E and A), and a screencast
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Figure 2: ReWIRED inter-annotator agreement for
teaching acts on token level. For better visibility,
we scale-adjust the colors by np.loglp(...)%. Each
cell shows the number of tokens for which annotators
(dis)agreed on a label in a pairwise comparison. The bot-
tom row with green and red highlights show the Fleiss’
K per teaching act.

demonstrating the annotation tool (LABEL STU-
DIO (Tkachenko et al., 2020-2024)) and walking
through ambiguous cases.

The full dataset was split, with each half anno-
tated by two experts. The task proved to be chal-
lenging, reflecting the inherent subjectivity of inter-
preting pedagogical intent. This is visible in Figure
3, which shows how two experts can reasonably
apply different labels to the same text. The result-
ing inter-annotator agreement is Fleiss’ x = 0.44.
While this value indicates moderate agreement, it is
not unexpected for a complex discourse annotation
task and highlights that human label variation can
itself be an informative signal about the ambiguity
of the underlying phenomena (Plank, 2022). To
create a reliable gold standard, we introduced the
pre-existing non-expert annotations from Feldhus
et al. (2024) as a third opinion and consolidated all
three label sets to adjudicate disagreements.

The final distribution of teaching acts across the
five knowledge levels is shown in Figure 4. This
newly annotated corpus provides a unique resource
for studying how discourse strategies in explana-
tions are adapted to listeners with varying levels of
prior knowledge.

4 Experiments: Sequence-labeling acts

Having established a richly annotated dataset, a crit-
ical next step is to assess the feasibility of automat-
ing the detection of teaching acts. Automating this

That kinds of notes back to Realism in our history and how Realism was a response to
Romanticism. And Realism was meant to capture the mundane, everyday lives of individuals and
not idealize any of their activities in any way. And | think that that's really important for virtual
reality. | think its kind of rite-of-passage for any kind of our technology to go through.

TOS: Knowledge statement

That kinds of notes back to Realism in our history and how Realism was a response to
Romanticism. And Realism was meant to capture the mundane, everyday lives of individuals and
not idealize any of their activities in any way. And | think that that's really important for virtual
reality. | think its kind of rite-of-passage for any kind of our technology to go through.

T06: Comparison (pink) and TO7: Generalization (azure)

Figure 3: An example of a turn given labeled as different
teaching acts by the two expert annotators.

Teaching Acts

B TO1 - Assess Prior Knowledge TO6 - Comparison
TO2 - Lesson Proposal TO7 - Generalization
m TO3 - Active Experience TO08 - Test Understanding

T04 - Reflection
I TOS5 - Knowledge Statement

EE T09 - Engagement Management

colleague

teenager

4] 20 40 60 80 100
Percentage

Figure 4: Distribution of teaching acts in ReWIRED
across the five knowledge levels.

process is a prerequisite for analyzing instructional
discourse at scale or for developing real-time as-
sistive technologies. We therefore conduct a series
of experiments to evaluate how well modern lan-
guage models can perform this complex, span-level
sequence labeling task.

We frame the task as structured prediction on the
ReWIRED dialogues. Our evaluation compares
three distinct approaches: a fine-tuned baseline
model, large language models (LLMs) in a few-
shot setting, and a fine-tuned LLM.

Models and Setups. As a strong baseline,
we fine-tune BERT-base (Devlin et al., 2019)
for token-level classification using 5-fold cross-
validation, following the setup of Wachsmuth and
Alshomary (2022). We then evaluate large pro-
prietary LLMs—GPT-40 (OpenAl, 2023) and two
versions of Gemini 1.5 (Reid et al., 2024)—using
few-shot prompting. Finally, to directly compare
the effect of fine-tuning on a modern architecture,
we fine-tune GPT-40-mini using the same 5-fold
cross-validation setup. Further details on model
implementation are in Appendix C.

