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Abstract

Parameter-efficient methods like LoRA have
revolutionised large language model (LLM)
fine-tuning. ReLLoRA extends this idea to pre-
training by repeatedly merging and reinitialis-
ing low-rank adapters, increasing cumulative
rank while keeping updates cheap. This aligns
well with observations that high-capacity mod-
els learn through locally low-rank trajectories
that expand over time. By contrast, recent work
suggests that small language models (SLMs)
exhibit rank deficiencies and under-utilise their
available dimensionality. This raises a natu-
ral question: can ReLoRA’s rank-expanding
update rule steer SLMs toward healthier learn-
ing dynamics, mitigating rank bottlenecks in a
capacity-constrained regime? We argue SLMs
are an ideal testbed: they train quickly, enable
controlled ablations, and make rank phenom-
ena more measurable. We present the first
systematic study of ReLoRA in SLMs (11M-
66M parameters), evaluating both performance
and learning dynamics. Across loss, Paloma
perplexity, and BLiMP, we find that ReLoRA
underperforms full-rank training, with gaps
widening at larger scales. Analysis of pro-
portional effective rank and condition num-
bers shows that ReLoRA amplifies existing
rank deficiencies and induces ill-conditioned
updates early in training. Our results suggest
that while ReLoRA’s merge-and-restart strategy
can expand ranks in larger models, it does not
straightforwardly translate to capacity-limited
SLMs, motivating adaptive-rank or hybrid-rank
approaches for low-compute pretraining.
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1 Introduction

Contemporary work on language modelling has
continually prioritised ever-larger scales, deliver-
ing remarkable capability gains (Chowdhery et al.,
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2023; Grattafiori et al., 2024; OpenAl, 2024). How-
ever, the computational and environmental costs
of large-scale language modelling are substantial
(Chowdhery et al., 2023; Grattafiori et al., 2024;
Morrison et al., 2024; OpenAl, 2024). Small lan-
guage models (SLMs) offer a complementary path:
they are cheap to train and deploy, easier to study,
and attractive for settings where safety, privacy, or
energy constraints dominate (Schwartz et al., 2020).
However, SLMs lag in quality due to tight capacity
limits and brittle optimisation (Mielke et al., 2019;
Ettinger, 2020; Kaplan et al., 2020).

A rank-centric view of learning. A growing
body of work frames transformer learning through
the lens of the rank of model weights. In high-
capacity models, training often proceeds via low-
rank updates that gradually expand effective rank
(Aghajanyan et al., 2021; Boix-Adsera et al., 2023).
Conversely, SLMs show rank deficiencies and
anisotropic representations that restrict gradient
flow and under-utilise model dimensionality (Noci
et al., 2022; Diehl Martinez et al., 2024; Godey
et al., 2024a). From this perspective, methods that
shape the rank profile of updates could directly
influence optimisation quality and final capability.

LoRA. LoRA (Hu et al., 2022) has been widely
used due to its effectiveness and applicability to
any model with matrix computations, enabling
straightforward fine-tuning of even the largest mod-
els (Blattmann et al., 2023; Dettmers et al., 2023;
Fomenko et al., 2024). LoRA introduces low-rank
adaptation, where the pretrained model weights are
frozen, and fine-tuning is performed with trainable
rank decomposition matrices at each layer of the
architecture, thus significantly reducing the number
of trainable parameters.

ReLoRA. ReLoRA, proposed by (Lialin et al.,
2023), aims to leverage LoRA’s overwhelming
success in low-rank adaptation for fine-tuning to
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advance efficient pretraining. It does this by in-
jecting low-rank LoRA-style matrices into a lan-
guage model, then repeatedly merging and reinitial-
ising them throughout the training process, thereby
parametrising gradient updates through the merge
operations at each restart. The method is tested on
models with 60M to 1.3B parameters, improving
training speeds and reducing GPU memory foot-
prints, especially at the higher end. However, re-
search for models even smaller than this is limited.

Why ReLLoRA might help SLMs. Small trans-
former models suffer from rank deficiencies in their
weight matrices, limiting the subspace they can ex-
plore during training (Diehl Martinez et al., 2024).
ReLoRA (Lialin et al., 2023) periodically merges
low-rank adapters into the base weights and reini-
tialises them. Summing distinct low-rank updates
increases the rank of the cumulative update, poten-
tially widening the subspace explored over train-
ing. If SLMs struggle because their updates remain
trapped in low-rank bottlenecks, then an explicit
rank-expansion mechanism could steer them to-
ward healthier dynamics, improving sample effi-
ciency and language competence in the low com-
pute regime. This provides the intuition behind our
methodology.

