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Abstract

We study last-layer outlier dimensions, i.e. di-
mensions that display extreme activations for
the majority of inputs. We show that outlier
dimensions arise in many different modern lan-
guage models, and trace their function back to
the heuristic of constantly predicting frequent
words. We further show how a model can block
this heuristic when it is not contextually appro-
priate, by assigning a counterbalancing weight
mass to the remaining dimensions, and we in-
vestigate which model parameters boost outlier
dimensions and when they arise during train-
ing. We conclude that outlier dimensions are
a specialized mechanism discovered by many
distinct models to implement a useful token
prediction heuristic.

1 Introduction

It has been widely reported that modern lan-
guage models (LMs) present a number of extreme-
distribution phenomena, with some parameters and
activations that are systematically much larger than
the others (e.g., Kovaleva et al., 2021; Timkey and
van Schijndel, 2021). In this paper, we investigate
one of these phenomena, namely the presence of
outlier dimensions (ODs) on the last layer of LMs.
Unlike what Sun et al. (2024) called massive acti-
vations, that only occur for specific input tokens,
ODs are dimensions that display very extreme acti-
vation values for a majority of the inputs, as shown
for the pythia-12b model in the left panel of Fig. 1.
While dimensions with similar properties also oc-
cur in earlier layers, we focus on those in the last
layer because ODs tend to be more common in the
last layer and, importantly, most of the ODs in the
last layer are not outliers in earlier layers, which
suggests that they play a role specific to output
generation (see ODs by layer in Fig. 1-right for
pythia-12b, and Fig. 5 in Appendix A for the other
models we experiment with).

This hypothesis is borne out in the results.
Across a number of LMs, we find that ablating
ODs significantly affects model performance and,
specifically, that they are part of an ad-hoc mecha-
nism boosting the prediction of frequent tokens—a
sensible heuristic given the skewed nature of word
frequency distributions (Baayen, 2001). Indeed,
keeping only the ODs makes the LMs predict just
a few very common tokens, a strategy that results
in very low but non-negligible accuracy. Moreover,
we show how ODs interact with the unembedding
matrix to favor frequent tokens in general, but also
how the cumulative effect of the other dimensions
can outweigh the effect of ODs when a non-OD-
favored token must be predicted. We also present
evidence that OD values are pushed up by the main
directions in the space of the last-layer MLP down-
projection matrix, as well as by high biases and
weights in the last layer normalization. Finally, we
show how the ODs emerge early during training
after a first phase in which the model is predicting
frequent words by other means.

Our main contributions are as follows:

* We present a thorough characterization of
ODs in a set of modern LMs.

* We identify the function of these activations,
showing that they generally work as a special-
ized module for frequent-token prediction.

* We describe the mechanics by which frequent-
token prediction is achieved (or blocked)
through the interaction between ODs and the
unembedding matrix.

The code to reproduce all the results is avail-
able at https://github.com/imacocco/11lms_
outlier_dimensions/

2 Related work

Extreme values in transformer-based LM activa-
tions and weights are of interest due to their nega-
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Figure 1: Left: Median activation values across our dataset (see Sec. 3) for each last-layer dimension of pythia-12b. The
orange line separates the top 1% of values across all dimensions, used to assess whether a dimension is an outlier. Right:
Evolution of outliers across the layers. The blue dots count the total number of outlier dimensions (ODs) per layer; the orange
squares represent the number of outliers that are also ODs in the last layer (omitted in the last layer because they are the same by

definition).

tive impact on quantization (Dettmers et al., 2022;
Bondarenko et al., 2023), and their role in shaping
anisotropic representations, which are linked, for
instance, to poorer performance on semantic simi-
larity tasks (e.g., Ethayarajh, 2019; Himmerl et al.,
2023). Intriguingly, just a few dimensions with
such extreme values challenge model compression
and general quantization performance, and their
removal has been linked to general performance
degradation (e.g., Kovaleva et al., 2021; Zeng et al.,
2023).

Puccetti et al. (2022) find a positive correlation
between input token frequency and the activation
magnitude of extreme dimensions in hidden layers,
which diminishes in later layers. Notably, they qual-
itatively observe a tendency for BERT to predict
more frequent tokens when extreme dimensions
are removed—which is the opposite of our find-
ings (see e.g. Fig. 2). Puccetti et al. (2022) use
BERT, whereas we focus on decoder-only trans-
former models, and they employ different criteria
to identify ODs. These methodological differences
may explain the discrepancies in our results.

Sun et al. (2024) and An et al. (2025) identify
a specific subset of extreme values, referred to as
massive activations or systematic outliers. These
are linked to the phenomenon of “attention sink-
ing”, a mechanism that reduces the contribution of
attention heads in contexts where they are not use-
ful (see also Cancedda (2024)). Additionally, they
function as context-aware scaling factors, modu-
lating the influence of certain tokens (An et al.,
2025).

Importantly, this specific subset of extreme val-

ues (massive activations/systematic outliers) differs
from what we refer to as ODs in key ways: (i) they
appear only in specific positions or for specific to-
kens, such as punctuation marks; (ii) their values
are even more extreme (1,000 times the mean); (ii1)
they are very few (typically four or fewer per model
across all layers, in contrast to the number of last-
layer ODs we report in Table 1); and (iv) they tend
to emerge more prominently in the middle layers,
while we focus on the last layer.! Furthermore,
these activations often correspond to punctuation
marks or frequent words as input tokens, whereas
ODs tend to occur across the board, but might favor
items from these classes as output tokens.

3 Methodology

Models and datasets We experiment with the
following pre-trained language models, all avail-
able on HuggingFace:? pythia-12b(-deduped) (Bi-
derman et al., 2023), mistral-7b (Jiang et al., 2023),
Ilama3-8b (Meta, 2024), olmo2-13b (OLMo et al.,
2025), gqwen-14b (Qwen, 2024), opt-13b (Zhang
et al., 2022), gemma-9b (Gemma, 2024), and
stable-12b (Bellagente et al., 2024). These were the
latest and largest instances of each model family
that we could analyze in a reasonable time, given
our computing resources. See Table 3 in Appendix
B for further model details.

We extract our input data from WikiText-103
(Merity et al., 2016). Specifically, we sample 50k

'Indeed, applying the criterion of (An et al., 2025) to our
models, we don’t find any massive activation on the last layer,
which is the one where our ODs occur.

2https://huggingface.co/
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non-overlapping fragments of 101 (typographic)
words which do not cross document boundaries.
All fragments start at the beginning of a sentence,
whereas their final token is not required to coincide
with and end-of-sentence boundary (so, it can be-
long to any part-of-speech). The first 100 words
are fed to the models as contexts, and the first token
of the last word constitutes the ground truth against
which to compare model predictions.

OD identification We define outlier dimensions
(ODs) as dimensions that have extreme values
across a large variety of inputs. We operational-
ize this as follows. We consider extreme values
those that are in the top 1% when ranking the ab-
solute values of the activations of all dimensions
in a given layer for our whole dataset (i.e., the
ranked list will be of length n x 50k, where n is
the number of dimensions in the relevant layer of
the model of interest). We then define an OD as a
dimension whose median activation across the 50k
samples in our dataset is an extreme value. That
is, an OD dimension will display an activation that
is among the 1% more extreme across all inputs
and dimensions for at least 50% of the inputs. Ta-
ble 1 (leftmost column) reports the number of ODs
we find with this method in the last layer of each
model (see Fig. 1 above and Fig. 5 in Appendix
A for the other layers). The z-score column of
the same table shows that the ODs identified in
this way not only have values that ranked among
the most extremes, but are also high in absolute
terms—at least eight standard deviations above the
mean on average for all models. Note also that
ODs are a very small proportion of the dimensions
in a given model (between 4 and 36, whereas layers
are of dimensionality 3584-5120 depending on the
model, cf. Appendix B).

4 Results

The remaining columns of Table 1 suggest that
there is a group of models with the same pattern of
behavior across the board (pythia-12b, mistral-7b,
Ilama-8b, olmo2-13b, qwen-14b) and three mod-
els that often deviate in different ways (opt-13b,
gemma-9b, stable-12b).

Impact of outlier dimensions on predictions
ODs greatly impact model prediction: Ablating the
outlier dimensions, i.e. setting them to 0, leads to a
large decrease in accuracy for most models, despite
the fact that the ODs are a very small proportion of
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the total dimensions of the models (see column abl-
OD). The exceptions are opt-13b and gemma-9b,
which experience very small decreases. Instead, ab-
lating a comparable number of random dimensions
in the last layer never affects accuracy by more
than 0.1% for any model (results not shown in the
table).

The symmetric operation, namely drastically ab-
lating the model by setting all last-layer dimensions
but ODs to 0, causes performance to radically drop,
as could be expected (see column only-OD). How-
ever, in most cases the performance is still much
higher than in the only-random condition, where a
comparable number of randomly sampled dimen-
sions is ablated (this yields accuracies < 0.1%,
not shown in the table). Exceptions are opt-13b,
gemma-9b, and stable-12b, with accuracies near 0
also in the only-OD condition. 3

By which means does ablating ODs affect accu-
racy in most models? The rightmost panel of
Table 1 shows that ablating ODs generally leads
models to predict a larger number of distinct to-
kens, compared to the corresponding non-ablated
runs (column abl-OD; stable-12b is an exception).
Ablating an equivalent number of non-OD dimen-
sions does not have this effect. Even more strik-
ingly, when keeping only the few ODs in the last
layer, the number of distinct tokens that are pre-
dicted is drastically reduced (column only-OD; cf.
the contrast with only-rnd, that is, when keeping
only an equivalent number of random dimensions
active).

ODs thus seem to steer models towards predict-
ing a small set of tokens. Table 2 contains the
tokens that are most strongly associated with ODs
(they are predicted over 1,000 times when ablat-
ing all dimensions except ODs).* The table sug-
gests that ODs generally favor very common tokens
like _the, _and, or _in, which, as we have already
remarked, is a sensible heuristic for a model to
encode, since natural language texts are heavily
skewed towards a few very frequent types (Baayen,
2001). This might explain why using a few dozen
last-layer ODs for prediction generally leads to ac-
curacies that, while low, are non-negligible: for
example, _the and _a alone account for 7.5% of the
ground-truth tokens in our dataset. Again, gemma-

3Table 4 in Appendix C reports the ablation effects in terms
of surprisal, which exhibits the same trends.

