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Abstract

Understanding why large language models
(LLMs) exhibit certain behaviors is the goal of
mechanistic interpretability. One of the major
tools employed by mechanistic interpretabil-
ity is circuit discovery, i.e., identifying a sub-
set of the model’s components responsible for
a given task. We present a novel circuit dis-
covery technique called IPE (Isolating Path
Effects) that, unlike traditional edge-centric
approaches, aims to identify entire computa-
tional paths (from input embeddings to out-
put logits) responsible for certain model behav-
iors. Our method modifies the messages passed
between nodes along a given path in such a
way as to either precisely remove the effects
of the entire path (i.e., ablate it) or to replace
the path’s effects with those that would have
been generated by a counterfactual input. IPE
is different from current path-patching or edge
activation-patching techniques since they are
not ablating single paths, but rather a set of
paths sharing certain edges, preventing more
precise tracing of information flow. We ap-
ply our method to the well-known Indirect Ob-
ject Identification (IOI) task, recovering the
canonical circuit reported in prior work. On
the MIB workshop leaderboard, we tested IOI
and MCQA tasks on GPT2-small and Qwen2.5.
For GPT2, path counterfactual replacement out-
performed path ablation as expected and led to
top-ranking results, while for Qwen, no signif-
icant differences were observed, indicating a
need for larger experiments to distinguish the
two approaches.

1 Introduction

Mechanistic interpretability seeks to reverse-
engineer the internal computations of large lan-
guage models (LLMs) to understand how specific
behaviors arise (Sharkey et al., 2025). A central
goal in this field is circuit discovery: identifying the
sub-networks of model components (such as atten-
tion heads and MLPs) that are causally responsible
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Figure 1: Theoretical differences in the identified paths
with different methods. Given a toy model with three
layers and two attention heads, we could apply Activa-
tion Patching to node MLP 1 to check its importance.
With Edge activation patching we assign a score to
the edge MLP 0 -> MLP 1 , but still taking into ac-
count contributions from other edges (in red and blue).
Finally, with Isolating Path effects we isolate the con-
tribution of the path Input -> MLP 0 -> MLP 1 ->

Final Logits .

for a given task (Nikankin et al., 2025; Zhang et al.,
2024; Hanna et al., 2023; Cao et al., 2020). Recent
efforts, including the Mechanistic Interpretability
Benchmark (MIB) (Mueller et al., 2025), have for-
malized this task by proposing standardized set-
tings and quantitative evaluation metrics for mea-
suring the quality of discovered circuits.

Our contribution is a novel path-based circuit dis-
covery technique, IPE (Isolating Path Effects)1.

1Code at: https : / / github.com / nepp1d0 / MIB -
circuit-track-with-paths
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Rather than attempting to identify edges which are
independently important within the network, IPE
searches for entire computational paths that have
significant effects on network predictions. Due to a
message-propagation patching technique, IPE is
able to evaluate precise single paths connecting the
desired subcomponents, allowing for a more granu-
lar tracing of information throughout the network,
as depicted in Figure 1. While evaluating a sin-
gle edge (e.g. MLP 0 -> MLP 1 ) standard Edge
Activation Patching (EActP) (Mueller et al., 2025;
Conmy et al., 2023) removes at the input of MLP 1
the message passed from MLP 0 and then patch
the new activation of MLP 1 in a forward pass, to
get the final logits. IPE, instead, treats the logits
as yet another subsequent node and subtracts again
the new message generated by MLP 1 from the
last residual right before the logits, in order to not
to contaminate the path score with contributions
from other undesired edges.

Since the evaluation of all the paths in the net-
work is prohibitive, due to the huge search space,
we employed an efficient top-down search and care-
fully modified messages sent along these paths
(from input to output) to estimate the exact con-
tribution of the given path to model behavior.