Why test this in SLMs? SLMs are fast to train,
enabling careful ablations across model structure
alongside detailed diagnostics such as effective
rank and condition number that would otherwise
be prohibitively costly in billion-parameter mod-
els. Their capacity limits also amplify rank phe-
nomena, making both benefits and failure modes
easier to detect. Therefore, SLMs are a sensitive
and economical sandbox for understanding how
rank-structured updates shape learning.

This work: research question. In this work, we
ask whether ReLoRA’s rank-expanding merge-and-
restart methodology actually helps in the capacity-
constrained regime. In other words, does ReLoRA
boost performance or drag it down? The case for
either can be summarised as follows:

Boost: By strategically resetting and merging
LoRA matrices, ReLoRA aggregates multiple low-
rank steps, which may widen those bottlenecks and
enable smaller models to capture more complex
patterns

Drag: However, ReLoRA may also have the
opposite effect: further reducing the (already lim-
ited) representational capacity of SLMs.

This work: outline of methodology and results.
We extend a Llama-style SLM (Touvron et al.,
2023; Diehl Martinez, 2025) with ReLoRA and
run matched ablations at 11M and 66M parameters.
We evaluate training loss, Paloma perplexity (Mag-
nusson et al., 2024), and BLiMP (Warstadt et al.,
2020), and additionally probe learning dynamics
via proportional effective rank (PER) and condition
numbers of both weights and updates. Contrary to
the motivating intuition, ReLoRA does not boost
SLMs: it underperforms full-rank training and rein-
forces rank deficiencies, with early training marked
by highly ill-conditioned updates. We thus con-
clude that the mechanism that helps larger models
does not straightforwardly transfer to SLMs.

This work: contributions. Our contributions are
as follows:

(1) Novel systematic evaluation of ReLoRA for
small language models (SLMs). We inves-
tigate ReLoRA on 11M and 66M parameter
models, filling a critical gap in understand-
ing its behaviour for low-compute domains.
We make two public code contributions: a
public HuggingFace spaceto be used for eval-
vating LMs on the BLiMP task through
the evaluate library and a public fork,
pico-relora, of pico-train (Diehl Mar-
tinez, 2025) extending pico-decoder with
ReLoRA.

(2) Comprehensive analysis of learning dynam-
ics. We compute proportional effective rank
(PER) and condition numbers of weights and
gradient updates throughout training, reveal-
ing that ReLoRA consistently reduces rank
and induces highly ill-conditioned updates in
SLMs.

(3) ° Drag: Evidence of performance degrada-
tion and training instability. Across loss,
Paloma perplexity, and BLiMP evaluation,
ReLoRA underperforms its full-rank baseline,
with widening gaps as model size increases
from the tiny to small scales. Our findings
suggest that low-rank strategies do not triv-
ially transfer to SLMs and thus motivate hy-
brid or adaptive-rank approaches for future
low-resource model training.
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Figure 1: LoRA decomposition (Hu et al., 2022), which can be applied to any linear operation parameterised by a

matrix

2 Background: ReLoRA

We now introduce ReLoRA, a method utilising low-
rank updates to train high-rank neural networks
more efficiently (Lialin et al., 2023).

Motivation: LoRA to ReLoRA. ReLoRA is
based on LoRA, a vastly successful parameter-
efficient fine-tuning technique which leverages
‘LoRA decomposition’ matrices to effectively fine-
tune even the very largest models (Hu et al., 2022;
Fomenko et al., 2024). Given LoRA’s success,
(Lialin et al., 2023) propose ReLoRA, which ap-
plies the same decomposition methodology to the
pretraining of an LM, providing competitive per-
formance for significantly less compute.

LoRA decomposition. In a neural network, a
linear operation parameterised by W € R™*"™ ap-
plied to a token x € R™ has a gradient denoted
AW. After a gradient update, the output of the
linear operation is changed by (W + AW)z =
Wz 4+ AWz . LoRA proposes decomposing the
gradient update AW to two matrices W4 € R"™*"
and Wp € R™*", for some very small LoRA pa-
rameter r < min(m,n) and scaling parameter s,
as shown in Equation 1 and Figure 1. These matri-
ces are known as adapters.

