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Abstract

Large Language Models (LLMs) have demon-
strated remarkable performance across various
NLP tasks, yet they continue to face challenges
in discourse relation recognition (DRR). Cur-
rent state-of-the-art methods for DRR primar-
ily rely on smaller pre-trained language models
(PLMs). In this study, we conduct a comprehen-
sive analysis of different approaches using both
PLMs and LLMs, evaluating their effectiveness
for DRR at multiple granularities and under dif-
ferent data availability settings. Our findings
indicate that no single approach consistently
outperforms the others, and we offer a general
comparison framework to guide the selection
of the most appropriate model based on specific
DRR requirements and data conditions.

1 Introduction

Discourse parsing automatically extracts the under-
lying discourse structure of a text, playing a pivotal
role in various natural language processing (NLP)
tasks. Its utility has been demonstrated in appli-
cations such as machine translation (Chen et al.,
2020), summarization (Xu et al., 2020; Chen and
Yang, 2021; Rennard et al., 2024), and question-
answering (Jansen et al., 2014). Discourse pars-
ing is particularly useful in scenarios that involve
handling complex or large-scale text, such as in
multi-document summarization (Chen et al., 2021;
Li et al., 2020; Liu and Lapata, 2019).

A fundamental task in discourse parsing is dis-
course relation recognition (DRR), which aims
to identify the relation sense between argument
pairs. Typically, argument pairs are made up of text
spans known as elementary discourse units (EDUs).
When connectives are present between argument
pairs (explicit DRR), training a simple classifier on
the connectives can achieve a classification accu-
racy close to 95% (Xiang and Wang, 2023; Pitler
and Nenkova, 2009; Varia et al., 2019). On the
other hand, the task becomes more difficult when

Figure 1: An example of discourse relation parsing in
dialogue, taken from STAC corpus (Asher et al., 2016).

connectives are not present (implicit DRR), and
current approaches for this task struggle to achieve
an accuracy above 80% (Xiang et al., 2023; Zhou
et al., 2022; Chan et al., 2023). To address this chal-
lenge, we explore relation recognition in dialogue
discourse parsing (see Figure 1), where connectives
play a less prominent role, alongside implicit dis-
course relation recognition (IDRR) in monologues.
In dialogue discourse parsing, the argument pairs
are made up of user utterances, and in IDRR, the
argument pairs are made up EDUs.

Recent large language models (LLMs) (e.g.,
ChatGPT (OpenAI, 2022) and GPT-4 (OpenAI
et al., 2024)) have demonstrated remarkable per-
formance on many NLP benchmarks, and display
advanced reasoning and understanding capabilities.
They also exhibit impressive abilities in zero-shot
and few-shot settings (Wei et al., 2022), and can
sometimes be competitive with prior state-of-the-
art fine-tuning approaches (Brown et al., 2020). At
the same time, many studies suggest that LLMs do
not perform as well as small encoder-only models
fine-tuned on specific-tasks (Qin et al., 2023; Lu
et al., 2023).

This is the case for the DRR task on which
LLMs seem to struggle with (Fan et al., 2024;
Chan et al., 2024). Many of the current top-
performing approaches rely on fine-tuning rela-
tively smaller encoder-based pre-trained language
models (PLMs) like RoBERTa (Zhou et al., 2022;
Wu et al., 2023; Xiang et al., 2023, 2022; Li et al.,
2023, 2024a,b).

In spite of these established approaches, it is still
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unclear when it is more effective to use LLMs or
PLMs for DRR. With this in mind, we conduct
a comprehensive analysis of different approaches
for the DRR task, focusing on comparing PLMs
and LLMs under different data availability settings.
For PLMs, we use the data for fine-tuning. For
LLMs, we employ zero-shot prompting, in-context
learning, and a new self-reflection technique we
call confusion-matrix prompting. We explore these
techniques using both monologues and dialogues
with different relation types and granularities.

Confusion-matrix prompting is a novel tech-
nique that uses information from a confusion ma-
trix to inform an LLM about the errors it tends to
make, enabling it to self-reflect and adjust its pre-
dictions accordingly. This is inspired by the many
studies that have shown how LLMs benefit from
self-reflecting on and improving their initial gener-
ation (Madaan et al., 2023; Fernando et al., 2023;
Welleck et al., 2023; Shinn et al., 2023), as well as
learning from their mistakes (Zhang et al., 2024).