This work was carried out in the context of the
Circuit Localization track of the shared task as-
sociated with the MIB leaderboard. We first val-
idated our results on the IOI task (Wang et al.,
2023), ensuring to recover the core components
of the known circuit. We tested IPE with path
ablation and also path counterfactual replacement.
As expected, counterfactual replacement showed
better performance on the GPT-2 (Radford et al.,
2019) testbed since the evaluation measure for the
task makes use of counterfactuals. Meanwhile, for
Qwen (Yang et al., 2024), we did not see signif-
icant improvement with counterfactuals over ab-
lation, potentially due to insufficient search being
performed given the higher number of layers in the
network.

2 Background

Wang et al. (2023) introduced one of the first
detailed mechanistic explanations for how GPT-
2 solves the IOI (Indirect Object Identification)
task. The authors combined multiple manual inter-
pretability techniques to identify a sparse circuit
of 26 attention heads grouped into 7 functional
categories. They introduced a technique called

path-patching to identify important edges in the
graph, whereby they employ four forward passes of
the model to measure the importance of one single
edge. Building on this foundation, the ACDC tech-
nique by Conmy et al. (2023) automates the circuit
discovery process by selecting important edges be-
tween components (e.g., attention heads, MLPs) us-
ing an iterative metric-driven pruning search strat-
egy. The core technique consists of traversing the
tree of components in reverse topological order in
a top-down fashion and progressively applying ac-
tivation patching at single edges. Each edge is
evaluated by replacing the activation at the destina-
tion node with the one obtained from a corrupted
(counterfactual) run and measuring how much this
changes model output. By repeating this across
many edges and selecting those with the highest
importance, ACDC constructs a graph that approxi-
mates the causal structure of the circuit. Later work
on attribution patching proposed a simple scal-
able alternative to ACDC, by applying a linear ap-
proximation to the patching operation, effectively
estimating edge importance via gradients Syed et al.
(2023); Sundararajan et al. (2017); Hanna et al.
(2024); Marks et al. (2025). A related line of work
is introduced by (Goldowsky-Dill et al., 2023), who
explore the notion of path patching in a way that
aligns with our theoretical definition of path con-
tributions. While their approach does not provide
a fully automated method for discovering circuits,
it offers valuable theoretical foundations that mo-
tivate path-centric analyses. All of these methods
operate in an edge-centric fashion, evaluating or
ranking individual connections between compo-
nents. They identify a circuit as the set of edges
deemed most important under a chosen metric, of-
ten without enforcing path-level coherence or struc-
tural constraints. In contrast, our method takes a
path-centric view leveraging the model’s resid-
ual architecture to trace full computational flows
and investigate path-level effects. Specifically, our
algorithm provides an efficient mechanism for ex-
clusively removing and quantifying the effects of
the given path in a model.

3 Method Overview

Similar to previous works (Vig et al., 2020; Hanna
et al., 2023; Nikankin et al., 2025), we define a path
as a directed connected sequence of model com-
ponents, but then impose a structural constraint
that all paths originate from the input embeddings
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Figure 2: Consider a 3-step path connecting the in-
put layer to the output layer for a particular model. If
path importance is calculated by propagating effects
of removing entire paths, the only information passed
along the path itself will affect the distribution for the
output token (on the left). If instead, path importance
is computed by either patching nodes or combining
independent estimates of edge importance (shown on
the right), the final importance score will implicitly take
into account contributions from many irrelevant paths
shown in dashed gray arrows.

and terminate at the output layer ( logits). We
hypothesize that the Transformer’s residual decora-
tion mechanism naturally supports the emergence
of human-interpretable circuits, where atomic fea-
tures (single tokens’ meanings) are injected at early
layers and then refined over subsequent layers. By
constraining our analysis to full paths from the
input to the output, we aim to capture these end-to-
end transformations directly, rather than reasoning
over isolated edges or local interventions.