AW = sWpWy (D
For small r, the number of parameters being di-
rectly updated is r(m + n) < m - n.

LoRA is implemented by injecting trainable lin-
ear layers parameterised by W and Wp into the
model. Throughout this work, we refer to W4 and
Wg collectively as the LoORA module, and W as
the base matrix.

ReLoRA extends LoRA decomposition by in-
troducing restarts. This is motivated by a core

property of matrices: for some matrix A, there
exists a matrix B such that

rank(A + B) > max (rank(A), rank(B)) (2)

This means that combining different low-rank up-
dates can result in a higher-rank update overall.

ReL.oRA proposes periodically restarting
LoRA’s low-rank adapters. At each restart, the
low-rank matrices W4 and Wp are merged back
into W (by adding WgW 4 to W), and reinitialised
for further training. After N such restarts, the
cumulative update AWg is thus

N
AWe = sy WEW) 3)

i=1

where each pair of W and W} comes from a
distinct stage of ReLoRA in between each restart,
and s is a scaling parameter. This assumes that the
LoRA modules have identical rank r. The equation
only holds for AdamW (Loshchilov and Hutter,
2019) without weight decay on W, thus requiring
the optimisation modifications described below.

This strategy effectively increases the rank of the
total update AWg even though individual terms re-
main low-rank. As a result, ReLoRA can represent
more complex updates than LoRA with the same
number of trainable parameters per step, achieving
higher representational effectiveness while main-
taining parameter efficiency. The motivation for
this approach is grounded in prior observations that
neural network training often operates in a locally
low-rank regime (Aghajanyan et al., 2021; Boix-
Adsera et al., 2023). Understanding how these low-
rank dynamics evolve requires situating ReLoRA
within the broader literature on rank growth and
intrinsic dimensionality.

3 Background: Rank Dynamics

Lialin et al. (2023) measure the singular value spec-
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tra produced by models trained with ReLoRA and
find that these models resemble models trained with
normal full-rank training, particularly when com-
paring larger singular values. While these results
suggest that ReLoRA can retain some of the rep-
resentational richness of full-rank training, its be-
haviour in much smaller models remains untested.

This is particularly relevant in light of prior work
on intrinsic dimensionality, which measures the
minimal number of parameters required to solve a
task to a given accuracy. Aghajanyan et al. (2021)
show that large pretrained LMs occupy surpris-
ingly low-dimensional subspaces when fine-tuned,
sometimes requiring only a few hundred effective
parameters. Yet these measurements are limited to
a 125M-parameter ROBERTagasg (Liu et al., 2019)
and focus on fine-tuning rather than pretraining.
In the pretraining domain, Diehl Martinez et al.
(2024) find that smaller models in general tend to
use their available capacity less effectively than
larger models.

Relatedly, studies of rank dynamics in transform-
ers have shown two interesting effects: first, weight
matrices tend to increase in effective rank gradually
over training (Boix-Adsera et al., 2023), expanding
their representational capacity; second, at the same
time, “rank collapse” at initialisation can severely
limit early gradient flow in key and query projec-
tions (Noci et al., 2022). These findings suggest
that the ability to build rank over time is impor-
tant for model quality. How ReLLoRA intersects
with these findings in the context of small language
models is an open question and the subject of this
paper. We hypothesise two possible effects.

ReLoRA’s repeated low-rank resets could either
boost performance and facilitate rank growth by
exploring new subspaces, or drag performance by
exacerbating rank bottlenecks in small models. Un-
derstanding which effect dominates requires prob-
ing ReLLoRA in precisely these capacity-limited
regimes.

4 Methodology

The model implementations and training code are
forked from pico-train (Diehl Martinez, 2025), a
lightweight framework for training language mod-
els. pico-train implements pico-decoder, a
Llama-style decoder (Touvron et al., 2023) illus-
trated and described in Figure 7 in Appendix A.
pico-decoder is extended with an implementa-
tion of ReLoRA (Lialin et al., 2023) to form

Model Trainable params Total params
t-dec 11,282,784 11,282,784
s-dec 64,595,328 64,595,328
t-rel 10,060,128 11,682,144
s-rel 40,240,512 66,192,768

Table 1: Trainable and total numbers of parameters for
the tiny and small models. t = tiny, s = small, dec
=decoder, rel = relora.

pico-relora. The comparison of these two mod-
els forms the basis of the methodology presented
in this paper.