Our work advances the understanding of fine-
tuning PLMs and various prompting techniques
with LLMs in the context of DRR, across different
dataset sizes and multiple relation sense granulari-
ties. Key takeaways include: (1) Zero-shot prompt-
ing leverages inherent knowledge embedded in
LLMs and performs better than other techniques
when there is little available data; (2) Confusion-
matrix prompting achieves optimal performance
when there is insufficient data for fine-tuning, but
enough to surpass zero-shot performance; (3) Fine-
tuned PLMs excel in scenarios with increased data,
and is robust across various datasets regardless of
complexity or number of relation senses.

2 Methodology

To simulate different data availability settings, we
extract seven subsets of training datasets, each with
different sizes. For each subset, we randomly se-
lect a certain number of examples for each relation
sense. We start with a single example per relation
sense, and increment the number up to 250 exam-
ples per relation sense. When a specific relation
sense does not enough examples available, we ran-
domly select the remaining examples from other
relation senses to satisfy the target example count.

Next, we employ fine-tuning and prompting tech-
niques that leverage these subsets for the DRR task,
assessing how each performs across different data
volumes.

• Fine-tuning (FT). We fine-tune an encoder-
only PLM to encode the representation of
argument pairs and predict a relation sense.
Our representation of argument pairs follows
the template from Zhou et al. (2022): Arg1:
<Arg1>. Arg2: <Arg2>. In summary,
the discourse relation between Arg1
and Arg2 is

• Zero-shot (ZS). Without using any annotated
data, we frame the problem as a zero-shot fill-
in-the-blank prompt to a LLM. Our prompt
follows the same format as FT.

• In-context learning (ICL). Input-label pairs
from the dataset are incorporated directly
into the LLM’s prompt to leverage in-context
learning. Typically, in-context learning ap-
proaches manually select the input-label pairs
to ensure high-quality examples. However, in
our approach, we use randomly selected pairs
from the dataset to maintain consistency with
our other techniques. Due to the limited input
context length of the early GPT-3.5 version,
we cannot include examples for all data avail-
ability settings, particularly for larger num-
bers of examples per relation sense, e.g., >25
examples per relation sense for PDTB top-
level experiment.

• Confusion-Matrix Prompting (CMP). Us-
ing the dataset, we collect zero-shot perfor-
mance of the LLM in the form of a confu-
sion matrix, recording the model’s predictions
against the true labels. This confusion matrix
allows us to determine how often the model
correctly predicts a relation, and how often it
confuses it with another relation. During in-
ference, we first let the model make its initial
prediction. Based on this prediction we formu-
late a follow-up prompt using the confusion
matrix, informing the model of its prediction
accuracy and common mistakes. We provided
this prompt as a follow-up, giving the model
a chance to self-reflect and correct it’s initial
prediction (see Appendix A for an example).

3 Experimental Setup

Monologue Data: The Penn Discourse Treebank
3.0 (PDTB 3.0). PDTB 3.0 is an annotated cor-
pus of discourse relations that come from Wall
Street Journal articles (Webber et al., 2019). It
uses 3 hierarchies of relation senses, and contains
both implicit and explicit relation types. For our
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Figure 2: Comparisons of Macro F1 scores of FT, ZS,
ICL, and CMP techniques across increasing numbers
of examples per relation sense on PDTB top-level. The
number of ICL examples is restricted to up to 25 due to
the input context length of GPT-3.5.1

experiments, we use the four top-level and twenty
second-level implicit relation senses, with a test set
of 1,538 examples.

Dialogue Data: STAC. STAC is a corpus of
multi-party dialogues collected from an online
game called The Settlers of Catan (Asher et al.,
2016). The dialogues are annotated in the style
of Segmented Discourse Representation Theory
(SDRT), which uses sixteen relation senses (Asher
and Lascarides, 2003). The test set consists of
1,128 examples.

Implementation Details. The fine-tuning experi-
ments were conducted using RoBERTa-base (Liu
et al., 2019). We selected this lightweight model
for its strong performance on the DRR task. We
employ a learning rate of 1e − 5 and trained the
model for 20 epochs with early stopping based on
performance on the development set. To ensure ro-
bustness of our results, we repeat each experiment
over 10 random seeds and report the average score.