*To avoid noise, we only consider tokens that were pre-
dicted by the full model at least once.



\ ODs Accuracy [%] # of Distinct predicted Tokens
Model | #  z-score | FM abl-OD only-OD | FM abl-OD only-OD  only-rnd
pythia-12b | 36 9.8+5.2 |43.0 343 4.7 7504 11116 195 7254 + 269
mistral-7b |28 9.6+4.6 |46.6 419 1.7 6334 7098 712 4518 + 427
Ilama-8b 12 11.9+57 |492 418 1.2 8034 12030 150 2367 + 339
olmo2-13b |24 10.8+7.6 |52.1 41.0 7.4 8317 13320 655 5787 + 1062
qwen-14b |38 8.8+7.1 |499 322 1.3 8171 11233 710 10236 + 750
opt-13b 4 29111 (427 425 0.0 7911 9026 85 281 +13
gemma-9b | 6 17.2+10.7 | 484 48.0 0.1 8229 8539 79 373 £ 46
stable-12b |23 9.2+6.8 |494 30.2 0.0 8029 1821 96 947 £ 109

Table 1: ODs: Number of ODs and their average z-score with respect to the mean of absolute values of all last-layer activations.
Effects of OD/non-OD ablation. FM: full model; abl(ate)-X: dimensions X were set to 0; only-X: dimensions other than X
were set to 0. Random-dimension experiments are repeated with 10 different seeds and averaged. Ablate-random experiments,
where the same number of random dimensions were ablated as there are ODs, always resulted in values matching those of the
full model up to the third significant digit for both accuracy and # of distinct tokens, and we do not report them in the table.
Only-random (only-rnd) experiments keep the same number of random dimensions as there are ODs; their accuracies are not
reported either, as they are typically ~ 0.01% and always < 0.1%.

Ob, stable-12b and opt-13b show different patterns.
Gemma-9b has only one token meeting our condi-
tion, stable-12b none. Opt-13b has only one OD-
favored token which, however, is predicted for al-
most every input in the only-OD condition.

model tokens (# of predictions)

pythia-12b  _the (15272); _a (5015); _D (1716);

mistral-7b  _the (1665;) _a (1619); _ (1568); _un
(1531); _two (1163); _large (1106)

Ilama-8b _in (15172); , (10063); _( (9293); _and
(5227); _ (1930);

olmo2-13b  _the (21532); _ (11275); , (3515); _The
(3181); _in (1241); _A (1018);

gwen-14b  _ (11967;) _the (5982); , (4708);

opt-13b 1(46181);

gemma-9b _ (1762);

stable-12b  n.a.

Table 2: Most strongly OD-favored tokens for each model
(predicted over 1K times in only-OD condition, i.e., when
ablating all dimensions except ODs). In parentheses: number
of times the token is predicted in this condition. No tokens
in stable-12b met the criterion. The underscore denotes the
space character, which varies by model.

In Appendix H, we also qualitatively investigate
the effect of the ablation on the generative capa-
bilities of the models. As could be expected, we
observe that ablating the ODs typically has a sig-
nificantly larger impact than ablating random di-
mensions. While in the latter case even removing
3000 dimensions still allows the model to produce
meaningful sentences, in the former the ablation
of a much smaller number of ODs (even just 5
in the case of qwen-14b) completely disrupts the
model’s performance. This implies that any genera-
tive downstream task will be dramatically affected.

Relationship between ODs and frequency The
results above, together with the qualitative exam-
ples in Table 2, seems to suggest that ODs tend
to favor frequent tokens. To test this hypothesis
in a systematic way, we examine the relationship
between the frequency with which a model predicts
a given token, on the one hand, and its overall fre-
quency (which we estimate with a corpus), on the
other.> We expect OD-ablated models (i.e., models
where ODs are set to 0) to decrease the predic-
tion of frequent tokens, and consequently increase
the prediction of less frequent tokens, compared
to the full models. The first two panels of Fig. 2
present evidence of this for pythia-12b. They show
the tokens predicted by the full model (left) and
the OD-ablated model (middle), sorted by their
corpus-estimated frequency and frequency of pre-
diction in each condition, in log-log scale. They
also contain the line of a linear regression fit and
its slope, as well as the Spearman correlation coef-
ficient p. Both indicators show that ablating ODs
indeed affects the relationship between the overall
frequency of a token and the times it is predicted.
First, whereas the relationship is always positive
(models predict more frequent tokens more often
than less frequent tokens), the p coefficient goes
down from 0.7 to 0.53 when ablating ODs, and the
slope similarly goes down from 1.35 to 0.74.°

*Ideally, frequency estimates should be drawn from the
LMSs’ training corpora, but, as we don’t have access to those
for most models, we use the full WikiText-103 corpus to
estimate overall token frequencies.

®The latter also means that the full model over-predicts
and the ablated model under-predicts frequent words (and
conversely for less frequent words), something that is more
clearly shown by the regression lines (perfect correlation with
slope 1 would mean that all points are on the y = x line).

112



Table 5 in Appendix D confirms that this ten-
dency generalizes: the slope of a linear fit decreases
for all models when ODs are ablated, except for
stable-12b; as for the correlation coefficient p, it
decreases for all models when ODs are ablated,
although the effect is negligible for those models
that have already shown some deviant behavior
in the previous analyses (opt-13b, stable-12b, and
gemma-9b).

Role of ODs in token prediction We next ex-
amine the mechanics by which ODs favor frequent
tokens in most models. First, we hypothesize that
the activations of a significant number of individual
ODs will be highly correlated with token frequency
(either positively or negatively). The boxplots in
the rightmost panel of Fig. 2 provide evidence for
pythia-12b. The left boxplot shows the distribution
of correlations between the corpus frequency of
the predicted tokens and the activation profiles of
each last-layer dimension across the dataset. This
reflects the extent to which, across predicted tokens
for our dataset, each dimension tends to be more
strongly activated proportionally to the frequency
of the predicted tokens. We see that the correla-
tions of the vast majority of non-OD dimensions
(summarized in the blue boxplot) cluster around 0,
whereas the correlation scores for the ODs (shown
as individual orange dots) are much more spread,
with a significant proportion exhibiting larger cor-
relations. Similarly, we find a relation between the
corpus frequency of individual vocabulary items
and their values in OD vs. non-OD dimensions of
the unembedding matrix, as follows. The second
boxplot in the rightmost panel of Fig. 2 shows the
distribution of correlations between the values of
each dimension across the unembedding matrix
rows and the corpus frequencies of the tokens cor-
responding to these rows. Again, the correlations
are generally low for non-ODs, but much more
spread for ODs. Given that the output distribution
of a language model is obtained by multiplying the
unembedding matrix by the last-layer activations,
this suggests that ODs will favor more frequent
tokens, because the latter tend to have higher unem-
bedding vector values exactly in correspondence to
the ODs. The same distributions are plotted for the
other models in Fig. 6 of Appendix D, confirming
the same trends across all of them.

These correlations on their own are suggestive,
but not enough to uncover the specific mechanics,
since, as we just discussed, dimension activations

on an LM’s last layer contribute to the prediction of
a specific token through their dot product with the
equivalent dimensions in the unembedding matrix
row corresponding to the token. The result of this
dot product is the logit score for that token: the
higher this quantity, the larger the probability that
the model will assign to the token. To analyze the
interaction between the last layer and the unem-
bedding matrix, we separately measure the contri-
bution of ODs and non-ODs to the logit scores of
a given token. We do that by computing the dot
product between the activations of the dimensions
of interest and their corresponding unembedding
vector values (Appendix E contains the equations
for completeness).

The upper panel in Fig. 3 focuses on OD-favored
tokens (listed in Table 2), contrasting pythia-12b
and opt-13b. It displays the cumulative logit contri-
butions of ODs and non-ODs to the prediction of
each OD-favored token. We see a different pattern.
In pythia-12b, as expected, the ODs consistently
provide a significant positive contribution to pre-
dicting the token. Moreover, this contribution is
comparable in size to that of the non-ODs (whose
contribution shows a larger variance).” This equiv-
alence is remarkable, as in one case we are looking
at the cumulative contribution of 36 ODs, in the
other to that of the remaining 5,084 dimensions.
Instead, in opt-13b the contribution of the ODs
sums to virtually 0. This might go some way to-
wards explaining why this is one of the models
for which there is no clear effect of OD ablations,
nor strong OD/frequency correlations. While this
model does feature a small number of ODs with
across-the-board extreme activations, these activa-
tions, when multiplied by the unembedding matrix
and summed, might cancel each other out, suggest-
ing that, in this case, the model is not really using
the ODs to control output prediction.® Fig. 7 in Ap-
pendix E shows the OD vs. non-OD contributions
for the other models (except stable-12b, which, as
mentioned above, has no OD-favored token accord-
ing to our criteria). While gemma-9b behaves like
opt-13b, all other models behave like pythia-12b,
with a strong contribution of ODs to OD-favored

"Note that it is not surprising that non-ODs also contribute
to promoting OD-favored tokens in contexts where they are
appropriate.

8Recall that, when only ODs are kept, opt-13b almost
invariably predicts the single token / (Table 2). The results in
Fig. 3 suggest that this might be more of a “default” behavior
of the model, than something specifically triggered by the
ODs.
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visualization purposes).

token prediction.

Therefore, in general ODs promote the predic-
tion of frequent tokens, which raises the question:
how can a model also predict less frequent tokens?
Remember that ODs, by definition, have extreme
values in at least 50% of the inputs, so they will be
strongly active in many cases where it’s adequate to
predict less frequent tokens. One possibility is that,
while their magnitude is almost constantly large,
ODs only provide a positive contribution to predict-
ing OD-favored tokens in appropriate contexts, but
they give a negative contribution to OD-favored
token predictions in other contexts, thus penaliz-
ing them. A second hypothesis is that ODs always
bring about a positive contribution to the prediction
of OD-favored tokens, but this is counter-balanced
by the total logit mass of the other dimensions
when other tokens are more contextually appropri-
ate. To verify which hypothesis is right, we study
a set of OD-neutral tokens, defined as tokens that
a model predicts with equal frequency when the
ODs are ablated as when they aren’t (e.g. _times,
_command, _States for pythia-12b; see Table 6 in
Appendix E for the full set). We sample maximally
10 such tokens per model, and we limit the choice
to tokens that are predicted at least 10 times by
the full model. Now, for each context in which
the model predicted (that is, assigned the largest
probability to) one of these tokens, we contrast the
OD and non-OD contributions towards the logit of
the relevant token, on the one hand, and the logits
of the already mentioned OD-favored tokens, on
the other, to find by which means the OD-neutral

token “won” against the OD-favored rivals.