4.1 Experimental setup

The experimental setup is as follows: We execute
two pico-relora training runs at tiny and small
scales to compare to equivalent (other than the pres-
ence of ReLoRA) baseline pico-decoder models.
This forms a targeted ablation study, consisting of
four runs at two scales, by which the behaviour of
ReLoRA in small language models can be system-
atically analysed. The runs’ respective numbers of
trainable and total parameters are shown in Table 1.

The runs were executed for 20,000 batch steps
each, resulting in each model encountering a total
of 41.9B tokens throughout training. Training in-
frastructure and experiment runtimes are described
in Appendix B.

Table 2 depicts the configuration parameters for
ReLoRA, with the full configurations shown in Ta-
bles 4, 5 and 6 of Appendix C. These are identical
between the two runs. ReLoRA modules are in-
jected into each linear layer of the attention and
feed-forward layers. The modules are set to use
a fixed (trainable scaling is set to False) scaling
parameter s = % = % = 2, a dropout probabil-
ity of 0.1 and an internal LoRA parameter 7 of 16.
ReLoRA resets are configured to occur every 2000
optimiser steps. These values are based on the
ones in Lialin et al. (2023). We omit the 20k step
full-rank warm-start for a purer analysis of learning
dynamics and to avoid the additional computational
overhead.

ReLoRA restarts require modifications to
the optimiser and learning rate scheduler.
pico-decoder uses AdamW (Loshchilov and Hut-
ter, 2019) as its optimiser, which includes moments
accumulated over previous gradient update steps in
its parameter update calculations. Update step ¢ + 1
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Parameter Value

Target modules attention & swiglu

Reset frequency 2000
r 16
Trainable scaling False
« 32
Dropout 0.1

Table 2: ReL.oRA configuration for training runs. 7
is the LoRA parameter, and o configures the scaling
parameter s according to s =

will thus still be guided by gradients calculated
in step ¢. Therefore, ReLoRA randomly prunes
a (configurable) proportion of the optimiser states
(around 99% of them) to zero to prevent continuing
in the same trajectory as before the reset, which
could hinder learning new subspaces. The learning
rate is simultaneously set to zero to avoid diver-
gent losses and linearly ‘re-warmed’ according to
a jagged cosine scheduler. The two learning rate
schedulers are illustrated in Figure 8.

4.2 Training and evaluation datasets: Dolma,
Paloma and BLiMP

Training on Dolma, a three-trillion-token En-
glish dataset. pico-train is setup to use a pre-
tokenised, pre-shuffled version of Dolma (Soldaini
et al., 2024), an open-source, three-trillion-token
English dataset.! Dolma is composed of scientific
writing, website content, computer code, books in
the public domain, social media data and material
from encyclopedias. Dolma considers both ethi-
cal and legal issues throughout the data curation
process, avoiding sources that contain copyrighted
materials or personally identifiable information.

Perplexity is computed on the Paloma bench-
mark dataset. In this work, perplexity is com-
puted on Paloma, a benchmark dataset that mea-
sures LM fit over 546 different English and com-
puter code domains (Magnusson et al., 2024).
The goal of Paloma is to avoid the assump-
tion that an LM suited to one domain will gen-
eralise well to others. It uses stratified sub-
sampling based on empirical estimates of vari-
ance, ensuring domains are equally represented.
Paloma contains 123,683,201 tokens across its test
and validation splits; thus, a subsampled version

'This version of Dolma is made available on Hugging-

Face here: https://huggingface.co/datasets/pico-1m/
pretokenized-dolma.

of the corpus, termed palomy-tinsy? is used.
Like pretokenized-dolma, palomy-tinsy is pre-
tokenised and pre-shuffled. It consists of 1.44 thou-
sand data points in a single validation split.

Evaluating linguistic understanding with
BLiMP. The Benchmark of Linguistic Minimal
Pairs for English (BLiMP) is a ‘challenge set’
for evaluating the understanding of significant
grammatical phenomena in English (Warstadt
et al., 2020). BLiMP is composed of 67 distinct
datasets, in turn consisting of 1000 minimal pairs,
such as ‘there was [bound / unable] to be a fish
escaping’. For each minimal pair in BLiMP, one
sentence is deemed grammatically acceptable,
and the other is considered unacceptable. Each
set of minimal pairs targets a specific linguistic
phenomenon. The 67 phenomena are aggregated
further into twelve broader categories. A model
evaluated on BLiMP is expected to assign a higher
log-likelihood to the acceptable sentence for each
minimal pair in the dataset. Its final score is
simply the proportion of minimal pairs for which it
correctly prefers the acceptable sentence.

