Fine-Grained Manipulation of Arithmetic Neurons

Wenyu Du!, Rui Zheng?, Tongxu Luo®, Stephen Chung* Jie Fu®

I'The University of Hong Kong *Xi’an Jiaotong-Liverpool University
3The Chinese University of Hong Kong, Shenzhen
“University of Cambridge >Shanghai Artificial Intelligence Laboratory

Abstract

It is a longstanding challenge to understand
how neural models perform mathematical rea-
soning. Recent mechanistic interpretability
work indicates that large language models
(LLMs) use a “bag of heuristics” in middle to
late-layer MLP neurons for arithmetic, where
each heuristic promotes logits for specific nu-
merical patterns. Building on this, we aim
for fine-grained manipulation of these heuris-
tic neurons to causally steer model predictions
towards specific arithmetic outcomes, moving
beyond simply disrupting accuracy. This paper
presents a methodology that enables the sys-
tematic identification and causal manipulation
of heuristic neurons, which is applied to the
addition task in this study. We train a linear
classifier to predict heuristics based on acti-
vation values, achieving over 90% classifica-
tion accuracy. The trained classifier also allows
us to rank neurons by their importance to a
given heuristic. By targeting a small set of top-
ranked neurons (K=50), we demonstrate high
success rates—over 80% for the ones place
and nearly 70% for the tens place—in control-
ling addition outcomes. This manipulation is
achieved by transforming the activation of iden-
tified neurons into specific target heuristics by
zeroing out source-heuristic neurons and ad-
justing target-heuristic neurons towards their
class activation centroids. We explain these
results by hypothesizing that high-ranking neu-
rons possess ‘cleaner channels’ for their heuris-
tics, supported by Signal-to-Noise Ratio (SNR)
analysis where these neurons show higher SNR
scores. Our work offers a robust approach to
dissect, causally test, and precisely influence
LLM arithmetic, advancing understanding of
their internal mechanisms.

1 Introduction

A longstanding debate (Stolfo et al.,, 2023;
Mirzadeh et al., 2024; Zhou et al., 2024; Nikankin
et al., 2024) exists regarding the mechanisms by

which neural models perform mathematical rea-
soning, whether through extensive memorization,
emergent algorithms, or more sophisticated mech-
anisms. Recent mechanistic interpretability work
indicates that large language models (LLMs) per-
form tasks (jylin et al., 2024; Nikankin et al., 2024),
including arithmetic (a fundamental class of mathe-
matical problems), by activating a set of sparse neu-
rons. In particular, Nikankin et al. (2024) finds that
LLMs solve arithmetic prompts by utilizing “a bag
of heuristics”. Each heuristic, embedded within a
set of sparse neurons in the middle- to late-layer
Multi-Layer Perceptrons (MLPs), activates upon
detecting specific patterns in either the operands or
the results, thereby increasing the logits of tokens
within these patterns. The combination of these
neurons constitutes the mechanism used to produce
arithmetic answers. Figure 1 provides two heuris-
tic examples, activating results patterns {..6} and
{.7}.

The finding on these heuristic neurons provides
the means of examining how LLMs perform arith-
metic reasoning in neuron-level modularity, which
paves the way for many applications, such as prun-
ing (removing non-arithmetic neurons), debugging
and fixing failure cases (identifying a lack of cer-
tain heuristic neurons and training specifically to
strengthen or develop them), etc. Besides the
aforementioned applications, the discovery of these
heuristic neurons opens up the possibility of neu-
ron manipulation—altering model predictions by
changing the activation values of identified neurons.
Nikankin et al. (2024) has shown that manipulating
a limited set of neurons can lead to a drastic drop in
the model’s arithmetic accuracy. However, existing
approaches to arithmetic manipulation are typically
too coarse—they can prevent the model from pro-
ducing the correct result, but not force it to output
a specific target. In this work, we explore how to
perform finer-grained neuron manipulation. For
instance, in Figure 1, if we consider prompts where

467

Proceedings of the 8th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP, pages 467—479
November 9, 2025 ©2025 Association for Computational Linguistics



120 | @ - ) g ) g
+ . o _ > @ > @ N
16 o e , @ .

- dil ° °
| e - " .l e .

243 137 136 67 16

Figure 1: (a) Feed an arithmetic prompt “120+16=" into model, it predicts answer by “a bag of heuristics”.
By manipulating heuristic neurons, e.g. reducing the logits for {..6},esuit and promote logits for {..7}result,
now the model predicts 137 instead of 136. The manipulation takes two steps, we first (b) zero-out the top
source-heuristic-important neurons {..6}yesut (€.2. Neuron[30,10778]) and then (c) shift activations of the top
target-heuristic-important neurons to the activation centroid {..7}resuit (€.g. Neuron[28,10436]).

the correct answer fits a pattern {..6}, could we
alter the model’s predictions to output a {..7} by
manipulating the neurons associated with heuristics
about {..6} and {..7}? Answering this question is
key to rigorously testing the functional role of these
neurons and their causal influence on model output.
If manipulating them can reliably induce specific
errors—such as a known heuristic rather than a ran-
dom mistake, as seen in prior studies—it would
demonstrate a far more precise causal relationship
between these neurons and the model’s behavior.
This level of control would validate the neurons’
specialized roles and offer deeper insight into the
computational circuits underlying arithmetic rea-
soning.