3.1 Path evaluation

To evaluate the importance of a candidate cir-
cuit prior works typically rely on ablations, such
as zeroing out activations or applying counterfac-
tual substitutions at selected components (Nikankin
et al., 2025; Hanna et al., 2023). As illustrated in
Figure 2, ablating a single edge introduces the ef-
fects from other earlier components of the model
outside the identified circuit: since each node re-
ceives residual input from the entire previous model
slice, its activation reflects not only the preceding
edge under investigation but also all other com-
ponents contributing to the residual stream. By
contrast, ablating a complete path is possible by
appropriately updating the intermediate messages
passed along the causal chain, thereby isolating and

removing the contribution of the given path while
preventing the influence of other paths through the
network.

d

c

b

a

∆mc = fc(xc +∆mb)− fc(xc)

= fc(xc + fb(xb + fa(xa))

−fb(xb))− fc(xc)

∆mb = fb(xb +∆ma)− fb(xb)

= fb(xb − fa(xa))− fb(xb)

∆ma = 0− fa(xa)

= − fa(xa)

Figure 3: Direct calculation of the change in the propa-
gated information along a 3-step path (a→ b→ c→ d)
that results of isolating and removing that particular path
from the model. Here xa denotes the input message to
node a (prior to path removal), fa() denotes the function
computed by the model at that node, and ∆ma denotes
the change in the output message from that node re-
sulting from the removal of the path from the model.
To compute the importance of the path, each ∆m is
patched as input to the next node in the path, starting
from the lower node going up to the logits (last possible
node in every path).

To efficiently implement path ablation, we de-
sign an iterative procedure that traverses the se-
lected path from the input to the output calculating
the change in the message (denoted ∆m in Fig-
ure 3) applied to the input for each subsequent node
in the path. Starting from the first edge in the path
(i.e. source node is the input embedding) we re-
move the contribution of the source node from the
destination node. We then perform a forward pass
of the destination node using the modified input,
producing an updated output. Now we treat this
destination node as the source node for the subse-
quent edge in the path and repeat the procedure.
This process continues iteratively and exclusively
along each edge in the path, with each component
receiving the appropriately updated output from
the previous component, ensuring that the path is
ablated in isolation from the rest of the model. The
iteration terminates at the final node, after which
the updated residual stream is used to compute the
model’s final logits. In the case of counterfactual
injection, the process is the same except that the
change in the message along the first edge (∆ma

in Figure 3) becomes f(x′a)− f(xa), where x′a is
now counterfactual input to the node a.
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Figure 4: Iterative process of searching for paths. Start-
ing from the logits, we explore all the possible paths one
edge at time, approximating the contribution of the com-
plete path (i.e., form an input token to the final logits)
with the contribution of the incomplete path spanning
from the output logits to last edge candidate. In purple
we highlighted all the possible paths at each step of the
search, all those paths may contribute differently, but
we are assuming their contribution to be at most the one
of the incomplete path (in red).

3.2 Search algorithm

Evaluating all possible paths from the input em-
beddings to the output logits is computationally
intractable, as the number of such paths grows ex-
ponentially with the depth and width of the model.
To address this, we employ a top-down search strat-
egy (similar to (Conmy et al., 2023)) that incre-
mentally constructs and evaluates candidate paths
of increasing length, as outlined in Figure 4 and
Algorithm 1 (please refer to Appendix B for fur-
ther details). The search begins at the output node
(i.e., the final logits) and recursively explores all
possible paths up to length n, where n is typically
set to be the number of network layers. A path of
length 1 consists of a single edge that connects the
input embedding directly to the output; a path of
length 2 includes one intermediate component; and
so on. At each step, only those partial paths whose
current contribution, measured using a user-defined
scoring metric, exceeds a predefined threshold are
extended further. This approach leverages the em-
pirical observation that longer paths tend to have
diminishing influence on the model’s final predic-
tion due to the fading contribution of individual
components in the residual stream. As a result, the
search typically terminates well before reaching
the maximum possible path length defined by the
model’s architecture, significantly reducing com-
putational overhead while preserving high-quality
circuit candidates.

Algorithm 1: Backward Discovery (with minimum
contribution threshold)

frontier← [LOGIT Node]
completed← [ ]
while frontier is not empty do

path← frontier.pop()
candidates← path.predecessors()
foreach node in candidates do

msg← EVALUATEPATH(node, path)
if METRIC(msg) ≥ threshold then

if node is EMBED Node then
add (node, path) to completed

else
add (node, path) to frontier

return completed

4 Experimental Setup

This section describes the two main evaluation set-
tings used in our study2, i.e. the IOI task in GPT-2
small and the MIB leaderboard framework.