5 Results and evaluation

5.1 Main evaluation

This section examines the training trajectories of
the four models, providing an overview of their
learning processes at a high level. Figure 2 depicts
each model’s cross-entropy loss, Paloma perplex-
ity and overall BLiMP score throughout training,
measured against effective GPU hours.

As Figure 2 illustrates, pico-relora per-
forms almost identically to pico-decoder on
the tiny scale, with a more pronounced differ-
ence for small. This difference is larger for
loss than for perplexity. The loss values in the
pico-relora models show small spikes, coincid-
ing with ReLoRA restarts, which lead to a localised
training instability that the models quickly recover
from.

pico-decoder deviates from the expected per-
plexity trajectory in the tiny run, likely due to
the model finding a suboptimal local minimum.
pico-relora does not experience the same devia-
tion, which may indicate higher training stability,
but this can only be confirmed by executing addi-
tional training runs. This highlights an important

This pre-processed, subsampled dataset is avail-

able here: https://huggingface.co/datasets/pico-1m/
pretokenized-paloma-tinsy.
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Figure 2: Training trajectories of cross-entropy loss,
Paloma perplexity and BLiMP score across the tiny
and small models, plotted against GPU hours taken

limitation of the results throughout this work: only
one training run was executed for each model due
to time and computational restrictions.

Further to the above findings for loss and per-
plexity, the pico-relora models underperform on
BLiMP even more, with pronounced differences
at the small scale. These results are significant
at the 1 x 1070 level, according to a proportion
Z-test set up with an alternative hypothesis that the
pico-decoder models perform better.

5.2 Analysis

In this section, given pico-relora’s underachieve-
ment, we strive to identify the inherent properties
of the model’s training dynamics that may have
caused the observed performance drag. To do so,
we make use of the ‘residual stream’ framework
(Elhage et al., 2021) through analysis introduced
in Diehl Martinez et al. (2024).

5.2.1 Preparation

The ‘residual stream’ framework for analysing
LMs. The ‘residual stream’ is a mathematical
framework for analysing autoregressive decoder-
only LMs (Elhage et al., 2021), which focuses on
‘residual connections’. The framework considers
residual blocks composed of an attention layer and
a feed-forward layer, omitting layer normalisation
for simplicity. Each of these layers ‘reads’ from the
residual stream with a linear projection and then
‘writes’ back to it using another linear projection.

Splitting attention head terms into ‘Output-
Value circuits’. Attention heads can be concep-
tualised as being composed of two essentially inde-
pendent calculations: a ‘Query-Key’ circuit, which

calculates the attention pattern, and an ‘Output-
Value’ (OV) circuit, which computes the amount a
given token affects output logits (if it is attended to)
(Elhage et al., 2021). The OV circuit is calculated
by taking the matrix product of the Output and
Value matrices. OV circuits, despite being parame-
terised separately, may be considered as individual,
low-rank matrices. We focus on the OV circuit as it

‘writes’ to the residual stream, a part of the model

that has been shown to suffer from performance
bottlenecks via the output representations of the
model (Godey et al., 2024b).

Learning dynamics & investigated parameters.
Following this, learning dynamics analysis is per-
formed on certain activations and parameters of the
models’ attention and feed-forward layers. Specifi-
cally, we choose to analyse activations and parame-
ters that ‘write’ to the residual stream, namely the
OV circuit and SwiGLU W5 layers (Elhage et al.,
2021). Therefore, their behaviour has a salient in-
fluence on the evolution of internal representations
across layers. This makes them particularly valu-
able probes for rank bottlenecks and deficiencies.

5.2.2 Proportional effective rank

Given what we know about the rank deficiencies
in smaller models, we aim to investigate how they
behave and evolve. To achieve this, we utilise PER
(Diehl Martinez et al., 2024), a metric that enables
size-agnostic comparison of the effective rank of
parameter weight matrices. We measure PER on
the weight matrices in the feed-forward and atten-
tion layers that parameterise the ‘writes’ back to
the residual stream. PER is given by Equation 4
below.

Let the parameter at layer [ be 0, €
RmodelXdinter where der i the dimension of the
intermediate representations in either the attention
or feed-forward layers.