The lower panel of Fig. 3 illustrates the analysis
with the case of the OD-neutral token _States. The
plot contains two data points for each context in
which pythia-12b predicts _States, one correspond-
ing to the logit contributions of ODs (orange dots)
and one to those of non-ODs (blue squares). On
the x-axis, the logit values for the token _States are
displayed, while the y-axis shows the logit values
for the OD-favored token _the. If the negative-
contribution hypothesis was right, the ODs would
provide a negative contribution to the _the predic-
tion in this case, as it is a context in which it pre-
dicts _States. However, this is not what we find; we
see that ODs always strongly favor _the (and only
provide a modest positive contribution to _States).
Indeed, the OD logit contribution towards _the here
is comparable to the average OD contribution to-
wards OD-favored tokens when the latter are cho-
sen (around 5, cf. the upper left boxplot of the
figure). The reason that _the is ultimately not cho-
sen in the _States contexts is that the sum of all
non-ODs gives a large positive contribution to the
_States prediction, that surpasses the cumulative
weight of the ODs in favor of _the.

In Fig. 8 in Appendix E, we show that this pat-
tern generalizes across OD-neutral and OD-favored
tokens. In all models, the OD-neutral tokens are
selected because of the logits of the non-ODs; OD
logits either present higher values for OD-favored
tokens or are neutral, with values near O (the latter
is the case for gemma-9b and opt-13b).

We conclude that the models do not learn to
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modulate ODs so that they are positive in contexts
where OD-favored tokens should be predicted, and
negative otherwise. Rather, ODs act like a constant
term providing a positive logit contribution towards
OD-favored tokens, and it is the job of the other
dimensions to learn to counterbalance this contribu-
tion when other tokens should be predicted. We can
think of ODs as implementing a baseline heuristic
to always predict frequent tokens, with the rest of
the dimensions working their way around them to
provide more appropriate context-dependent pre-
dictions.

Which model parameters boost OD activations?
The observation that ODs consistently exhibit large
values across most inputs, combined with evi-
dence that these values are not strongly context-
modulated, suggests that OD activations result di-
rectly from large model weights boosting them.
Given that most ODs appear in the last layer only,
we consider three plausible OD boosters: the down-
projection matrix of the last MLP (mapping MLP-
internal representations to last-layer activations),
the weight terms of the final LayerNorm, and the
bias terms of the final LayerNorm, for models that

have these parameters (see Table 3 in Appendix
B).? Adopting a methodology similar to (Cancedda,
2024), we assess the possible contribution of the
MLP matrix to the ODs by first factorizing it with
a singular value decomposition. We then exam-
ine whether the dominant (i.e., first few) singu-
lar vectors’ “spikes” (dimensions with values ex-
ceeding three standard deviations from the mean)
tend to align with the last layer’s ODs. See Ap-
pendix F for a detailed explanation of the proce-
dure. Likewise, for the weights and biases of the
LayerNorm, we similarly define outlying spikes
and, again, we check whether ODs tend to coincide
with them. A coincidence between spikes and ODs
would suggest that the OD values are influenced by
the principal directions in the last-layer MLP down-
projection matrix, as well as by elevated biases and
weights in the final layer normalization.

Results for pythia-12b are presented in Fig. 4.1°
The overlap of spikes in the the MLP matrix and
ODs is remarkable; for instance, 4 out of 7 spikes
in the first singular vector are in ODs, as are 25
out of 43 for the second singular vector. These
overlaps have p ~ 0 of occurring by chance, based
on simulating a random overlap distribution. Simi-
larly, the right panels of Fig. 4 show that ODs are
also boosted by the LayerNorm weight and bias
parameters: 16 out of 52 spikes in the weight are
in ODs, as are 20 out of 39 for the bias parame-
ter. To sum up, in pythia-12b ODs are boosted by
both the MLP matrix and the LayerNorm weights
and biases. Fig. 10 in Appendix F confirms a simi-
lar pattern across most models. Yet, for llama-8b
and opt-12b the boost appears to originate solely
from the MLP, while for stable-12b the effect is
particularly evident in the weights.

Overall, we find that there are fixed parameters
that enhance ODs, and this boosting can be en-
coded in both the last MLP down-projection ma-
trix and the LayerNorm parameters, highlighting
the importance of looking for multiple parametric
sources of extreme values.

ODs’ emergence and role during training Asa
last experiment, we looked at the emergence of
the ODs and the effect of their ablation during

°In Appendix F, we comment on the negative results we ob-
tained concerning the last layer’s components of the attention
heads.

"Here and in Fig. 10 of Appendix F, we only report the
first 4 MLP singular vectors, but in all cases similar patterns
are observed for a much broader set of dominating singular
vectors; see Fig. 9 in Appendix F.
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Figure 4: Left: Top-4 singular vectors and values of the last-layer MLP down-projection matrix of pythia-12b. Right: Final
LayerNorm weight and bias for pythia-12b. Spikes in parameter values that correspond to ODs are visualized as orange circles.

the stages of training of pythia-12b. A significant
number of ODs appears around steps 3000/4000.
From here onward, ablating ODs impacts accu-
racy and leads to the prediction of more varied
tokens, suggesting that ODs started assuming the
function of frequent token boosters. Interestingly,
early in training (step 500), there are virtually no
ODs, yet even the full model predicts relatively
few tokens. The full results are reported in Table 7
in Appendix G. If we examine which tokens are
over-predicted at this stage compared to their actual
dataset frequencies,” we find them to include _the,
_that, _and, _not, _a, _be, _of. This indicates that
the model has learned right from the start that pre-
dicting very frequent tokens pays off. In later steps,
the model specializes the ODs to implement this
heuristic, allowing the remaining units to focus on
context-aware prediction, resulting in more varied
outputs and improved accuracy.

5 Discussion and conclusion

We studied a class of LM extreme values we
dubbed outlier dimensions (ODs). Unlike the more
widely studied “massive activations” (Sun et al.,
2024; An et al., 2025), ODs exhibit extreme activa-
tions consistently across a range of inputs, rather
than in response to specific ones. Unlike mas-
sive activations, which influence model output in-
directly through attention sinking, ODs directly
influence model predictions by favoring frequent
tokens independently of context. As such, they

"To reduce noise, we only consider tokens occurring at
least 100 times as ground-truth predictions.

function as a hard-coded module developed to ad-
dress an important characteristic of text: its ex-
tremely skewed distributions. Interestingly, Stolfo
et al. (2024) found a set of frequency-modulating
neurons, defined as entries in an MLP internal rep-
resentation, in several smaller models. Future work
should connect their results to ours, to check if we
are examining different aspects of the same mecha-
nism.

Five out of eight LMs we studied have ODs
linked to frequent-token predictions. Divergent
results for the other models suggest, however, that
the development of frequent-token predicting ODs,
while a common strategy discovered by many mod-
els, is by no means necessary. All divergent models
have units that meet our OD criteria, but they differ
in other ways: in particular, opt-13b and gemma-
9b have fewer ODs than the other models, and OD
ablation does not impact their accuracy, whereas
stable-12b has a larger number of ODs, and ablat-
ing them does affect performance. When only ODs
are retained, opt-13b almost always predicts the
same token (/), whereas gemma-9b only mildly fa-
vors the space token, and stable-12b has no clearly
favored token under this ablation. Overall, con-
sidering that for opt-13b and gemma-9b the logit
contribution of ODs approaches 0 even when pre-
dicting their OD-favored tokens, it appears that
ODs may serve a different function in these LMs,
potentially akin to that of attention-sinking massive
activations. However, we defer a more thorough
characterization of ODs in these divergent models,
as well as of the properties that made them diverge,
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to future studies.
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Limitations

* As stated at the beginning of our manuscript,
our analysis focuses exclusively on outliers
in the last hidden layer, since their direct in-
fluence on the next token prediction can be
clearly observed. Although outliers also exist
in earlier layers, assessing their impact and lin-
guistic role is more complex and less straight-
forward.

* Our analysis of the ODs at training time is lim-
ited to a single model, pythia-12b, for which
early training checkpoints are available. Con-
sequently, our findings may not generalize to
other models. We were unable to test this fur-
ther because the only other publicly available
model with training checkpoints is olmo2-
13b; however, its earliest checkpoint is not
early enough in training to capture initial OD
behavior, as fully-trained-model OD behavior
is already firmly in place by then.

References

Yongqi An, Xu Zhao, Tao Yu, Ming Tang, and Jinqiao
Wang. 2025. Systematic outliers in large language
models. In The Thirteenth International Conference
on Learning Representations.

Harald Baayen. 2001. Word Frequency Distributions.
Kluwer, Dordrecht, The Netherlands.

Marco Bellagente, Jonathan Tow, Dakota Mahan, Duy
Phung, Maksym Zhuravinskyi, Reshinth Adithyan,
James Baicoianu, Ben Brooks, Nathan Cooper,
Ashish Datta, and 1 others. 2024. StableIm2 1.6 b
technical report. arXiv preprint arXiv:2402.17834.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory
Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit,
USVSN Sai Prashanth, Edward Raff, and 1 others.
2023. Pythia: A suite for analyzing large language
models across training and scaling. In International
Conference on Machine Learning, pages 2397-2430.
PMLR.

Yelysei Bondarenko, Markus Nagel, and Tijmen
Blankevoort. 2023. Quantizable transformers: Re-
moving outliers by helping attention heads do noth-
ing. In Thirty-seventh Conference on Neural Infor-
mation Processing Systems.