Prompting for Structured Prediction. For the
LLM experiments, we test three different prompt-
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\ Teaching acts | T01 T02 T03 T04 T05 T06 T07 T08 T09 | Macro-F} | Span AL |
| BERT FT | 80.68% 72.15% 87.93% 83.07% 90.18% 8157% 83.75% 82.53% 8031% | 84.17% | -
GPT-40JSON | 35.69 % 49.38% 39.80% 34.60% 6636% 38.76% 39.34% 29.19% 4272% | 41.76% | 36.75%
GPT-40 TANL | 66.69 % 70.39% 63.61% 80.22% 8491% 7510% 7529% 61.96% 70.26% | 72.05% | 6821%
GPT-40 GOLLIE | 7139 % 67.26% 72.83% 7899% 82.70% 79.11% 78.05% 71.66% 67.07% | 74.34% | 73.54%
Gemini 1.5 F TANL | 5339 % 71.65% 77.76% 8586% 86.13% 81.88% 83.73% 63.04% 7483% | 7536% | 74.09%
Gemini 1.5 F GoLLIE | 46.17 % 4595% 59.33% 69.39% 72.82% 6441% 6547% 47.84% 49.89% | 57.92% | 58.80 %
Gemini 1.5 P TANL | 67.11% 7400% 79.97% 79.45% 87.18% 8135% 8203% 53.70% 7751% | 7571% | 69.81%
Gemini 1.5 P GoLLIE | 46.25% 3056 % 53.60% 63.00% 70.56% 47.44% 49.23% 24.88% 48.60% | 48.23% | 49.53 %
GPT-4o-mini FTTANL | 93.64% 97.98% 9523% 99.30% 98.90% 99.03% 98.64% 97.00% 97.28% | 97.44% | 94.63%
GPT-40-mini FTGOLLIE | 98.54 % 98.57% 99.11% 9887% 99.56% 98.14% 100.0% 99.67% 9891% | 99.04% | 9549 %

Table 3: Language models evaluated on the tasks of sequence-labeling teaching acts within dialogue turns from our
ReWIRED dataset. Percentages under each of the acts show micro-F7 scores in a 3-shot or fine-tuning (FT) setting.
Span Alignment (last column) refers to how well the spans extracted by LLMs align with human-annotated spans.

ing paradigms designed to elicit structured, span-
level output:

* JSON: Requesting a list of JSON objects,
each containing a text span and its predicted
label (Wu et al., 2024).

* TANL: An inline tagging format where pre-
dictions are structured as [span | labell]
directly in the text (Paolini et al., 2021).

* GoLLIE: Generating Python-like code where
spans and labels are assigned to data struc-
tures, guided by a schema provided in the
prompt (Sainz et al., 2024).

GPT-40-mini is fine-tuned with 5-fold cross-
validation (same setup as BERT, but with DPO,
learning rate multiplier = 1.8, epochs = 3). De-
tails and examples of these prompts are provided
in Appendix D.

4.1 Results and discussion

Our experimental results, presented in Table 3, re-
veal several key insights into modeling domain-
specific discourse acts.

Few-shot LLMs struggle with structured out-
put and complex acts. Without fine-tuning, LLMs
find the task challenging. The JSON format proved
particularly unreliable, frequently producing mal-
formed output that complicated post-processing
and led to poor performance. While providing few-
shot examples improved output consistency, the
overall results remained low. Switching to more
constrained output formats like TANL and GoL-
LIE yielded substantial improvements, nearly dou-
bling the Macro-F} for GPT-40. This highlights
that for complex structured prediction, the choice
of output format is critical. Even so, performance
varied substantially across models and prompting

styles, with TANL emerging as the best few-shot
approach, but still lagging behind the exceptional
performance of fine-tuning.

Fine-tuning is essential for high performance.
The fine-tuned BERT baseline handily outperformed
all few-shot LLM configurations across nearly ev-
ery teaching act. This underscores the difficulty of
the task and suggests that successfully capturing
nuanced, domain-specific discourse phenomena re-
quires task-specific adaptation.