4.1 Comparison with Ground-Truth

We begin by evaluating our approach against the
manually reverse-engineered IOI circuit reported
in Wang et al. (2023). To quantify the importance
of a path, we ablate it using the logit difference
logit(t|M) − logit(t|M¬path), where t is the de-
sired output token, M is the original model, and
M¬path denotes the corrupted model with the par-
ticular path removed. We run the search proce-
dure with multiple threshold values on this metric.
Lower thresholds result in the discovery of more
paths, but also increase computational cost, (see
Appendix A for more details).

4.2 MIB leaderboard

Using the threshold insights obtained from the pre-
vious experiment, we applied IPE with path abla-
tion and IPE-CF with counterfactuals to the GPT-2
small and Qwen models for the IOI task, and to
the Qwen model for the MCQA task, as defined
in the MIB evaluation (Mueller et al., 2025). The
metric used in the counterfactual setup is the Indi-
rect Effect proposed by Stolfo et al. (2023). The
motivation for using this metric is that, when com-
bined with a counterfactual prompt, it enables the

2Experiments are conducted using NVIDIA A100 SXM4
and NVIDIA GeForce RTX 4090 GPUs.
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algorithm to identify paths that not only contribute
to increasing the logit of the correct token but also
substantially reduce the logits of competing incor-
rect tokens, thereby favoring the correct prediction.
In order to let our paths be evaluated by the MIB
benchmark, we first give to each edge the score of
the complete path it belongs to. Then, for edges
appearing in different paths, we simply summed all
their scores. This lets the final score for each edge
be greater for edges appearing in multiple paths.

5 Results

Using an indirect effect threshold of 10−4, we com-
pared circuits identified by our method against the
IOI ground-truth annotations. Our circuits retained
47.6% of the original ground-truth edges, while
capturing 97.5% of the ground-truth nodes. Thus,
our approach successfully recovers almost all the
key nodes involved in the task, while the fraction
of recovered edges is lower, due to the quadratic
set of potential edges that need to be considered.

We evaluated our approach on the MIB leader-
board using both path ablation and path counter-
factual strategies. A summary of the results is pro-
vided in Table 1, which shows that the use of a
counterfactual substantially improves performance,
with IPE-CF ranking among the top algorithms for
GPT-2 IOI task, according to both the CPR (Cir-
cuit Performance Ratio) and CMD (Circuit-Model
distance) metrics on the MIB leaderboard. Fur-
ther analysis on the public test set confirms that
the approach discovers a larger number of relevant
edges during search. In contrast, the ablation vari-
ant achieves lower scores primarily because it iden-
tifies only task-relevant rather than counterfactual-
relevant edges.

Isolating Path Effect (IPE) underperforms on
larger models such as Qwen-2.5. We hypothe-
size that IPE identifies too few edges relative to
the model’s scale. Compared with GPT-2, Qwen-
2.5 has substantially more layers, which expands
the combinatorial space of candidate paths. Be-
cause IPE searches full paths, the same edge can be
evaluated repeatedly across paths, while few new
candidates are proposed. Consequently, achieving
adequate coverage on larger models likely requires
a more exhaustive search (e.g., lowering the edge-
selection threshold or increasing the candidate bud-
get to approach convergence).

6 Conclusion

We presented a new circuit discovery method for
LLMs that focuses on scoring full computational
paths rather than isolated edges, thereby preserv-
ing the global circuit structure, ignoring irrelevant
paths, and offering greater interpretability. Our
analysis shows that the set of recovered circuits
depends critically on whether paths are simply re-
moved from the model or replaced with a counter-
factual input. These insights position path-based
search as a promising direction for more faithful
mechanistic interpretations of Transformer models.
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A Relevance of the Retrieved Paths in
gpt2-small

In this appendix, we provide some insight on how
IPE behaves, highlighting some of the method’s
strengths and limitations. We focus on the version
of IPE without counterfactual prompts, using our
logit-difference metric and selecting only paths that
positively contribute to the correct token’s logit.
We then use the manually reverse-engineered IOI
circuit from Wang et al. (2023) (excluding negative
Name Mover heads) as ground truth to evaluate the
circuit.