Nicola Cancedda. 2024. Spectral filters, dark signals,
and attention sinks. In Proceedings of ACL, pages
4792-4808, Bangkok, Thailand.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. 2022. Gpt3.int8(): 8-bit matrix multi-
plication for transformers at scale. In Advances in
Neural Information Processing Systems, volume 35,
pages 30318-30332. Curran Associates, Inc.

Kawin Ethayarajh. 2019. How contextual are contextu-
alized word representations? Comparing the geom-
etry of BERT, ELMo, and GPT-2 embeddings. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 55-65,
Hong Kong, China. Association for Computational
Linguistics.

Team Gemma. 2024. Gemma 2: Improving open
language models at a practical size.  ArXiv,
abs/2408.00118.

Katharina Hdmmerl, Alina Fastowski, Jindfich Li-
bovicky, and Alexander Fraser. 2023. Exploring
anisotropy and outliers in multilingual language mod-
els for cross-lingual semantic sentence similarity.
In Findings of the Association for Computational
Linguistics: ACL 2023, page 70237037, Toronto,
Canada. Association for Computational Linguistics.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7b. Preprint,
arXiv:2310.06825.

Olga Kovaleva, Saurabh Kulshreshtha, Anna Rogers,
and Anna Rumshisky. 2021. BERT busters: Outlier
dimensions that disrupt transformers. In Findings of

117


https://openreview.net/forum?id=rLX7Vyyzus
https://openreview.net/forum?id=rLX7Vyyzus
https://openreview.net/forum?id=sbusw6LD41
https://openreview.net/forum?id=sbusw6LD41
https://openreview.net/forum?id=sbusw6LD41
https://proceedings.neurips.cc/paper_files/paper/2022/file/c3ba4962c05c49636d4c6206a97e9c8a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/c3ba4962c05c49636d4c6206a97e9c8a-Paper-Conference.pdf
https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.18653/v1/D19-1006
https://api.semanticscholar.org/CorpusID:270843326
https://api.semanticscholar.org/CorpusID:270843326
https://doi.org/10.18653/v1/2023.findings-acl.439
https://doi.org/10.18653/v1/2023.findings-acl.439
https://doi.org/10.18653/v1/2023.findings-acl.439
https://arxiv.org/abs/2310.06825
https://doi.org/10.18653/v1/2021.findings-acl.300
https://doi.org/10.18653/v1/2021.findings-acl.300

the Association for Computational Linguistics: ACL-
IJCNLP 2021, pages 3392-3405, Online. Association
for Computational Linguistics.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. Preprint, arXiv:1609.07843.

Meta. 2024. The llama 3 herd of models. Preprint,
arXiv:2407.21783.

Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groen-
eveld, Kyle Lo, Shane Arora, Akshita Bhagia, Yuling
Gu, Shengyi Huang, Matt Jordan, Nathan Lambert,
Dustin Schwenk, Oyvind Tafjord, Taira Anderson,
David Atkinson, Faeze Brahman, Christopher Clark,
Pradeep Dasigi, Nouha Dziri, and 21 others. 2025. 2
olmo 2 furious. Preprint, arXiv:2501.00656.

Giovanni Puccetti, Anna Rogers, Aleksandr Drozd, and
Felice Dell’Orletta. 2022. Outlier dimensions that
disrupt transformers are driven by frequency. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2022, pages 1286—1304, Abu Dhabi, United
Arab Emirates. Association for Computational Lin-
guistics.

Team Qwen. 2024. Qwen2.5: A party of foundation
models.

Alessandro Stolfo, Ben Wu, Wes Gurnee, Yonatan Be-
linkov, Xingyi Song, Mrinmaya Sachan, and Neel
Nanda. 2024. Confidence regulation neurons in lan-
guage models. In Proceedings of NeurIPS, pages
125019-125049, Vancouver, Canada.

Mingjie Sun, Xinlei Chen, J Zico Kolter, and Zhuang
Liu. 2024. Massive activations in large language
models. In First Conference on Language Modeling.

William Timkey and Marten van Schijndel. 2021. All
bark and no bite: Rogue dimensions in transformer
language models obscure representational quality.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
4527-4546, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang,
Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,
Wendi Zheng, Xiao Xia, Weng Lam Tam, Zixuan Ma,
Yufei Xue, Jidong Zhai, Wenguang Chen, Zhiyuan
Liu, Peng Zhang, Yuxiao Dong, and Jie Tang. 2023.
GLM-130b: An open bilingual pre-trained model. In
The Eleventh International Conference on Learning
Representations.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mi-
haylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu
Wang, and Luke Zettlemoyer. 2022. Opt: Open
pre-trained transformer language models. Preprint,
arXiv:2205.01068.

A ODs across layers

Fig. 5 reports the number of per-layer ODs (as
identified by our criterion) and the number of ODs
that also appear in the last layer for all studied
models except pythia-12b, whose equivalent data
are shown on the right panel of Fig. 1 in the main
text. We observe that in all models, but gemma-9b
and opt-13b, the last layer has many more ODs than
the previous ones. Moreover, we also see how the
ODs present in the last layer tend to appear only
towards the end, with different onset curves for
the various models. Togethes, these observations
suggest that the last layer has a special behavior
that differs from that of the previous ones.

B Language model details

Table 3 summarizes the main characteristics of the
language models we used.

C Surprisal effects of ablations

Table 4 reports the 1st, 2nd (median) and 3rd quar-
tiles for the distribution of surprisal in the different
ablation modalities. For each context, the surprisal
is calculated as S = — log(p), where p is the prob-
ability attributed by the model to the ground truth
next token. These observations broadly confirm
the results obtained for accuracy (see Table 1 in
the main text). Note that for stable-12b, one of the
divergent models, only-OD surprisal is larger than
only-random surprisal: we leave to future studies
a better understanding of how ODs affect output
probabilities for this LM.

D ODs and frequency

Table 5 reports the linear-fit slopes and Spearman
correlation coefficients of the relation between
generic corpus-estimated frequency of tokens and
their prediction frequency in our dataset, for the full
models and their OD-ablated versions. For both
measures, we observe a drop from full-model to
ablate-OD, except for the usual divergent models:
opt-13b and gemma-12b essentially show no abla-
tion effect, and for stable-12b we actually observe
an increase in slope from full-model to OD-ablated.

The left boxplots in Fig. 6 present, for all LMs
except pythia-12b, the distribution of correlations
between the corpus-estimated frequencies of pre-
dicted tokens given the inputs in our dataset and
the activations of ODs and non-ODs in the last
layer of the last context token. The right plots
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size: 8B 7B 9B 12B 12B 13B 13B 14B
number of layers: 32 32 42 40 36 40 40 48
hidden dimension: 4096 4096 3584 5120 5120 5120 5120 5120
# attention heads: 32 32 16 32 40 40 40 40
# key/value heads: 8 8 8 8 n.a n.a n.a 8
head size: n.a 128 256 n.a n.a n.a n.a 128
FFN size: 14336 14336 14336 13824 20480 20480 13824 13824
vocab size: 128256 32768 256128 100352 50688 50272 100352 152064
position embeddings: v’ v’ v’ v’ v’ v’ v’ v’
max pos. embeddings: 8192 8192 8192 4096 2048 2048 4096 131072
tied word embeddings: X X v’ X X v’ X X
distilled model: X X v’ X X X X X
activation: SwiGLU SwiGLU GeGLU SwiGLU GelLU RelLU SwiGLU SwiGLU
LayerNorm (LN) type: RMSNorm RMSNorm RMSNorm LN LN LN RMSNorm  RMSNorm
LN has bias parameter: X X X v’ v’ v’ X X
torch dtype: bfloat16 bfloat1i6 float32 bfloat16 float1l6 float16 float32 bfloatl16
public training data: X X X v’ v’ X v’ X
checkpoints available: x X X X v’ < 10 v’ X

Table 3: Configuration details of the pre-trained LMs we experimented with; n.a. means not available information.

show the distribution of correlations between the
corpus-estimated frequencies of the output vocab-
ulary tokens and the OD and non-OD values in
the unembedding matrix vectors corresponding to
those vocabulary tokens. The same data are shown
for pythia-12b in the rightmost panel of Fig. 2 of
the main text. Also for the other models we ob-
serve that ODs display a much larger probability of
showing a higher (absolute) value of the correlation
than non-ODs in both scenarios. So, being an OD
often implies a large correlation, but the opposite is
not always true, as there are many dimensions for
which such correlation is high that are not ODs. It
could be interesting to see how the models behave
upon ablating (or keeping) only those non-ODs
with a high correlation coefficient, but we leave
this analysis to future work.

E Logit contribution analysis

E.1 Logit contribution computation

Given a context, an autoregressive neural language
model produces a probability distribution over pos-
sible next tokens by multiplying the last-layer acti-
vations of the last token of the context by the unem-
bedding matrix, and converting the resulting logit
scores to probabilities through the softmax func-
tion. We ignore the latter here, since it is monotonic
and we are only interested in comparing which of
several possible next tokens gets the largest score.

We thus focus on the logit values of the candidate
next tokens we are interested in. The logit for can-
didate next token ¢, denoted logit;, is given by the
dot product between the context activation vector
c and the unembedding matrix row corresponding
to ¢, ug:

logit, = c-uy = Z il
i€D

where D is the set of indices of dimensions of the
context and unembedding row vectors.

In order to assess how much the ODs contribute
to this score, we can simply partition the sum above
into two components, one given by the sum of
terms corresponding to the dimensions that are in
the OD set, and one by the sum of terms for the
leftover dimensions. Formally, if O is the set of
indices of OD dimensions, the contribution of the
ODs to logit, is:

logz’thD = Z Cillg;
€0

The contribution of the non-OD dimensions is
trivially given by:

¢OD

logit] cob

= logit; — logit;
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Surprisal (1st, 2nd, 3rd quartiles)

Model M ablate-OD only-OD only-random
pythia-12b  0.6,1.9,4.0 1.0,2.8,4.9 8.0,9.0,9.8 10.7
mistral-7b ~ 0.5,1.6,3.5 0.6,1.9,4.0 8.2,8.9,9.6 10.3
llama-8b 04,15,34 0.6,2.1,42 8.5,9.7,10.7 11.7
olmo2-13b 0.2,1.2,32  0.6,2.2,4.6 6.4,7.8,9.4 11.4
qwen-14b  03,14,34 0.7,3.2,7.0 8.8,10.6,15.1 11.8
opt-13b 0.6,19,41 06,2.0,4.1 10.3,10.5,10.7 10.8
gemma-9b 0.0,14,149 0.0,1.5,149 11.3,12.1,13.3 12.4
stable-12b  0.4,1.5,3.4 0.8,3.3,84 22.4,27.8,34.2 11.4

Table 4: 1st, 2nd and 3rd quartiles of the distribution of surprisal, computed on the predicted token for each input,
for each ablation type. The large values of the 3rd quartile hint at highly positive-skewed distributions. For the
only-random case we report only the median as the other quantiles are identical within the used significant digits.
The ablate-random condition is not reported since, as it occurred for accuracy, the values are identical to the ones of
full model up to the reported precision. In the only-random case, one can appreciate how the surprisal corresponds
to a random guess: by exponentiating these values, one approximately recovers the vocabulary size.