ER(6
- () @
inter
where ER (Roy and Vetterli, 2007) is the effective
rank metric defined in Equation 5

k
ERO exP( > ol |a|1> ©

where o0 = (01...0¢q) is the vector of singular
values of ¢; (in ascending order) and ||-||, is the {;
norm. Stated differently, ER is the entropy com-
puted over the normalised singular values of the
weight matrix 6;.

PER(6;) =
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PER of pico-relora’s weights declines through-
out training. Figure 3 shows the layer-averaged
PER of the OV Circuit and SwiGLU W5 ma-
trix during training, highlighting clear differences
between pico-relora and pico-decoder. The
former generally has a lower PER, with the gap
widening as pico-relora steadily declines while
pico-decoder remains flat; except for the tiny
OV circuit, which shows little change and aligns
closely with pico-decoder. Aside from this out-
lier, PER trends are consistent across scales. Confi-
dence intervals for pico-decoder are consistently
narrow, reflecting low layer-to-layer variability,
whereas pico-relora’s widen over time.

ReLoRA’s gradient updates are rank deficient.
Figure 4 shows PER on gradient updates for the
Output and Value projections in attention and
the SwiGLU W5 projection. For pico-decoder,
this is computed directly on gradients, while for
pico-relora, the LoORA module weights serve as
a proxy, since the frozen base matrices receive no
gradients at each restart. Observations correspond
to the weight measurements: the measured PER
values are generally lower for ReLoRA, with this
effect exacerbated at the small scale, with an out-
lier for attention at the tiny scale.

5.2.3 Condition number

In addition to measured rank deficiencies, we ex-
plore further explanations for ReLoRA’s underper-
formance. This leads us to investigate the model’s
susceptibility to error magnification, for which the
condition number (CN or k) of a matrix (intro-
duced in Equation 6 below) can be a good proxy
(Chapra, 2011). The CN measures how sensitive
the solution of a linear system is to small changes
in the input data or the matrix itself. Furthermore,
a higher condition number can be used as a mea-
sure of the rounding errors arising from using finite
precision arithmetic (Chapra, 2011, p. 208), as is
the case when training models. If the x of a matrix
is 10%, then at least k digits of precision are lost
(Cheney et al., 2008, p. 321). The condition num-
ber metric is simply the ratio of the largest to the
smallest singular values of the input, which indi-
cates how much the output can vary in response to
slight variations in the input.

For the ordered vector of singular values o =
(01...0q) of some matrix M, the condition num-
ber « is thus

k(M) = 72 6)

g1

pico-relora has larger CNs in the weight matri-
ces. Figure 5 illustrates the condition numbers of
the OV Circuit and SwiGLU W5 matrices through-
out training. The condition number is larger for
pico-relora SwiGLU matrices, and even more
on the small scale. For the OV circuit at the tiny
scale, the x values are very similar, while at the
small scale pico-relora’s values are greater with
a wider confidence interval.

pico-relora’s gradient updates are highly ill-
conditioned early in training. Meanwhile, Fig-
ure 6 shows the x values of the gradient updates
of the output and value projections in the attention
mechanism and the SwiGLU W5 matrix. As can
be seen, the condition numbers of the ReLoRA
model’s gradient updates initially start very high,
indicating a highly ill-conditioned matrix, and then
approach those of the baseline throughout training.
These large x values suggest instability in the gra-
dient updates and vastly increase round-off errors
due to fixed precision, by up to eight additional
digits of inaccuracy for pico-relora-small. For
the same run’s attention output projection, the con-
dition number spikes at checkpoint step 12,000.

5.2.4 Findings from PER and CN

Low PER values drag ReLoRA’s performance
down. Low PER values in the weight matrices
and gradient updates exacerbate the rank deficien-
cies present in smaller models, thereby inhibiting
performance compared to full-rank training.

pico-relora is considerably more sensitive
to fluctuations in inputs. The results for CN
demonstrate that ReLoRA increases the sensitivity
to error magnification caused by small variations
in the input. Therefore, even tokens with relatively
similar internal representations can have vastly dif-
ferent outputs.

This behaviour is compounded by the anisotropy
of SLMs, which refers to the phenomenon where
the internal representations of tokens are unevenly
distributed and highly clustered within the repre-
sentational space (Godey et al., 2024a). As a re-
sult, even small changes in input can cause a token
embedding to shift into a sparse or differently clus-
tered region, thereby amplifying differences in the
model’s output.