This conclusion is further reinforced by our final
experiment: the fine-tuned GPT-40-mini achieves
near-perfect scores, with a Macro-F} of up to
99.04% and a span alignment of 95.49%. Rather
than suggesting the task is trivial, this result demon-
strates that fine-tuning is the most effective and
reliable paradigm for this task. It shows that
even a smaller, more efficient LLM, when prop-
erly adapted with in-domain data, can master the
complexities of annotating pedagogical discourse.
For practitioners seeking to automate the analysis
of such dialogues, we strongly recommend fine-
tuning over few-shot prompting.

5 The IXQuisite test suite

While our experiments show that teaching acts can
be reliably annotated with fine-tuning, the presence
of individual acts does not guarantee a high-quality
explanation. A good instructional dialogue must
orchestrate these acts into a coherent and effec-
tive structure. Evaluating this holistic quality is
challenging for standard automated metrics, which
often fail to capture the nuances of conversational
flow and engagement (Deriu et al., 2021).

To address this, we employ and extend
IXQUISITE, a test suite of quality metrics for in-
structional explanations grounded in didactic re-
search (Feldhus et al., 2024). The metrics are di-
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IXQUISITE: Function metrics

Abbr. Category Description Origin Static metric

PK Check for prior The teacher inquires the student about prior knowledge, Kulgemeyer and Schecker (2009), TO1
knowledge background, or what their interests might be Leinhardt and Steele (2005)

MI Mindfulness of com- The teacher addresses common misconceptions Wittwer et al. (2010), Andrews et al. T04
mon misconceptions (2011)

RE Rule-example struc- The teacher states the abstract form of the concept Tomlinson and Hunt (1971) TO5 — T03
ture being taught. Then, the teacher gives some examples

to assist in understanding

ER Example-rule struc- For procedural knowledge, the teacher first provides Champagne et al. (1982) T03 — TO5
ture examples and then derives the general rule from them

EA  Example/Analogy The teacher explains how parts of the analogy/example Ogborn et al. (1996), Valle and TO06
connection relate to the concept being explored Callanan (2006)

UN  Check for understanding  The teacher tests the understanding of the student Webb et al. (1995) TO8

Table 4: Explanation and teaching acts-related measures in IXQUISITE for instructional explanation quality based on
occurrences of classes from our annotation schema. The right arrow between two teaching acts in static metrics
refers to passages where two different acts directly follow one another in this exact sequence.

IXQUISITE: Form metrics

Abbr.  Category Description Origin Static metric
ME Minimal explana- Low cognitive load, e.g. avoid redundancies (ver- Black et al. (1986) Frequency of named entities
tions bosity) such as introducing named entities
LC Lexical complex- The level of difficulty associated with any given  Kim et al. (2016) Frequency of difficult words
ity word form by a particular individual or group
SD Synonym density ~ Children are proven better aligned with consistent ~ Wittwer and Thme (2014) Frequency of synonyms for the n
terminology; experts allow more synonyms terms most connected to the topic
™ Correlation  to  Correlation of teaching act order to prescribed  Oser and Baeriswyl (2002), Edit distance between TO1-T08
teaching model teaching models Krabbe et al. (2015) (asc.) and actual occurrences
AD Adaptation The teacher incorporates prior knowledge, miscon- ~ Wittwer et al. (2010) Inverse frequency of synonyms in
ceptions and interests and uses analogies the text
RL Readability level  Indicator of how difficult a passage is to understand Crossley et al. (2017) Flesch-Kincaid Grade level
CO Coherence How sentences relate to each other to create a log- Lehman and Schraw (2002), Frequency of conjunctions and

ical and meaningful flow for the reader or listener

Duffy et al. (1986)

linking language

Table 5: Categories for instructional explanation quality and associated numerical measures in IXQUISITE.

vided into two categories:

* Function metrics assess the pedagogical
structure of the dialogue. They are calculated
based on the presence, frequency, or sequence
of the teaching acts annotated in our dataset
(e.g., measuring if a Rule is followed by an
Example). These are detailed in Table 4.