‘ Slope Spearman
Model ‘ FM ablate-OD | FM ablate-OD
pythia-12b | 1.35 0.74 0.70 0.53
mistral-7b | 1.23 1.06 0.71 0.64
llama-8b | 1.26 0.86 0.71 0.58
olmo2-13b | 1.24 0.64 0.74 0.59
qwen-14b | 1.22 0.95 0.71 0.52
opt-13b 1.34 1.25 0.70 0.67
gemma-9b | 1.30 1.26 0.72 0.71
stable-12b | 1.27 1.72 0.71 0.70

Table 5: Linear fit slope and Spearman correlation coefficient for the relation between corpus-estimated and

prediction frequencies for the full models and under OD ablation.

E.2 Logit contributions in OD-favored
predictions

Fig. 7 shows the distribution of logit OD and non-
OD contributions towards the prediction of OD-
favored tokens for all models except pythia-12b
and opt-13b, that are shown in the upper panel
of Fig. 3 of the main text. Note that stable-12b
is missing because we did not identify any OD-
favored token for this model. For all models but
opt-13b and gemma-9b, ODs, despite being very
few, contribute at least as strongly as non-ODs to
token prediction. It is worth remarking that for
olmo2-13b, while the ODs are giving the larger
contribution to the logits, both contributions are
negative.

E.3 Logit contributions in OD-neutral
predictions

We consider a set of OD-neutral tokens. These
are predicted at least 10 times in our dataset by the
non-ablated model, and they are predicted the same
number of times when ODs are ablated. For qwen-
14b, as there was only one token meeting this cri-
terion, we sampled tokens whose OD-ablated/full-
model prediction count ratio was between 0.9 and
1.1. We sample maximally 10 tokens per model,
shown in Table 6.

Fig. 8 plots the contribution of ODs and non-
ODs towards OD-favored and OD-neutral tokens,
in contexts in which the model assigned the larger
probability to the latter (for pythia-12b, the same
data in the specific case of _States against _the are
showed in the lower panel of Fig. 3 in the main
text; stable-12b, again, is missing because it has no
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Model Tokens

pythia-12b
mistral-7b
Ilama-8b
olmo2-13b
qwen-14b
opt-13b
gemma-9b
stable-12b  n.a.

_period _before _times _command _bridge _mm _States _II

_km _match _life _line _book _species _States _Tour _season _City

_November _players _Court _ships _species _Council _Division _office _largest _Road
_North _York _Union _ships _money _Japanese _success _times _ship _sold

_Street _match _gave _York _interview _each _into _based _began _Japan

_York _University _interview _feet _water _part _ships _Cup _men _half

_Road _feet _long _won _relationship _mm _support _United _little _local

Table 6: OD-neutral tokens for the different models. We consider a token OD-neutral if it is predicted from the
same representations before and after ablating ODs. A subsample of 10 was extracted if more were available.

OD-favored tokens according to our criterion). The
contributions are averaged across the contexts of
each OD-neutral tokens. For pythia-12b, mistral-
7b, llama-8b, olmo-13b and qwen-14b, ODs con-
tribute more strongly to the OD-favored logits, but
this effect is outdone, in all cases, by the non-ODs.
Note that, as already remarked with respect to the
previous figure, for olmo2-13b OD values are neg-
ative for both OD-favored and OD-neutral tokens,
but closer to 0 for OD-favored, confirming the gen-
eral trend. For opt-13b and gemma-9b, the OD
contributions always sum to values close to 0, con-
firming the divergent behavior of these models.

F OD-boosting parameter analysis

We explore if ODs are aligned with directions that
are boosted by the last MLP down-projection ma-
trix X, of shape d x h—where d is the hidden
(or embedding) dimension of the model and / is
the high-dimensional space between the MLP up-
and down-projection matrices (see FFN size in
Tab. 3). We then compute the SVD decomposition
of X = ULV, where V is a h x h matrix, ¥ is
a d x h diagonal rectangular matrix whose entries
are called singular values, and U is a d X d matrix,
that ultimately projects an input vector back into
the hidden space. We thus focus on the columns of
U, which are called left singular vectors and have
the same dimensionality d of the states from which
we extract the ODs.

Fig. 9 visualizes vectors given by the linear com-
bination of the top-N singular vectors that account
for a certain proportion of variance in the origi-
nal matrix, weighted by the corresponding singular
values, together with the distribution of ODs and
“spike” dimensions. Here and below, we define as
spikes those values of a vector that lie more than

3 standard deviations away from the mean. The
figure confirms the tendency for at least some ODs
to coincide with the spikes.

We then select the top 4 singular vectors and
repeat the analysis for each of them. Results for
pythia-12b are in Fig. 4 of the main text, and for
the other models in Fig. 10 here. The figure shows
the overlap between the ODs and the spikes of the
singular vectors. It also shows the overlap between
the ODs and the (similarly defined) spikes in the
last-layer LayerNorm weight and bias vectors. For
all models, we observe a non-negligible overlap
of spikes and ODs of their last layer; all of the
observed overlaps have p ~ 0 of occurring by
chance according to a random overlap simulation
test.

The same analysis applied to the Q, W, V, and
O matrices of the attention heads did not reveal
any significant overlap between ODs and spike
features; therefore, these results are not presented
here. While the lack of structure in the () and W
matrices is consistent with their primary function of
aggregating information across tokens, we might
have expected detectable signals in the V or O
matrices. However, no such structure was observed.
A possible explanation is that, as ODs act as a
fixed bias promoting frequent words, this is more
readily encoded in the MLP than in the attention
matrices, whose function is to manage contextual
information, but we leave further exploration of the
difference to future work.

G Emergence of ODs during training

Here, we report the Table 7 characterizing the evo-
lution of ODs across Pythia’s checkpoints. We
can observe how the accuracy and the role of ODs
in predicting frequent tokens evolve during pre-
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training. As already mentioned in the main text,
starting from step 3000 we observe the emergence
of a sizable number of ODs, together with an (ini-
tially small) negative effect on accuracy upon abla-
tion. At the same time, we see how both the ratios
between the number of predicted tokens in a) the
only-OD and only-random ablations and b) full
model and ablate-OD modalities become smaller.
This behavior suggests that the ODs have started
specializing in frequent-token prediction.

The only other model for which training check-
points are public is olmo2-13b. However, the first
available checkpoint does not occur early enough,
and fully-trained-model OD behavior is already
firmly in place by then.

H Sentence generation upon ablation

In this section we report how the different mod-
els’ generation capabilities change upon ablation
of given dimensions. The prompt is the same for
all the models, in order to have a direct compar-
ison. In all cases, we generated 20 tokens with
greedy decoding. Tokens that could not be prop-
erly rendered are substituted in the tables by “[?]”.
These included characters such as U+000B (line
tabulation) or U+548C (CJK Unified Ideograph)
Tables 8-15 show:

e default: the sentences generated by the full
model

* largest: the sentences generated by ablating
the £ dimensions with the largest medians

» smallest: the sentences generated by ablating
the k£ dimensions with the smallest medians

» random: the sentences generated by ablating
k random dimensions.

In particular, what we call outlier dimensions cor-
respond to the top largest dimension and the effect
of their ablation can be found in the first lines of
the entries in the “largest” block. We observe that
one typically needs to ablate between 2000 and
3000 random or small dimensions for the models to
start generating meaningless sentences. Differently,
the behavior is much more diversified when ablat-
ing the largest dimensions. Interestingly, pythia-
12b stops predicting the token “a” (that we iden-
tified as OD-favored for this model) after the re-
moval of 5 ODs and the token “,” after 20, while
repetitions—a clear sign of broken generation—start

at 100. Mistral-7b and llama-8b start producing
loops with 10 ablations only and their output be-
comes meaningless after 50. Qwen-14b, stable-12b
and olmo2-13b are the most sensitive, as the abla-
tion of just 5, 15 and 20 dimensions, respectively,
are enough to completely disrupt the model gener-
ation capabilities. Opt-13b and gemma-9b are the
more robust models, with ablation of the largest
dimensions affecting them similarly to the other
ablation strategies.