ZS, ICL and CMP experiments were done us-
ing GPT-3.5 Turbo. We report the average of our
results over 5 random seeds. Additionally, prelim-
inary experiments were performed on Mistral 7B
(Jiang et al., 2023), and indicated a similar trend of
improvement in performance.

4 Results and Analysis

The results of our experiments are displayed in
Table 1 and illustrated in Figures 2, 3, and 4 for

1Logarithmic scale is used for the x-axis

Figure 3: Comparisons of Macro F1 scores of FT, ZS,
ICL, and CMP techniques across increasing numbers of
examples per relation sense on PDTB second-level. ICL
examples is restricted to 1 example per relation sense. 1

Figure 4: Comparisons of Macro F1 scores of FT, ZS,
ICL, and CMP techniques across increasing numbers of
examples per relation sense on STAC. ICL examples is
restricted to up to 5 examples per relation sense. 1

PDTB top-level, second-level, and STAC corpus,
respectively. Our analysis primarily uses Macro F1
scores, though similar trends are observed for accu-
racy (relevant figures are included in Appendix B).

In general, ZS is consistently the better tech-
nique for lesser amounts of data. As the number of
examples per relation sense increases, fine-tuning
(FT) demonstrates constant improvement and soon
surpasses ZS, underlining the benefits of the tech-
nique. While CMP starts out with lower perfor-
mance, it has shown to improve and eventually
surpass ZS at higher data volumes. ICL, on the
other hand, exhibits underwhelming performance
across all datasets.

The observed trends indicate that ZS, which re-
lies on inherent discourse knowledge embedded in
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Number of Training Examples Per Relation Sense (always zero for ZS)
1 5 10 25 75 125 250

Technique Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1
PDTB Top-Level (4 relation senses)

FT 20.9 8.2 22.7 9.1 22.9 14.7 34.5 30.3 39.9 37.7 43.1 41.2 51.7 49.3
ZS 42.8 29.4 42.8 29.4 42.8 29.4 42.8 29.4 42.8 29.4 42.8 29.4 42.8 29.4
ICL 40.8 27.6 39.6 28.1 33.1 23.0 18.5 14.2 - - - - - -
CMP 22.5 19.6 33.1 26.2 35.4 28.1 39.5 32.4 42.0 32.9 42.1 34.3 42.3 33.7

PDTB Second-Level (20 relation senses)
FT 5.6 0.7 6.2 1.2 15.0 13.2 25.4 22.0 38.4 31.1 42.6 34.5 50.1 35.9
ZS 17.8 6.9 17.8 6.9 17.8 6.9 17.8 6.9 17.8 6.9 17.8 6.9 17.8 6.9
ICL 9.1 4.7 - - - - - - - - - - - -
CMP 11.5 5.3 13.9 6.0 13.4 6.5 11.7 7.1 19.3 8.7 19.5 8.7 20.5 8.7

STAC (16 relation senses)
FT 4.3 0.7 20.0 12.8 31.0 20.8 39.9 29.4 46.5 33.2 53.0 40.7 59.1 44.6
ZS 24.9 18.1 24.9 18.1 24.9 18.1 24.9 18.1 24.9 18.1 24.9 18.1 24.9 18.1
ICL 20.6 12.8 17.2 10.2 - - - - - - - - - -
CMP 16.2 11.0 14.9 12.5 16.2 12.9 19.3 15.0 21.6 16.6 22.1 16.5 26.8 17.9

Table 1: Accuracy (Acc) and Macro F1 (F1) scores of FT, ZS, ICL, and CMP techniques on different numbers of
examples per relation sense. The best results for each technique are bolded. The - values indicate that we were
unable to experiments due to input length limitations.

the model, is the highest performing technique for
DRR in low data availability scenarios. When con-
sidering ZS performance across the datasets, the
performance diminishes for more complex prob-
lems where there are greater numbers of relation
senses. ZS achieves higher performance on top-
level PDTB, with 4 relations senses, and lower
performance on STAC, with 16 relation senses,
and even lower performance in second-level PDTB,
with 20 relation senses. This increased difficulty
highlights the limitations of relying solely on pre-
trained knowledge.