A.1 Effect of contribution Threshold

As we can see from Figure 5 our algorithm find ex-
ponentially more node, edges and paths when the
minimum contribution threshold is reduced. There-
fore, the computational cost grows exponentially as
the threshold decreases. This is due to an increas-
ing number of relevant paths, to find, evaluate, and
include in the circuit. Furthermore, as we reduce
the minimum contribution threshold for each new
edge ranked and included in the circuit an expo-
nential number of paths need to be included in the
search. These insight exposes the core weaknesses
of our approach: to provide a score for all edges
IPE must be run at a prohibitively low threshold,
which makes it computationally expensive. This
makes the current implementation of IPE unsuit-
able for much larger models but hints that any sig-
nificant computational speedup of this algorithm is
likely to results in more complete circuits.

A.2 Retrieval Performance Against Ground
Truth

To assess the relevance of the circuit found by our
algorithm beyond the metrics proposed in Mueller
et al. (2025), we can compare it against a ground
truth. In particular, given the nature of both our
algorithm and the circuit proposed in the original
paper Wang et al. (2023), we can evaluate the cir-
cuit in terms of the ability to retrieve the elements
present in the ground truth circuit.

Despite differences in paradigm (path-centric)
and metric definition, the recovered nodes align
closely with the hand-annotated IOI circuit Fig-
ure 6. With almost all ground truth components
included in at least one relevant path when the
threshold is sufficiently low.

Furthermore, when adapting our algorithm to
use counterfactual ablation and use a more rele-

Figure 5: (top) Percentage of total nodes included in
our circuit (yellow) and nodes from ground truth in-
cluded in our circuit (green) as function of the minimum
contribution threshold (log scaled). (center) Percent-
age of total edges included in our circuit (yellow) and
edges from ground truth (green) included in our circuit
as function of the minimum contribution threshold (log
scaled). (bottom) average number of paths required for
each edge in the circuit as a function of the minimum
contribution threshold.

Figure 6: Performance of IPE with path ablation as a
classifier of the ground truth nodes when varying the
minimum path contribution threshold.

vant metric like indirect effect Stolfo et al. (2023),
performance in terms of CPR and CMD drastically
improves Table 1. On the other hand, the ability
of the circuit to retrieve the ground truth improves
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only slightly Figure 7

Figure 7: Performance of IPE with path counterfactual
as a classifier of the ground truth nodes when varying
the minimum path contribution threshold.

It is also interesting to note how the nodes re-
trieved using path ablation and the counterfactual
have some differences. Particularly the union of
the circuits obtained using the two methods, yields
perfect recall. This highlights the importance of
choosing the correct ablation type and metric.

B Search Algorithm Implementation

This appendix provides additional details on the im-
plementation of our path-centric circuit discovery
algorithm (Algorithm 1).

Our search for computational paths begins at
the model’s final residual and proceeds backward
toward the input embeddings. We incrementally
build and evaluate paths of increasing length, prun-
ing branches that do not meet a minimum contribu-
tion threshold (to limit the unmanageable number
of computational paths in a transformer model).

The algorithm has two core support functions
EvaluatePath and Metric.

B.1 EvaluatePath
The core of our method is the ability to isolate the
effect on the final residual stream of a single path.
This is orchestrated by the EvaluatePath function,
which recursively computes the path’s "message"
using the method presented in figure Figure 3. This
function takes as input a path, its starting node
(n0) and the initial ∆m0, the output is ∆mpath, the
difference in the path’s contribution under the clean
run and when the initial message is propagated
through the path. Note that:

• When the ∆m0 is set to be −outn0
clean the out-

put will be the effect on the final residual of
zero ablating the path.