As already stated in the main text, these obser-
vations suggest that most models heavily rely on
the ODs in order to work properly, to the point that
some of them produce meaningless results after the
removal of just a few dimensions. This also implies
that any downstream task involving generation will
be affected by the removal of ODs.
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Pythia ODs Accuracy [%] # Distinct predicted tokens

Ckp # final | FM ablate-OD ‘ FM ablate-OD only-OD  only-rnd
500 1 0 11.4 11.4 667 671 14 20+3
1000 1 1 17.4 17.4 2774 2790 15 22+4
2000 7 3 26.4 26.5 5168 5322 63 677 =130
3000 22 7 29.6 29.4 6071 6463 188 2524 + 649
4000 38 11 31.1 30.7 6105 6756 136 4343 + 1470
5000 42 12 324 30.7 6472 7466 157 6125 £ 1111
6000 38 11 33.6 31.6 6258 7361 222 6541 + 1245
7000 37 10 | 34.1 31.6 6737 7933 178 6762 + 673
8000 35 9 344 32.1 6694 8121 179 6995 + 475
10000 |34 11 35.5 332 6776 8193 152 5959 £ 563
12000 |31 10 | 36.1 33.9 6760 8233 252 4868 + 750
14000 | 28 10 |363 33.5 6967 8695 211 5760 £ 715
16000 |22 9 37.6 343 6965 8878 152 5224 + 246
64000 | 21 18 | 41.1 35.7 7346 10466 102 5391 +£139
143000 |36 36 | 43.0 343 7504 11116 195 7254 £ 269

Table 7: ODs presence and behaviour across pythia-12b training checkpoints. ‘#’ indicates the number of ODs,
while ‘N final’ is the number of ODs that are also present at the last checkpoint. The last ckp corresponds to the
final model to which we refer in the main text.
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Figure 5: Number of ODs across layers (blue dots) and number of ODs in each layer that are also present in the last layer
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Model

pythia-12b

prompt | Two years ago I learned to bike with my parents. On Sundays’ afternoon we always went for a ride. This
stopped when my dad broke his knee and needed to go under surgery. All of
default | a sudden, I was the only one who could ride. I was so excited to be the only
Ablation | Generated sentence
largest 5 | asudden, I had to learn how to bike with my mom. She was always nervous about me
10 | us kids were sad. But my mom was sadder. She cried. She cried because she knew
15 | us kids were sad. But my mom said, "You’ll learn. You’ll learn." And
20 | sudden, cycling became boring.\n\nThen, when my dad recovered, we went cycling again.
30 | sudden cycling became boring.\n\nThen came cycling holidays. I’ve been cycling with my parents since
50 | sudden cycling became boring.\n\nThen came bike commuting. I’ve been commuting by bike since February
100 | sudden cycling became boring.\n\nThen came cycling holidays. cycling holidays are cycling holidays.
cycling holidays
200 | sudden cycling became boring. cycling became boring. cycling became boring. cycling became boring.
cycling became boring
500 | sudden cycling became boring! :( but yeah! cycling is awesome! @) :) :) 1) 1) :) 2)
1000 | sudden cycling became boring! cycling became boring! cycling became boring! cycling became boring!
cycling became boring
2000 | sudden cycling wasn’t fun anymore anymore anymore anymore anymore anymore anymore anymore anymore
anymore anymore anymore anymore anymore anymore
3000 | sudden cycling seemed boring! Cycling routes arent longer anymore! Cycling routes arent longer anymore
4000 | sudden cycling wasn’t FUNNIERORANDORANDORANDORANDORANDORANDORANDORANDO-
RANDORANDORANDORANDORAND
5000 | implementation GU Dimelsleroil Hayes Weaverhet LibrarydocumentclassenvabcDEF[?]atchningriumt
smallest 5 | a sudden, I was the only one who could ride. I was so excited to be the only
10 | asudden, I had to take care of my mom and my brother. I was a little bit
15 | asudden, I had to take care of my mom and my brother. I had to take care
20 | asudden I was the only one who could ride with my parents. I was so excited to be
30 | asudden, I had to take care of my mom and my brother. I was the only one
50 | asudden, I had to take care of my mom and my brother. I had to take care
100 | asudden I had to learn to bike on my own. I was scared and nervous. I was
200 | asudden I had to learn to bike on my own. I was scared, but I did it
500 | asudden I had to take care of my mom and my brother. I had to take care of
1000 | asudden, I had to take the bike on my own. I was not a good biker
2000 | the sudden the biking was a thing of the past, and the only thing that was still the
3000 | the biking in the world, the two of the three bikely-sib-b
4000 | the first bikely enthusic-tic enthusic enthusic enthusic enthusic enthusic
5000 | the the the the the the the the the the the the the the the the the the the the
random 5 | a sudden, I was the only one who could ride. I was so excited to be the only
10 | asudden, I was the only one who could ride. I was so excited to be the only
15 | asudden, I was the only one who could ride. I was so excited to be the only
20 | asudden, I was the only one who could ride. I was so excited to be the only
30 | asudden, I had to take care of my mom and my brother. I was the only one
50 | asudden, I was the only one who could ride. I was so excited to be the only
100 | asudden I was the only one who could ride with my parents. I was so excited to be
200 | asudden I had to take care of my mom and my brother. I was a little bit scared
500 | asudden I had to take care of my mom and my brother. I had to do everything.
1000 | us kids were left with our bikes in the garage. My mom asked me to take them out for
2000 | us kids wanted to help him but his answer was always the same [?] "I can manage". This
3000 | these long rides then became very short and very very very very very very Very very very very very very
4000 | us converged over distance over distance over distance over distance over distance over distance over distance
over distance over
5000 | typentypen photograp tiss scrut infil ingredtypentypentypentypentypentypentypentypentypentypentype-

ntypentypen

Table 8: Generation upon ablation for pythia-12b. See Appendix H for details.
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Model

| mistral-7b

prompt | Two years ago I learned to bike with my parents. On Sundays’ afternoon we always went for a ride. This
stopped when my dad broke his knee and needed to go under surgery. All of
default ‘ a sudden I was alone. I didn’t know how to bike without my parents. I was
Ablation | Generated sentence
largest 5 | asudden I was alone.\n\nI’ve always been a bit of a loner.
10 | asudden, I was alone.\n\nI’ve been riding my bike for 2 years
15 | asudden, I was alone.\n\n I've been riding my bike for 2
20 | asudden, I was alone.\n\n I've been riding alone for 2 years
30 | asudden, I was alone.\n\nI’m 16, and I'm
50 | asudden, I'm 16, and I’m alone.\n\nI’
100 | asudden, I'm 18, and I’'m 180cm tall
200 | asudden, I'm 16, and I'm biking.\n\nGeplaatst
500 | asudden, biking with my parents, and specially, with my dad, 10
1000 | us, including mum, are avid cyclists. Mum’s been cycling since she’
2000 | asudden, biking with him, which I've grown accustomed, I’ve
3000 | Suddenly bike rides turned into walks. Weekends turned into sitting. Weekends turned into
4000 | L1797 L0710 C0700 C0790 (0200 L0700 C0730 00290 L0200 €070 00730 L0200 L0700 C0230 0290 L0200 L0200 000 L0 ieem
smallest 5 | a sudden I was alone. I didn’t know how to bike without my parents. [ was
10 | asudden I was alone. I didn’t know how to bike without my parents. I was
15 | asudden I was alone. I didn’t know how to bike without my parents. [ was
20 | asudden I was alone. I didn’t know how to bike without my parents. I was
30 | asudden I was alone. I didn’t know how to bike without my parents. I was
50 | asudden I was alone. I had to find a new hobby.\n\nlI started to
100 | asudden I was alone. I had to find a new hobby.\n\nI started to
200 | asudden I was alone. I had to learn to bike by myself. I was scared. I
500 | asudden I had to bike on my own. I was scared to go on my own, so
1000 | asudden I had to learn to ride by myself. I started with the bike my parents had given
2000 | this time I had a little dream to go to the other side of the world and travel by bike
3000 | this caused my love for the mountain bike to start slowly slowly slowly slowly slowly slowly slowly slowly
slowly slowly
4000 | laugtypenplaattypentypentypentypentypentypentypentypentypentypentypentypentypentypentypentypentypen
random 5 | asudden I was alone. I had to find a new hobby.\n\nI started to
10 | asudden I was alone. I didn’t know how to bike without my parents. I was
15 | asudden I was alone. I didn’t know how to bike without my parents. [ was
20 | asudden I was alone with my bike. I didn’t know how to ride it. I
30 | asudden I was alone with my bike. I didn’t know how to ride it. I
50 | asudden I was alone. I didn’t know how to bike without my parents. I was
100 | asudden I was alone. I didn’t know how to bike without my parents. I was
200 | asudden I was alone with my bike. I didn’t know how to ride it anymore.
500 | asudden I was alone with my bike and didn’t know what to do with it. I
1000 | asudden I was on my own and I didn’t know how to ride a bike anymore.
2000 | asudden my mom and I were on our own and we really enjoyed it!\n\nA few
3000 | those things mean that we can do that in these hard corona-19 (C-1
4000 | friedunoweenesen interesting tempornen interesting temporopleunsto3 dedoB666B668686866

Table 9: Generation upon ablation for mistral-7b. See Appendix H for details.
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Model

llama-8b

prompt | Two years ago I learned to bike with my parents. On Sundays’ afternoon we always went for a ride. This
stopped when my dad broke his knee and needed to go under surgery. All of
default \ a sudden I was left alone with my bike. I was 12 years old and I had to
Ablation | Generated sentence
largest 5 | this happened during summer. Now that winter is coming I'm afraid that biking will stop again. I
10 | this happened during summer 2012. Since then I haven’t ridden my bike anymore. Until yesterday
15 | us were devastated. I couldn’t believe it. I couldn’t believe my dad couldn’t bike anymore
20 | asudden, biking became dangerous. I've been biking alone for a year now.<lend_of_textl>
30 | asudden, biking became dangerous. I've been biking alone 2-3 times a week.
50 | asudden, biking became dangerous. I've been biking alone 2-3 times a week.
100 | 2 months 2.scalablytyped[?][?][?1[?] full[?][?][?1[?1[?1[?]
200 | 2 summers’ fkk fkk fkk fkk fkk fkk fkk fkk fkk fkk fkk fkk fkk fkk fkk fkk
500 | 2weeks 2.scalablytyped nettsteder datingside datingside datingside datingside datingside datingside datingside
datingside datingside datingside datingside datingside datingside
1000 | 2 summers ago 2 summers 2 summers 2 summers 2 summers 2 summers
2000 | 2012 passed me biking dreaming ’gc addCriterionHeaderCodeHeaderCodeHeaderCodeHeaderCodeHeader-
CodeHeaderCodeHeaderCode
3000 | 20122013 2014 2015 [?7T#[21#[7T#I#121#[ TT#H#
4000 | thisuskollectors @natenbspnbspgroupongroupongroupongroupongroupongroupongroupongroupon(?][?][?][?]
smallest 5 | a sudden I was left alone with my bike. I was 12 years old and I had to
10 | asudden I was left alone with my bike. I was not able to ride it anymore. I
15 | asudden I was left alone with my bike. I was 12 years old and I was not
20 | asudden I was left alone with my bike. I was not able to ride it anymore. I
30 | asudden I was left alone with my bike. I was not sure if I could ride it by
50 | asudden I was left alone with my bike. I was not able to ride it anymore. I
100 | asudden I was left alone with my bike. I was 12 years old, and I was
200 | asudden I was left alone with my bike. I was 12 years old, [ had a
500 | asudden I was the only one who could ride a bike. I was 11 years old.
1000 | asudden I, a 15 year old, was in charge of the a
2000 | these, 730 830 1 830<lend_of_textl>
3000 | enthusi usercontent/company-
4000 | HeaderCode
random 5 | a sudden I was left alone with my bike. I was not able to ride it anymore. I
10 | asudden I was left alone with my bike. I was not able to go for a ride with
15 | asudden I was left alone with my bike. I was not able to ride it anymore. I
20 | asudden I was left alone with my bike. I was not able to ride it anymore. I
30 | asudden I was left alone with my bike. I was not able to go for a ride with
50 | asudden I was left alone with my bike. I was sad, but I didn’t want to
100 | asudden I was left alone with my bike. I started to ride around the block, then around
200 | asudden I was alone and I didn’t know how to ride a bike. I was scared to
500 | asudden I was left alone with my bike and I was sad. I missed my dad and I
1000 | asudden I was left with no one to ride with and no one to ride for.\nI miss
2000 | asudden we had no reason to meet and ride in the fields and fields of the neighbouring area where
3000 | asudden the non use of a bike just for fiana or flana or
4000 | _marvin éné //{{1_//{{ éné iste //{{ //{{