* Form metrics evaluate linguistic and stylistic
features of the explanation that impact cogni-
tive load and readability, such as lexical com-
plexity or coherence. These are detailed in
Table 5.

We investigate this suite through three lenses: hu-
man validation, traditional static evaluation, and a
novel prompt-based LLM evaluation.
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5.1 Human Validation of Metrics

Before applying the metrics, we first sought to vali-
date their relevance with our domain experts. As a
follow-up task to the span annotation, we asked our
four annotators to assess each of the 13 metrics for
every dialogue, with reference to the descriptions
provided in Table 4 and Table 5. Using a 3-point
Likert scale, they rated the presence of each metric
and its contribution to the explanation’s quality
for the given knowledge level. This step anchors
our framework in the expertise and judgment of
education professionals.

The results of the annotators’ assessment of met-
ric presence are shown in Figure 5a, based on
the normalized average of the ratings. The anal-
ysis reveals a strong alignment between the per-
ceived presence of most function metrics and the
explainee’s knowledge level. For instance, Check



for prior knowledge (PK), Rule-example (RE), and
Example-rule (ER) structures are rated as more
present in dialogues with less expert explainees.
In contrast, form-based metrics like Adaptation
(AD), Readability (RL), and Coherence (CO) are
consistently rated as important across all levels, in-
dicating that they serve as foundational elements
of any strong explanation.

5.2 Static vs. Prompt-based Evaluation

We then evaluated the dialogues automatically us-
ing two different methods to see how well they
could replicate the nuanced judgments of our hu-
man experts.

Static Evaluation. Our first approach uses
"static" or rule-based calculations. For function
metrics, this involves counting the tokens in the cor-
responding gold-standard teaching act spans (e.g.,
TO1 for PK). For form metrics, we use standard lin-
guistic feature calculations like the Flesch-Kincaid
grade level for readability (RL). The results, shown
in Figure 5b, reveal a key limitation of this ap-
proach. While some form-based metrics (e.g., LC,
SD, RL) show a clear trend across knowledge lev-
els, the function-based metrics appear noisy and
fail to show a consistent correlation. The static
method seems too superficial to capture the func-
tional quality of the instructional discourse.

Prompt-based Evaluation. To overcome these
limitations, we developed a "prompt-based" evalu-
ation framework inspired by Rooein et al. (2024).
Instead of relying on simple counts, we leverage
an LLM’s reasoning capabilities. We prompted
GPT-40 with the full dialogue and asked it to rate
each metric on a scale from O to 10 (e.g., "On a
scale from O to 10, how well does the explainer
check for understanding?").

The results, shown in Figure 5c for the function
metrics, are strikingly different from the static eval-
uation. The prompt-based scores align remarkably
well with the human judgments from our validation
step. There is a clear, graded relationship between
the metric scores and the explainees’ knowledge
levels, especially for PK, EA, RE, and ER. This
demonstrates that an LLM-based "judge" is far
more capable of capturing the nuanced, functional
aspects of instructional quality than simple static
heuristics. For form-related metrics (Appendix
F), the prompt-based scores were high and stable
across levels, confirming the human assessment
that these are universally important. This suggests
a hybrid approach for future work: static metrics

may suffice for form, but evaluating the functional
discourse structure of explanations requires the in-
ferential power of prompt-based LLM evaluation.

6 Discussion

Our findings offer several key implications for the
fields of computational discourse analysis, educa-
tional technology, as well as NLP practices such as
fine-tuning and automated evaluation.

Implications for Discourse Analysis. Our work
treats teaching as a complex, goal-oriented dis-
course phenomenon. By creating a fine-grained,
span-level annotation scheme for pedagogical
strategies, we provide a new lens for analyzing dia-
logue structure. The feaching acts in ReWIRED
can be viewed as a domain-specific set of discourse
relations that govern how instructional conversa-
tions are built. Our dataset, with its unique five-
level structure of explainee expertise, offers a con-
trolled environment to study audience adaptation
at a granular level. Future work can analyze the
typical sequences and flows of these acts to uncover
the “discourse grammar” of effective explanation.