Algorithm 2: EvaluatePath(node, path, ∆m)

if len(path) is 0 then
return ∆m

corr_msg = node.forward(node.input + ∆m)
clean_msg = node.forward(node.input)
∆m = corr_msg - clean_msg
node = path.pop() //pop current path start
return EvaluatePath(node, path, ∆m)

• When the ∆m0 is set to be−outn0
clean+outn0

cf ,
∆mpath is the effect on the final residual
stream of substituting the path’s contribution
with its counterfactual value.

Where −outn0
clean and −outn0

cf are the output of the
node n0 respectively under clean and counterfac-
tual runs.

As an example if we want to find the change ob-
tained by zero ablating a path starting at the EMB
node, we invoke EvaluatePath(EMB, path,
−EMB.forward(promptclean). It is important
to underline how this function does not require
a complete forward pass on the model, only the
nodes in the evaluated path are involved, drasti-
cally reducing the computational load required.

B.2 Metric
The Metric function is the one responsible for the
actual attribution of scores to paths. This function
adds ∆mpath obtained from EvaluatePath to the
clean residual, obtaining the "corrupted" residual
stream. Then, it assigns a score to the path by eval-
uating the difference between the distributions ob-
tained from the clean and corrupt residual streams.
In particular, we have used two different metrics:
a custom logit difference and the indirect effect
(Stolfo et al., 2023).

B.2.1 Target Logit Difference (%)
This metric measures a path’s direct contribution
to the logit of a target token, t. It is the change in
the target logit, expressed as a percentage of the
original logit’s magnitude.

LogitDifference% = 100×L(rclean, t)− L(rcorr, t)

|L(rclean, t)|
(1)

where L(rclean, t) is the logit of token t derived
from residual rclean. Note that we have chosen to
take the value as a percentage in order to make the
threshold value more interpretable and generaliz-
able across models.
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B.2.2 Indirect Effect (IE)
The IE score is designed for counterfactual evalua-
tion. It measures a path’s ability to both increase
the probability of the counterfactual target (tcf ) and
decrease the probability of the original answer (t).

IE =
1

2

(
P ∗(tcf )− P (tcf )

P (tcf )
+

P (t)− P ∗(t)
P ∗(t)

)

(2)
where P denotes probabilities from a clean run and
P ∗ from the corrupted run (when the path removal
effect on the final residual is considered).

B.2.3 Search Direction
A key decision in our circuit discovery algorithm
is the search direction. The EvaluatePath func-
tion is "forward looking", as it propagates a mes-
sage from the lower layers towards the top of the
network. Therefore starting the search from the
embedding and moving forward might seem more
computationally efficient, as it allows for reusing
the partial path message (∆mpartial) for the evalu-
ation of all possible path expansion. Nonetheless
we found this approach to be infeasible in practice.

A forward search requires calculating the contri-
bution of an incomplete path, however, the Metric
attributes a score based on the effect on the final
residual. An exact evaluation would require sum-
ming the effects of all downstream paths originat-
ing from the incomplete segment, which would
require a complete forward pass on the model.

We also explored an approximated forward ap-
proach based on Attribution Patching (Syed et al.,
2023). This method estimates the path’s impor-
tance by measuring the alignment between the in-
complete path’s message delta (∆mpartial) and the
gradient of the final metric with respect to the in-
put of a candidate next component. However, this
approximation performed poorly, especially in the
crucial lower layers of the network where early
search decisions have the largest impact. This poor
performance in low layers is a known limitation of
similar methods like Edge Attribution Patching.

Due to these limitations, we adopted the back-
ward search direction, which allows for a path eval-
uation involving only the nodes in the path.

The mechanism chosen to guide the search space
is a threshold-based Breadth-First Search. Nonethe-
less, we acknowledge that other valid alternatives
exist, such as a Best-First Search that continues
until N paths are found, or a Top-K Breadth-First
Search that retains only the top K candidate ex-

pansions at each depth level. Based on limited
empirical analysis, these methods appear to yield
similar performances.
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