FT scales very well with the data and always
emerges as the most effective technique as data
availability increases. Notably, the accuracy and
F1 scores achieved by FT are relatively consistent
across the different datasets. Unlike in ZS, we
do not see a similar drop in performance as the
number of relation senses increases. From this,
we can gather that a more complex task does not
proportionally impact the performance of PLMs
the same way it does for LLMs.

CMP begins to outperform ZS as dataset sizes in-
crease, showing that it is optimal when the amount
of data is insufficient for fine-tuning, or if fine-
tuning is not a viable option. In scenarios involving
smaller datasets, the volatility of the confusion ma-
trix is less representative of model performance, of-
ten causing a drop in performance. However, as we
use larger datasets, the confusion matrix provides

a more accurate depiction of the model’s errors
and overall performance. This allows CMP to help
the LLM learn from its past performance and start
outperforming ZS.

Furthermore, CMP proves to be more effective
in the more complex datasets with larger numbers
of relation senses. This effectiveness is attributed
to the technique being beneficial when there are
more potential mistakes that the LLM can make.

The results observed from ICL gives poor re-
sults, which is likely due to the random selection of
examples and context length limitations. It never
outperformed ZS, and the performance decreases
as the datasets get larger, as if adding more data
into the prompt makes it more difficult for the LLM
to effectively process.

5 Conclusion

In order to identify the optimal techniques for DRR
under different data availability settings, we per-
form an analysis on how these techniques perform
with varying amounts of data. The techniques we
explore include fine-tuning for PLMs, and various
prompting techniques with LLMs. In our exper-
iments, we find that in low data availability sce-
narios, zero-shot prompting performs best. CMP
achieves the best performance when there is more
data available, but not enough for effective fine-
tuning. When we have more data, fine-tuning
PLMs dominates, and performance is not affected
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by more complex relation sense granularities. Un-
expectedly, ICL is always dominated by ZS.

In future work, we plan to further investigate the
trade-off between PLMs and LLMs for discourse
processing tasks. We would like to extend this work
by conducting further experiments on more pow-
erful LLMs, more specific ICL techniques such as
similarity-based selection, as well as more complex
tasks such as discourse parsing. Additionally, we
would like to explore self-reflection learning tech-
niques for LLMs as we have found quite promising
results. The methodology and experimental frame-
work we have designed and implemented 1 will be
critical in facilitating these further investigations
by us and other researchers.

6 Limitations

In our experiments, we consider GPT-3.5 Turbo
and RoBERTa-base as representatives for LLMs
and PLMs, respectively. While these models serve
as good representatives, exploring more powerful
models would further strengthen our study. Further-
more, due to the lack of annotated data, our experi-
ments were limited to two English datasets: PDTB
3.0 and STAC. These limitations highlight areas for
future research to provide a more comprehensive
understanding of discourse relation recognition
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A Confusion-Matrix Prompting
Examples

User: Arg1: Coupons and a newsletter will
be mailed. Arg2: And the sponsor will
be able to gather a list of desirable
potential customers.
In summary, the discourse relation
between Arg1 and Arg2 is

Model: Expansion

User: Arg1: Coupons and a newsletter will
be mailed. Arg2: And the sponsor will
be able to gather a list of desirable
potential customers.
The initial prediction for the discourse
relation between Arg1 and Arg2 was
Expansion. 27% of the time when
Expansion was predicted, the correct
answer was Expansion. 27% of the time
when Expansion was predicted, the correct
answer was Contingency. 24% of the time
when Expansion was predicted, the correct
answer was Temporal. 20% of the time
when Expansion was predicted, the correct
answer was Comparison. Considering this
information, what is the relation sense?

Model: Contingency

Figure 5: Comparisons of accuracy of FT, ZS, ICL, and
CMP techniques across increasing numbers of examples
per relation sense on PDTB top-level. 1

Figure 6: Comparisons of accuracy of FT, ZS, ICL, and
CMP techniques across increasing numbers of examples
per relation sense on PDTB second-level. 1

B Accuracy Comparisons of Techniques

1Logarithmic scale is used for the x-axis
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Figure 7: Comparisons of accuracy of FT, ZS, ICL, and
CMP techniques across increasing numbers of examples
per relation sense on STAC. 1
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