Implications for Educational Technology and
XAIL Our contributions provide a direct pathway
toward more effective and pedagogically-aware Al
systems, e.g.:

* Al Tutors: An automated tutor could use our
models to self-assess its own dialogue strate-
gies in real-time (Wang et al., 2024). If it pro-
duces too many ‘Knowledge Statement‘s with-
out a corresponding ‘Check for Understand-
ing‘, it could adapt its strategy to be more in-
teractive. The IXQUISITE metrics could serve
as a reward function for RL-based dialogue
managers.

* Tools for Human Educators: Our frame-
work could power tools that provide feedback
to trainee teachers. By analyzing a transcript
of a practice lesson, such a tool could high-
light strengths (e.g., “Great use of analogy
here!”) or suggest improvements (e.g., “Con-
sider first checking for prior knowledge.”).

* Advancing Explainable AI (XAI): True XAI
should go beyond presenting information to
actively fostering human understanding. Our
work offers a blueprint for pedagogically
sound explanatory dialogue, shifting the focus
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Figure 5: IXQUISITE results.

from producing static explanations to enabling
interactive and adaptive exchanges (Feldhus
et al., 2023).

Methodological Takeaways for NLP. Finally,
our experiments offer two clear methodological
lessons. First, for complex, domain-specific struc-
tured prediction tasks like identifying teaching acts,
in-domain fine-tuning is critical. It vastly out-
performs even the most capable few-shot LL.Ms,
demonstrating that task-specific adaptation remains
essential for high-fidelity discourse analysis. The
exceptional performance can be explained with
the fact that the ground truth is a consolidation
from multiple annotators. The model is exposed to
many examples of the already consolidated teach-
ing acts, which is in contrast to how human anno-
tators are typically introduced to labeling efforts,

namely with explicit instructions and few-shot ex-
amples. This is reinforced by our observation that
models exposed only to few-shot examples without
fine-tuning performed substantially worse.

Second, our work combines the strengths of two
approaches: from the LLM-as-a-judge paradigm
and static metrics. Our analyses suggest that
for evaluating nuanced pragmatic qualities of dis-
course, leveraging the contextual reasoning of
LLMs is a more promising path forward than rely-
ing on surface-level heuristics. However, it should
be taken into consideration that, depending on
the task, judge models’ agreement with human
annotators can vary across datasets and domains
(Bavaresco et al., 2025). In future work, apply-
ing the same principles across multiple LLMs may
yield different outcomes.
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7 Conclusion

In this paper, we introduced ReWIRED, a dataset
of instructional dialogues significantly extending
prior work with expert, span-level annotations of
teaching acts. We demonstrated that while automat-
ically labeling these acts is challenging for few-shot
LLMs, fine-tuning achieves excellent performance
with both smaller and larger models, establishing
a reliable methodology for analyzing pedagogical
discourse at scale. Furthermore, we proposed a
framework for evaluating the quality of these ex-
planations, showing that while static metrics are
limited for certain dimensions, a prompt-based ap-
proach using LL.Ms as evaluators more effectively
captures how instructional strategies are adapted to
explainees’ knowledge levels.

Our contributions provide a crucial bridge be-
tween pedagogical theory and computational dis-
course analysis. The dataset and validated evalua-
tion suite offer a concrete methodology for building
and assessing systems that engage in instructional
dialogue. This paves the way for a new generation
of applications, from more adaptive and effective
automated tutors to Al-powered tools that provide
feedback to human educators. Ultimately, by mod-
eling the structure of effective teaching, our work
helps advance the broader goal of creating Al sys-
tems that can not only explain, but explain well.

Limitations

We acknowledge that, despite our annotators’ high
expertise in the field of education, some teach-
ing acts seem not as easily distinguishable as the
other act dimensions, resulting in a relatively low
inter-annotator agreement. However, the single
aggregation-based Fleiss’ x score might be too su-
perficial to capture the complexity behind. Ulti-
mately, the annotation variations also convey the
subjectivity of teaching-related explanations, fol-
lowing the idea that human label variation should
be encouraged (Plank, 2022).