Table 10: Generation upon ablation for llama-8b. See Appendix H for details.
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Model

| olmo2-13b

prompt

Two years ago I learned to bike with my parents. On Sundays’ afternoon we always went for a ride. This

stopped when my dad broke his knee and needed to go under surgery. All of

default \ a sudden I was too busy to go biking. I was always doing something else. My parents asked

Ablation ‘ Generated sentence
largest 5 | us were sad about it. Yesterday I went to my dad’s room. He was lying on the
10 | us were sad about it. Yesterday, my dad told me that he wanted to ride bikes again.
15 | us were sad about it. Yesterday morning mom told me dad’s knee was healed and he could ride
20 | us were sad about it.[?][?I[21[21[?1021C7I020200002 1020021071
30 | us were sad aboutit.[: _Z _ X _ X _ K][?1[?1[?][?]
50 | sudden[?][?1A[AIAIAIACILAC2AC2AL2A0 2002002002020 02007]
100 | sudden[?][?1\n\nKANJI[?][?][?7I\n\nKANII[?1[?][?1\n\nKANJI[?][?][?]\n\nKANJI[?][?]
200 | sudden[?][?I\n\nKANJI[?T[L212021000202002002102002]
500 | sudden[?1[?I\n\nKANJI[?1[[21[21[210020210002107112]
1000 | sudden[?][?I\Nn\nKANJI[?T[021200210700202000021070102]
2000 | sudden biking Sundays Stops[?][?1\n\nKANJI[?][?1[?I\n\nKANJI[?][?1[7I\n\nKANJI[?][?][?]\n
3000 | sudden(weather[ ?1[21[21L21210ACACALILAL2A02A0?002002]0
4000 | Eagerness accordionistarween accordistarween accordistarween accordistarween accordistarween accordistar-
ween
5000 | ayasundo Lyons EOamelbitsujuenkinkeenk KramerFParnessVTesch Estragos backlogeriicode
smallest 5 | a sudden I was too busy to go biking. I was always doing something else. My parents asked
10 | asudden I was too busy to go biking. I was always doing something else. My parents would
15 | asudden I was too busy to go biking. I was always doing something else. My parents would
20 | asudden I was too busy to go biking. I was always doing something else. My parents would
30 | asudden I was too busy to go biking. I was always doing something else. My dad was
50 | asudden I was too busy to go biking. I was always doing something else. My dad was
100 | asudden I was too busy to go biking. I was always doing something else. I had forgotten
200 | asudden my mum was too tired to go out, and I didn’t have a bike for myself
500 | asudden my mum was too tired to go out and I was too lazy to go alone. So
1000 | asudden I was the one who had to take the car to the store to get the milk and
2000 | the other times we had to go to the hospital to get a new treatment. This was a very
3000 | the other days I would go to the park and go on the little dirt road and go to the
4000 | the 15105111
5000 | the 100- 100- 100- 100 100
random 5 | asudden I was too busy to go biking. I was always doing something else. My parents asked
10 | asudden I was too busy to go biking. I was always doing something else. My parents asked
15 | asudden I was too busy to go biking. I was always doing something else. My parents asked
20 | asudden I was too busy to go biking. I was always doing something else. My parents asked
30 | asudden I was too busy to go biking. I was always doing something else. My parents asked
50 | asudden I was too busy to go biking. I was always doing something else. I had a
100 | asudden I was too busy to go biking. I was always doing something else. I had a
200 | asudden, my mum and I stopped riding. We were too afraid to ride without him. One
500 | asudden, my mom was the only one who could bike with me. But she was very busy
1000 | asudden my mom was the only one who could bike with me. My dad was always the one
2000 | asudden, my mom was the only one who biked. I tried to get her to do
3000 | sudden I found myself riding the most I ever rode before. Mom continued to drive her car and Dad
4000 | sudden mid-November central Europe weather hit home. Snow Brussels Wallonia year old electric bike
5000 | tahuncente[?] presenta[?]6rioPerfil Voc€ ArchivoVocéVocéVocé Vocé Vocé Vocé Vocé Vocé Vocé Vocé Vocé

Table 11: Generation upon ablation for olmo2-13b. See Appendix H for details.
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Model

| qwen-14b

prompt | Two years ago I learned to bike with my parents. On Sundays’ afternoon we always went for a ride. This
stopped when my dad broke his knee and needed to go under surgery. All of
default ‘ a sudden I was left without a biking partner. I was sad and I missed the rides. I
Ablation | Generated sentence
largest 5 | my[?]200[?]bike[?]lessons[?]were[?]wasted.[?]I[?]knew
10 | us volunteerd to volunte yarg yarg yarg yarg yarg yarg yarg yarg yarg yarg yarg yarg yarg yarg yarg
15 | 2012 I biked 12000000000
20 | 2012121212121212121
30 | 20121 [?] be [?]spent in[?][?] [?1[?1[?][?] and he hasn
50 | 2012 1 [?] be [?]spent in[?][?] [?][?1[?][?] and then[?]
100 | 2012 1)didn’t [?Ddid[?] [?Ddid[?] [?D)did[?] [?]
200 | 2012 Ddidn’t [?])did[?] [?D)did[?] [?])did[?] [?]
500 | 2012 1)didn’t [?Ddid[?] [?Ddid[?] [?Ddid[?] [?]
1000 | 2012 1)did [?1)did[?] [?D)did[?] [?1)did[?] [?])did[?]
2000 | 2012, he hasn’¢[ 2121020210002 200A 0202000020023 0202000 0202 D 020020007
3000 | 2015,[10A020A021 010100021 A0 A 0 A0 I A 020020
4000 | usS$core$core$core$core$core$core$core$core$core$core$core$core$coreScoreScore$core$core$core$core
5000 | [?]s own behalf destinationViewControlleruallyALLY [?][?]\n[?] [?1[?]ses [?][?]ses [?1[?]ses [?][?]ses
[21[?]ses
smallest 5 | a sudden I was left without a biking partner. I was sad and I missed the rides. I
10 | asudden I was left without a biking partner. I was sad and I missed the rides. I
15 | asudden I was left without a biking partner. I was sad and I missed the rides. I
20 | asudden I was left without a biking partner. I was sad and I missed the rides. I
30 | asudden I was without a bike and without a dad to ride with. I was sad. I
50 | asudden I was without a bike. I was sad. I was 10 years old.
100 | asudden I had to stop biking. I was sad. I missed biking. I missed the wind
200 | asudden I had to stop biking. I was sad. I missed the wind in my face,
500 | asudden I had to stop riding. I felt so sad. I had to stay home and watch
1000 | a sudden I had no one to ride with. I had a hard time to get used to the
2000 | his post-surgery care was very hard on him and he never got back to biking.
3000 | his left [?] [2102102020020020020020 02002000071
4000 | junilicked 1 ets]
5000 | FunctionFlags [?][?1[?1[?1[?1[?]
random 5 | a sudden I was left without a biking partner. I was sad and I missed the rides. I
10 | asudden I was left without a biking partner. I was sad and I missed the rides. I
15 | asudden I was left without a biking partner. I was sad and I missed the time we spent
20 | asudden I was left without a biking partner. I was sad and I didn’t know what to
30 | asudden I was left without a bike. I was 10 years old and I didn’t
50 | asudden I was left without a bike. I was 12 years old and I didn’t
100 | asudden I was left without a bike. I was 10 years old and I didn’t
200 | asudden my mom and I were left alone. I was 10 years old and my mom
500 | asudden my 10-year-old self was the only one left to take care of my little
1000 | sudden we had to stop going to bike together because my dad could not stand up yet to go for
2000 | sudden dad could not go cycling anymore but he was not going to _ his 2-year-old
3000 | newcoms([?1[?D[?I[?1f111111111111
4000 | [NALSE [[21[71[7] [21[[ [ 71$fdata$fdata[ ?]$fdata[ ?])$fdata$fdata$fdata$fdata$fdata$fdata$fdata$fdata
5000 | .dtpcola-kit/Branch/goto/portfolio/portfolio, volunte/lic/gif/Branch/goto/portfolio/portfolio/portfolio, vol-

unte/chart/Branch

Table 12: Generation upon ablation for qgwen-14b. See Appendix H for details.
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Model | opt-13b

prompt | Two years ago I learned to bike with my parents. On Sundays’ afternoon we always went for a ride. This
stopped when my dad broke his knee and needed to go under surgery. All of

default \ a sudden I was alone on the bike. I was scared to ride alone. I was scared to