When both these effects combine, they lead to
a model which is highly sensitive to any minor
fluctuations in its inputs.
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Figure 3: Proportional effective rank (PER) values of the parameters of the OV Circuit and the SwiGLU W5 matrix,
averaged over the models’ layers. Values are shown with the 95% confidence interval.
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Figure 4: Proportional effective rank (PER) values of the gradient updates of the output and value projections in the
attention mechanism and the SwiGLU W5 matrix, averaged over the models’ layers. Values are shown with bands
representing the 95% confidence interval. The hollow circles represent NaN values.

6 Conclusions

We present the first systematic investigation of
ReLoRA for SLM pretraining, evaluating models
at 11M (tiny) and 66M (small) parameters across
various efficiency and performance metrics.

6.1 Findings
We identify three key findings:

(1) © Drag: ReLoRA degrades pretraining
performance in SLMs. Across loss, Paloma
perplexity, and BLiMP evaluation, ReLoRA
consistently underperforms conventional full-
rank training. The performance gap is minor
for tiny models but grows substantially as
model size increases to the small scale. How-
ever, this might be caused by minimal param-
eter differences between the two tiny models,
leading to a surprising performance loss (com-
pared to the findings of (Lialin et al., 2023) on
large models) as model scale increases. One
possible explanation is that the tiny model’s
parameterisation leaves little difference be-
tween ReLoRA and full-rank updates, there-

fore leading to a lower-than-expected drop in
performance.

(2) ° Drag: ReLoRA exacerbates low-rank
bottlenecks and training instability. Learn-
ing dynamics analysis indicates that ReLoRA
leads to reduced PERs of the models’ param-
eters and gradient updates. Alongside this,
ReLoRA induces highly ill-conditioned gra-
dient updates that increase the models’ sus-
ceptibility to numerical errors. Both of these
exacerbate existing issues caused by the inher-

ent anisotropy of SLM representations.

(3) Parameter-efficient pretraining does not
trivially extend from large to small models.
Unlike in large LMs, where low-rank updates
can still capture rich training signals, SLMs
appear to have insufficient redundancy in their
representations, resulting in greater sensitivity
to ReLoRA’s repeated low-rank projections.

6.2 Implications

This paper highlights a principal limitation of low-
rank pretraining for SLMs, suggesting that for a
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confidence interval. The values at the initial checkpoints are omitted since they are zero matrices, with undefined «.

parameter-efficient training method to succeed in
the low-compute domain, it likely must preserve
higher-rank update spaces or adapt to models’ in-
trinsic dimensionalities. Furthermore, our results
prompt reflection on whether parameter-efficient
training methods are necessary for SLMs at all. Un-
like SOTA multi-billion-parameter models, SLMs
can be trained on a single modern GPU (and often
even on consumer hardware), raising the question
of whether parameter-efficiency provides any bene-
fits in this regime.

While these are negative results, they are in-
formative in highlighting the boundaries at which
parameter-efficient pretraining breaks down. Our
study thus highlights where new methods are most
needed.

Future investigations should therefore focus on
novel hybrid approaches. For instance, coupling
low-rank adapters with selective full-rank updates
or utilising dynamic rank adaptation techniques
(such as DyLoRA (Valipour et al., 2023)) to min-
imise representational losses. Our results aim to
inform the design of future low-resource LM train-
ing algorithms, emphasising that efficiency gains

cannot come at the cost of substantial expressivity
and performance loss.

Limitations

While our work offers valuable contributions, there
are a few minor considerations to keep in mind:

(1) Single-run experiments. Due to constraints
on computational resources, we performed only
one training run per configuration. While the re-
sults are interesting, additional seeds at each scale
would lead to more robust results.

(2) Limited model scale and diversity. Like-
wise, the experiments were performed at only two
scales and evaluated with a single decoder-only ar-
chitecture. Investigating other intermediate scales
and encoder-decoder models may provide further
insight and more robust trends.