Further limitations include that a portion of the
test suite relies on human annotation, which may
introduce inconsistencies. Replicating or extending
the test suite might be difficult without a reliable
teaching act prediction model. Also, the dataset we
present is extracted from videos—audio and visual
elements not present in the transcription. The effi-
cacy of our approach may vary depending on the
complexity and diversity of the multimodal inputs,
if present. Last but not least, the generalizability of

our findings may be constrained by the narrow do-
main of dialogues examined, limiting extrapolation
to broader conversational contexts.

Ethical statement

We do not see immediate ethical concerns regard-
ing research and development. The data included in
the corpus are readily available from WIRED Web
resources. Following the ACM Code of Ethics (1.2,
1.6), all participants consented to be recorded as
far as perceivable from the WIRED web resources,
which are free to use for research purposes. The
four annotators in our study were recruited over
online platforms (LinkedIn, university forum). The
annotation of each dialogue took an annotator an
average of 10 minutes; depending on their work-
load, the annotation duration was between 12 and
20 hours. In our view, the provided prediction mod-
els target dimensions of dialogue turns that are not
prone to misuse for ethically doubtful applications.
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Appendix
A Examples for acts

Figure 6 shows examples from ReWIRED for each
of the acts as provided to the annotators.

B Label distributions

Figure 9 shows the number of distinct acts per dia-
logue turn as per annotated.

C Models

Table 6 lists how the models in §4 were employed.
We used the following GPUs: A100, RTXA6000,
RTX3080. For the BERT fine-tuning, we reinitial-
ized the BERT model for token classification at the
start of every fold (kK = 5) and used a batch size
of 4, an AdamW optimizer with a learning rate of
5% 1076, epsilon of 1 * 10~%, and warmup.

D Prompt design

Figure 10 and Figure 11 depict the prompts used
with LLLMs such as GPT-4o to produce the predic-
tions whose evaluation is shown in Table 3. For
few-shot demonstrations, we first presented the
three preceding turns of the same dialogue (or from
the end of last dialogue if the turn in question is
at the start of a dialogue) and their corresponding
gold spans (in the format required by the respective
prompting paradigm) just as we elicit it from the
model in the zero-shot setup. Figure 12 and Fig-
ure 13 show the results from GoLLIE and TANL
prompts for Gemini 1.5 Pro and GPT-4o, respec-
tively.

E Annotation instructions

To annotators, we provided examples from Ap-
pendix A as well as further delineations of the acts
with examples and descriptions of how to differen-
tiate between them. We also provided a screencast
with instructions on how to use LABEL STUDIO and
walk-through examples for each act. The introduc-
tory text shown to all annotators before watching
the recording and accessing LABEL STUDIO is the
following (unformatted version):

4 )

Your objective is annotating linguistic information
about the multi-layered objectives each person per-
forms when communicating. The dataset is com-
prised of transcribed conversations in which an ex-
pert in a field explains some concept to multiple peo-
ple at varying levels of education: child, teenager,
undergraduate, graduate and expert.

Your task as an annotator will be, given a transcript
of one of these conversations, to use a highlighting
tool to mark which “acts” are present in different
parts of the text. These acts highlight some unspo-
ken objectives present in the text. For example, the
text “Do you understand that?” could be said to
have both an objective of asking a yes/no question
and checking for understanding.

Some of these will be straightforward to label and
say “that is clearly the intention behind that sen-
tence”, while some will be a bit more complicated.
We often have many intentions behind what we say,
and we account for that by letting you tag any seg-
ment of text with as many labels as you see fit, even
none at all.

Your annotation task is about labeling the aforemen-
tioned objectives from the perspective of Teaching
Acts, which focus on conversation mechanics in
terms of lesson planning and didactics.