Ablation \ Generated sentence

largest 5 | asudden I was alone on the bike. I was scared and didn’t know what to do.
10 | asudden I was alone. I was so sad. I miss my dad.\nI’m sorry
15 | asudden I was alone. I was so sad. I didn’t know what to do. T
20 | asudden I was alone. I was afraid to ride my bike alone. I was afraid to ride
30 | asudden I was alone. I was so sad. I didn’t know what to do. I
50 | asudden I was alone. I was afraid to ride my bike. I was afraid to go outside
100 | asudden I was alone. I was so sad. I miss my dad.\nI’m sorry
200 | asudden I was alone. I was so sad. I was so lonely. I was so angry
500 | asudden I was the only one who could go for a ride. I was so sad. I
1000 | us are getting older and we don’t have the energy anymore. I'm really happy I'm getting
2000 | us are getting older. My mom doesn’t want to ride anymore. My dad doesn’t want to
3000 | us are cyclists. Cycling is our favorite thing. Cycling is our favorite thing. Cycling is our favorite
4000 | my siblings bike, I'm alone. :(\nbike on!</s>
5000 | Oxacander PVvblogerherlabeleer missvenalsiche Jeriter Monitoring materialsrugeer

smallest 5 | a sudden I was alone on the bike. I was scared to ride alone. I was scared to
10 | asudden I was alone on the bike. I was scared to ride alone. I was scared to
15 | asudden I was alone on the bike. I was scared and I didn’t know what to do
20 | asudden I was alone on the bike. I was scared and I didn’t know what to do
30 | asudden I was alone on the bike. I was scared and I didn’t know what to do
50 | asudden I was alone. I was so sad. I was so lonely. I was so scared
100 | a sudden I was alone on the bike. I was scared and I didn’t know what to do
200 | asudden I was the only one who could ride a bike. I was so sad.\n\n
500 | asudden I was the only one left in the family who could ride a bike. I was the
1000 | asudden I was the only one left in the family who could ride a bike.\n\nI
2000 | asudden the time for the bike rides was over.\n\nl was a bit disappointed, but
3000 | asudden,theonlytime,,,,,,,,,,,,,,
4000 | 5,y sssssnsnrsssssssss
5000 | ..

random 5 | a sudden I was alone on the bike. I was scared and I didn’t know what to do
10 | asudden I was alone on the bike. I was scared to ride alone. I was scared to
15 | asudden I was alone on the bike. I was scared to ride alone. I was scared to
20 | asudden I was alone on the bike. I was scared and I didn’t know what to do
30 | asudden I was alone on the bike. I was scared and I didn’t know what to do
50 | asudden I was alone on the bike. I was not able to ride with my parents anymore.
100 | asudden I was alone on the bike. I was not able to ride with my parents anymore.
200 | asudden I was alone on the bike. I was so scared that I stopped riding. I was
500 | asudden I was alone. I was so sad. I was so lonely. I was so bored
1000 | asudden I was alone. I was so happy when my mom said that she would take me on
2000 | us are getting older and I can’t really ride with my mom and my sister. I miss my
3000 | us missed it and I missed it the most. I miss my dad and I miss my mom who
4000 | asudden, my mom got lost on her scooter on a daily trip between shops, and lost
5000 | Course permanentalon Pug pendataneptri Irugi pendatanrientht Allegippy Pug pendatanrient

Table 13: Generation upon ablation for opt-13b. See Appendix H for details.
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Model | gemma-9b

prompt | Two years ago I learned to bike with my parents. On Sundays’ afternoon we always went for a ride. This
stopped when my dad broke his knee and needed to go under surgery. All of

default ‘ a sudden I was left alone with my bike. I was 10 years old and I was

Ablation \ Generated sentence

largest 5 | asudden I was left alone with my bike. I was afraid to go out alone, but I
10 | asudden I was left alone with my bike. I was afraid to ride it alone, but I
15 | asudden I was left alone with my bike. I was scared to ride it alone, but I
20 | asudden I was left alone with my bike. I was afraid to ride it alone, but I
30 | asudden I was left alone with my bike. I was afraid to ride it alone, but I
50 | a SUDDEN I was left alone with my bike. I was scared to ride it alone. I
100 | us were sad about it.\n\nlI was sad because I loved biking with my parents. I was
200 | us were sad about it. My mom and I were sad because we couldn XNUMXt ride anymore
500 | us were sad about it. My dad was sad because he couldn XNUMXct ride his bike anymore
1000 | us were devastated. My dad was always so active and sporty. He loved to play tennis, soccer
2000 | us were sad about it. My dad was sadder than anyone else. He loves biking. He
3000 | this stopped when I went to Beijing.\n\n plea[?]ure\n createSlice\n I\n I\n I\n I

smallest 5 | a sudden I was left alone with my bike. I was 10 years old and I was
10 | asudden I was left alone with my bike. I was scared to go out alone, but I
15 | asudden I was left alone with my bike. I was scared to go out alone, but I
20 | asudden I was left alone with my bike. I was scared to go out alone, but I
30 | asudden I was left alone with my bike. I was 12 years old and I was
50 | asudden I was left alone with my bike. I was 12 years old and I was
100 | asudden I was left alone with my bike. I was 12 years old and I was
200 | asudden I was left alone with my bike. I was 12 years old and I was
500 | a<strong>sudden</strong> I was left alone with my bike. I was 12 years
1000 | a <strong>sudden</strong>, I was left alone. I was 12 years <strong>
2000 | a2019 I was in a big and very very very very very very very very
3000 | the 2019 and 2020, I was in the 10

random 5 | asudden I was left alone with my bike. I was 10 years old and I was
10 | asudden I was left alone with my bike. I was 10 years old and I was
15 | asudden I was left alone with my bike. I was 10 years old and I was
20 | asudden I was left alone with my bike. I was 10 years old and I was
30 | asudden I was left alone with my bike. I was 10 years old and I was
50 | asudden I was left alone with my bike. I was 10 years old and I was
100 | asudden I was left alone with my bike. I was 10 years old and I was
200 | asudden I was left alone with my bike. I was not sure what to do with it.
500 | asudden I was left alone with my bike. I was afraid to ride it alone, but I
1000 | asudden I was left alone with my bike. I was afraid to go out alone, but I
2000 | asudden I was on my own. I was afraid to ride alone, but I knew I had
3000 | aextranjero[?]jimo. |=>]=>]=>]=>]=>]=>]=>|]=>

Table 14: Generation upon ablation for gemma-9b. See Appendix H for details.
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Model

| stable-12b

prompt | Two years ago I learned to bike with my parents. On Sundays’ afternoon we always went for a ride. This
stopped when my dad broke his knee and needed to go under surgery. All of
default | us were very sad. I was the only one who could still ride a bike. I was very
Ablation \ Generated sentence
largest 5 | a sudden, I was the only one who could go for a ride. I was 11
10 | asudden, I was the only one who could go for a ride. I was 11
15 | a\ns\ns\ns\ns\ns\ns\ns\ns\ns\n
20 | al10111 11211311
30 | allltl1111111111111
50 | al1l0111 11211311
100 | al10111 11211311
200 | a\n_\n_2.2.2 22222
500 | 0222222222
1000 | _1_23 4567 89_
2000 | dit dit dit dit dit dit dit dit dit dit dit dit dit dit dit dit dit dit dit dit
3000 | moo moo Moo MOO MOO MOO MOO MOO MOO MO0 MOO MOO MOO MOO MOO MOO MO0 MOO MOO MO0
4000 | sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic
5000 | YELLOW ess repentDomain rit sic wel pens wel wel wel wel wel wel wel wel wel wel wel wel
smallest 5 | us were very sad. I was the only one who could still ride a bike. [ was very
10 | us were very sad. I was the only one who could still ride a bike. I was very
15 | us were very sad. I was the only one who could still ride a bike. I was very
20 | us were very sad. I was the only one who could still ride a bike. I was very
30 | us were very sad. I was the only one who could still ride a bike. I was very
50 | us were very sad. I was the only one who could still ride a bike. I was very
100 | us were very sad. I was the only one who could still ride a bike. I was very
200 | us were very sad. We missed the Sunday bike rides. We missed the time we spent together.
500 | us were very sad. I was the only one who could still go out on the road. I
1000 | asudden, I was the only one in the family who could still go for a ride. I
2000 | excer excer eXcer eXcer eXcer eXcer eXcer eXcer excer eXcer exXcer exXcer excer excer excer excer excer excer
excer excer
3000 | disappe,[71\n\n,[21\n\n,[21\n\N,[2]\n\N, [71Nn\n, [21\n\ N, [21\n AN, [2]\N\ N, [ 71NN \n, [21\n\n,[21\n\Nn,[?]\n\n,
4000 | ,[?I\n\nINCLUDED,[?]\n\nINCLUDED, [?]An\nINCLUDED,[?]\n\nINCLUDED,[?]\n\nINCLUDED,
5000 | underminhsiLOCKSLOCKSLOCKSLOCKSLOCKSLOCKSLOCKSLOCKSLOCKSLOCKSLOCKS
random 5 | us were very sad. I missed my dad’s company. I missed the bike rides. I missed
10 | us were very sad. I missed the bike rides. I missed my dad. I missed my mom
15 | us were very sad. My mom and I decided to go for a ride on our own. We
20 | us were very sad. My mom and I decided to go for a ride on our own. We
30 | us were very sad. My dad was the one who taught me to ride a bike. He was
50 | us were very sad. My dad was the one who taught me how to ride a bike. He
100 | us missed the bike rides. I was the one who missed it most. I was the one who
200 | us missed it so much. Now, two years later, my dad is back on his feet and
500 | asudden I found myself without a companion. I missed the rides and the fun. I missed my
1000 | us missed those outings. It’s not easy to go out and do such activities with just me and
2000 | his biking spares were sold. I still miss biking. INCIDENT INCIDENT INCIDENT INCIDENT INCIDENT
INCIDENT INCIDENT INCIDENT
3000 | DPAMAGEREENREENREENREENREENREENREENREENREENREENREENREENREENREEN
4000 | INCIDENT INCIDENT INCIDENT INCIDENT INCIDENT INCIDENT INCIDENT INCIDENT INCI-
DENT INCIDENT INCIDENT INCIDENT INCIDENT INCIDENT INCIDENT INCIDENT INCIDENT
INCIDENT INCIDENT INCIDENT
5000 | favorayo tob disg favor JsonRequest/DkIFn favor Clay ped favor Clay ped Clay ped Clay ped Clay ped

Table 15: Generation upon ablation for stable-12b. See Appendix H for details.
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