(3) Limited hyperparameter exploration.
ReLoRA involves several hyperparameters, such
as restart frequency, LoRA rank, and optimiser
state pruning ratio. Our study evaluates a single
shared configuration and omits the full-rank warm
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start included by Lialin et al. (2023), which may
not reflect the method’s ideal performance.
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A The pico-decoder model

pico-decoder (Diehl Martinez, 2025) is a Llama-
based (Touvron et al., 2023) model, which forms
the base of the ablation study investigated in this
work. It is illustrated in Figure 7.

pico-decoder includes the following features
and optimisations:

* Root-Mean-Square Layer Normalisation

(Zhang and Sennrich, 2019)
* RoPE embeddings (Su et al., 2023)

* Grouped-query attention (Ainslie et al., 2023)
with key-value caching
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Figure 7: pico-decoder, a Llama-based model

¢ FlashAttention-2 (Dao, 2023)

¢ SwiGLU activations (Shazeer, 2020)

B Training infrastructure and runtimes

The pico-relora training runs were conducted
on a single Ampere GPU node (four GPUs) each,
hosted by CSD3. By contrast, the pico-decoder
runs were performed on four Ampere nodes (six-
teen GPUs).

The Ampere nodes are Dell PowerEdge XE8545
servers consisting of two AMD EPYC 7763 64-
Core Processors 1.8 GHz, 1000 GiB RAM, four
NVIDIA A100-SXM-80GB GPUs, and dual-rail
Mellanox HDR200 InfiniBand interconnect. Each
A100 GPU is made up of 6912 FP32 CUDA
Cores.’

The wall-clock runtime and total GPU hours of
each of the runs are shown in Table 3. For the tiny
models, pico-relora takes 13.5% fewer GPU
hours to train, while for the small scale, it was
14.7% more efficient. These are not entirely equiv-
alent comparisons, however, as the pico-relora
runs were configured to checkpoint and evaluate
more frequently and with more gradient accumula-
tion steps, alongside other minor differences in the
runtime environment.

Model Wall-clock time/h GPU hours
t-dec 52.96 847.37
s-dec 61.29 980.56
t-rel 183.17 732.70
s-rel 215.87 863.47

Table 3: Wallclock time and equivalent GPU hours for
each of the four training runs. t = tiny, s = small, dec
=decoder, rel = relora.
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Figure 8: Graph showing the linear LR schedule used by
pico-decoder and ReLLoRA’s jagged cosine scheduler
(Lialin et al., 2023). Both are shown here, configured
with a total of 30,000 steps and an initial warmup of
2000 steps. The ReLoRA scheduler is additionally con-
figured with 100 post-restart warmup steps and a reset
frequency of 2000.

C Full hyperparameter configurations

C.1 Learning rate scheduler and optimiser
configuration — shared

Table 4 depicts the learning rate and optimisation
configurations for both runs. It has an initial lin-
ear warmup of 2000 steps, and resets in line with
the ReLoRA frequency specified in Table 2. After
each reset, the learning rate is linearly re-warmed
over 100 steps before the standard cosine decay is
resumed. The learning rate decays down to a mini-
mum of 10% of the initial rate. The baseline runs
use the linear scheduler configured with a 2500
step initial warmup. However, as this is indivisible
by the 2000 step ReLoRA frequency, the jagged
cosine scheduler uses the nearest multiple, a 2000
step initial warmup. Both schedulers are shown in
Figure 8.

3This information is sourced here: https://docs.hpc.
cam.ac.uk/hpc/user-guide/a100.html.
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Parameter Value
Optimiser adamw
Learning rate 3x107*
LR scheduler relora_jagged_cosine
LR warmup steps 2000
Min LR ratio 0.1
Restart warmup steps 100

Table 4: Learning rate scheduler and optimiser configu-
ration for training runs

C.2 Data configuration — shared

Table 5 configures
the training runs.

the data pipeline for
The training and per-
plexity datasets are pretokenized-dolma
and pretokenized-paloma-tinsy, as de-
scribed in Section 4.2. The tokeniser used,
allenai/OLMo-7B-0724-hf, is the one used for
the OLMo model* (Groeneveld et al., 2024).

Parameter Value
Vocab size 50,304
Batch size 1024
Max seq length 2048

Table 5: Dataset configuration

C.3 Model configuration — shared

Table 6 depicts the model configuration parame-
ters for the tiny and small training runs. The two
runs differ only in their dy,oqe1 and dg parameters,
keeping the depth of the model and attention archi-
tecture constant.

Parameter tiny small
Nlayers 12
Nheads 12
TNheadsyy 4
dmodel 96 384
de 384 1536

Table 6: Model configuration for training runs

*Which can be found on HuggingFace here: https://
huggingface.co/allenai/OLMo-7B-0724~-hf.
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