- J
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Model name #Params URL Training times Inference times

BERT 110M https://huggingface.co/ 13 hours <1 hour
bert-base-uncased

GPT-40-mini ? https://platform.openai.com/docs/ 6 hours 6 hours

(fine-tuned) guides/fine-tuning

GPT-40 ? https://platform.openai.com/docs/ n.a 9 hours
api-reference/chat

Gemini 1.5 ? https://ai.google.dev/gemini-api/docs  n.a 11 hours

Table 6: Language models with parameter counts, training times, inference times, and API costs.

fractals are really nice for computer graphics is because the algorithms that we use

to draw images also have this kind of recursive flavor. What's recursion?
TO1 - Assess...

Undergrad: Recursion is a function that uses itself or calls itself in it's definition. And

basically with that, you can figure out minute details such as searching for a value in

(a) TO1: Assess Prior Knowledge

Explainer: We're gonna talk about some science. Do you like science?
*T02 - Lesson... TO9 - Engage...

Child: Yes, a lot.

*T02 - Lesson...
(b) TO2: Lesson Proposal

Explainer: So here's some toys. We're gonna build some dimensions, right? So what
TO3 - Active...

would you say about this?

Child: That's one dimensional.
TO3 - Active...

(c) TO3: Active Experience

Explainer: Exactly. It's not really one dimensional, right?
TO3 - Active...

Child: So everything has to be one or two dimensionﬁl before it's three dimensional.
*T04 - Reflec...

(d) TO4: Reflection

Explainer: When we were much smaller societies, you and | could trade in our
*TO5 - Knowle...

community pretty easily. As the distance in our trade grew, we ended up inventing

institutions, right? If you Uber or you use Airbnb or you use Amazon even, these are

(e) TOS: Knowledge Statement

Undergrad: How long does this process take?
T06 - Compar...

Explainer: Well, because people who really need to use these subdivision services for
TO6 - Compar...

everything, people who worked hard over the years to make this super, super fast. In

(f) TO6: Comparison

Explainer -
That's right. And we could live there. The world we see around us, the
three dimensions of space around us could reflect the fact that we are
somehow stuck on a three dimensional brane trying to escape.

(g) TO7: Generalization

Explainer B
It's even better. It's the theory of everything. What would you tell a friend
of yours if they asked you what dimensions are, what extra dimensions
are, what a brane is?

(h) TO8: Test Understanding (vermilion) and T05: Knowledge
Statement (blue)

Explainer: That was awesome, Daniel, thank you.

TO9 - Engage...

(1) TO9: Engagement Management

Figure 6: Examples for teaching acts TO1-T09.
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F IXQuisite: additional information

F.1 Annotator’s assessment of contribution of
metrics in each level

Besides validating the presence of each IXQUISITE
metric in every dialogue, annotators were addition-
ally asked to assess their importance/contribution,
especially in regards to the level of knowledge of
the explainee. Figure 7 shows the annotator’s as-
sessment of the importance/contribution of each
metric at each level.

F.2 Form metrics: prompt-based evaluation

Figure 8 presents the results of the prompt-based
evaluation of the form metrics in the dataset. The
results do not exhibit a clear correlation with the
five levels, predominantly falling within the range
of 0.8 to 0.9. This may be attributed to the formu-
lation of the prompts.0.9. This might be related to
the way the prompts were formulated.

F.3 Prompt-based metric questions

Table 7 shows the metrics formulated as questions
for prompt-based evaluation of the explanatory di-
alogues in the ReWIRED dataset according to the
IXQUISITE test suite.

Abbr.  On ascale from 0 to 10...

PK ... how well does the explainer inquire about prior
knowledge?

MI ... how well does the explainer deal with common
misconceptions?

RE ... how well does the explainer state the abstract
form of a statement and then some example to assist
understanding?

ER ... how well does the explainer provide examples
prior to deriving a rule?

EA ... how well does the explainer explain ... how parts
of the analogy/example relate to the concept being
explored?

UN ... how well does the explainer check the understand-
ing of the student?

ME ... how appropriate is the cognitive load for the ex-
plainee’s level?

LC ... how appropriate is the lexical complexity for the
explainee’s level?

SD ... how appropriate is the amount of synonyms and
technical language used for the explainee’s level?

AD ... how well-adapted is the content of the dialogue to
the explainee?

RG ... how appropriate is the readability level for the
explainee’s level?

CO ... how appropriate is the number of conjuction and
subordination for the explainee’s level?

™ ... how coherent is the text for the explainee’s level?"

Table 7: IXQUISITE metrics formulated as questions for
prompt-based dialogue evaluation.
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Figure 7: Annotators assessment on contribution of each metric present in IXQUISITE for each level.
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Figure 8: IXQUISITE form metrics: prompt-based evaluation of the five levels in the dataset.
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Figure 9: Number of unique teaching acts per turn in
ReWIRED. The bar chart reveals that more than half of
all dialogue turns in ReWIRED contain more than one
distinct teaching act.
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# Example label mapping (dialogue acts)
ReWIRED_ta_str_2_int = {

'TO1 - Assess Prior Knowledge': 1,

'T@2 - Lesson Proposal': 2,

'T@3 - Active Experience': 3,

'To4 - Reflection': 4,

'TO5 - Knowledge Statement': 5,

'Te6 - Comparison': 6,

'To7 - Generalization': 7,

'Te8 - Test Understanding': 8,

'T@9 - Engagement Management': 9,

'T10 - Other Act': 0
}
label_schema = ("The label schema consists of the following 10 classes:\n* " + "\n*
— ".join(list(ReWIRED_ta_str_2_int.keys())) + "\n")

Figure 10: Label schema.

system_prompt = (f"You are an expert annotator. ")
read_instruction = (f"Here is one turn from a dialogue between an explainer and a {student_role}
— on the topic of {topic}:\n{turn_text}\n")

task_instruction_JSON = ("Please extract the spans from the turn and assign a label to each of
< the spans. It is possible that the whole turn is just one span, because the act applies to
— 1its entirety. Please present your predictions in a JSON format like this:

< {\n\t{\n\t\t'Span': '...', \n\t\t'Predicted label': '...' \n\t},\n}\n")
task_instruction_TANL = ("Please annotate the spans in the turn by marking them inline using the
— format [ span | label ]. It is possible that the whole turn is just one span if the act

— applies to its entirety.")

task_instruction_GoLLIE = ("Task: Annotate the following text with {TASK_NAME[task]}

« labels.\n\n'docstring += 'Guidelines:\n'docstring += '- Identify spans in the text that

— correspond to the following acts.\n'docstring += '- The act classes are defined below.")

entire_input = system_prompt + read_instruction + label_schema + task_instruction

Figure 11: Simplified version of the Python code showing the span-labeling task prompt for ReWIRED.

Text = "Explainer: \"So machine learning is a way that we teach computers to learn things about
< the world by looking at patterns and looking at examples of things. So can I show you an
— example of how a machine might learn something?\""

labels = [
{'span': "So machine learning is a way that we teach computers to learn things about the
— world by looking at patterns and looking at examples of things."”, 'label':
— 'TO5___Knowledge_Statement'},
{'span': "So can I show you an example of how a machine might learn something?", 'label':
— 'T@2___Lesson_Proposal'},
]
Figure 12: Example for a result from a GoLLIE prompt with Gemini 1.5 Pro.
"Explainer: ""It's a lot of practice and analysis. [Really, an advanced chess player was not
< born an advanced chess player. They have probably hundreds, if not thousands of more games
< in their mind, in their past, in their history that they've analyzed, that they've studied.
— It's like any athlete, you know? | T@7 - Generalization] [I put my weight on this foot, and
— so I wasn't able to hit the shot back that well. So the next time that that happens, I'm
< gonna be more prepared. | T@6 - Comparison]"""

Figure 13: Example for a result from a TANL prompt with GPT-4o0.
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