In this paper, we study how to manipulate arith-
metic results in LL.Ms using these arithmetic neu-
rons, focusing on the Addition operation'. We em-
ploy activation patching to localize arithmetic neu-
rons, similar to (Nikankin et al., 2024), and define
a minimal set of heuristic types that influence pre-
dictions. For each heuristic type, we train a linear
two-layer classifier that takes neuron activations as
input and predicts the heuristic class. This method
achieves over 90% accuracy across all heuristics,
indicating that neuron activations are key indicators
for differentiating these heuristics. Moreover, the
product of the two layer matrices can be interpreted
as a weighted matrix mapping each neuron to each
heuristic. By ranking the absolute values of these

'We also report preliminary results for Subtraction in Ap-
pendix C.

weights, we can determine the importance of indi-
vidual neurons for each heuristic. After localizing
arithmetic neurons and ranking neuron importance
for each heuristic, we attempt to manipulate these
neurons to influence the results. First, we attempt
to disable the functions of certain heuristics by ze-
roing out the top-K heuristic-important neurons,
thereby setting their activations to zero. Then, we
attempt to transform specific source heuristics into
specific target heuristics, as illustrated in Figure 1.
This process first requires zeroing out the top-K
source-heuristic-important neurons and then adjust-
ing the activations of the top-K target-heuristic-
important neurons to the activation centroid of all
prompts that match the target heuristic. With only
K = 50 neurons, we achieve a successful manipu-
lation rate of over 80% for the unit digit and nearly
70% for the tens digit for all prompts.

Then, we seek an explainable understanding
of this successful manipulation. By visualizing
neuron activations across prompts from different
heuristic classes, we find that higher-ranking neu-
rons for a certain heuristic are more likely to exhibit
visually separable activations for this heuristic than
for other heuristics—akin to radios having a cleaner
channel. Therefore, inspired by this clean channel
analogy, we borrow the concept of Signal-to-Noise
Ratio (SNR) to measure the degree of distribution
separability. We find that top neurons generally
have higher SNR scores, indicating a cleaner chan-
nel for a given heuristic. Lastly, we further discuss
manipulating operand heuristics and model error

468



predictions.
The contributions of this work are threefold:

1. We microscopically examine arithmetic
heuristics and propose a linear classifier to
rank neurons for each heuristic, demonstrating
that this approach can systematically identify
neurons that encode these heuristics.

2. We manipulate small subsets of the identified
neurons and show that we can reliably steer
the model to output any specific target value
with high accuracy.

3. Borrowing the “clean channel” analogy from
radio, we quantify and show that high-ranking
neurons indeed possess a cleaner channel.

2 Background

Interpreting MLP in Neuron Form The MLP
in the transformer block is normally described by
the following equation:

y=MLP(x;K,V)=0(x-K)-V, (1)

where x € R? and y € R? are the input and out-
put, respectively; K € R?¥4mi» and V € Rmip x4
are the up-projection and down-projection weight
matrices, where d is the embedding size and d,,;,, is
the dimension of the MLP; and o (+) is a non-linear
activation function. We omit the bias term.
Following Geva et al. (2020, 2022); Qiu et al.
(2023), for each column K.; and row V; ., we
can rewrite Equation 1 in a neuron form:

dm,lp dm,lp
y = Z O'(X . K:,i) . Viy; == Z H:,i : Vi,w (2)
i=1 1=1

The neuron interpretation of MLP is that
columns K. ; are key vectors and rows V. are
value vectors, and each key-value vector pair con-
stitutes a neuron. Then the output y can be ex-
pressed as a linear combination of value vectors
V. with their corresponding neuron activation
scores H. ; = o(x - K. ;).

Arithmetic Neurons Arithmetic neurons are a
specific set of neurons, typically found to be
sparsely activated within the middle and late layers
of MLP in LLMs. These neurons play a signifi-
cant role in the arithmetic prediction capabilities of
LLMs. Formally, considering an LLM denoted as

M and a set of its arithmetic neurons as S,,,, these
neurons are defined such that the performance of
the model after ablating these neurons (IM — S,,,)
on arithmetic tasks is substantially lower (approach-
ing near-zero accuracy) compared to the perfor-
mance of the intact model (M).

Arithmetic Heuristics Arithmetic heuristics are
designed to enable a fine-grained analysis of these
arithmetic neurons. Nikankin et al. (2024) intro-
duced five types of arithmetic heuristics, into which
these arithmetic neurons can be classified; a single
neuron may be associated with one or more heuris-
tic types. If a neuron is labeled with a specific
heuristic, it is hypothesized that one of its func-
tions is to activate when an input prompt aligns
with the conditions of that heuristic. The neuron
is then thought to promote the logit of tokens that
corresponds to the heuristic pattern. The influence
of an individual neuron might be subtle, but the col-
lective effect of all arithmetic neurons significantly
impacts the model’s final output in arithmetic prob-
lems. For detailed description of arithmetic neu-
rons and heuristics, please refer to (Nikankin et al.,
2024).

3 Localizing Neurons and Defining
Manipulation Heuristics

To investigate neurons for manipulating arithmetic
results, we first need to choose appropriate mod-
els, create arithmetic data, and then localize these
neurons and design arithmetic heuristics that these
neurons operate on.

3.1 Models and Data

We analyze three LLMs from the Llama-3 se-
ries: Llama3-70B, Llama3-8B, Llama3.2-3B
(Grattafiori et al., 2024). The model choice is
based on two principles: the LLMs should achieve
strong performance in arithmetic tasks (indicating
a higher chance of existing clean arithmetic neu-
rons) and should be able to tokenize numbers in
the range [0-999] into a single token (since the
scope of this work is on single-token numbers).
We focus on Llama3-8B in the main paper and
report similar results for the additional models in
Appendix B. Following (Nikankin et al., 2024), we
use pre-trained models without fine-tuning them
on arithmetic prompts. We use two-operand arith-
metic prompts with Arabic numerals such that each
prompt consists of four tokens: opl, the operator
4+, op2, and the “=" sign. Each prompt is chosen

469



so that its operands and result are tokenized into
a single token; e.g., for the four models, opl and
op2 are selected from the range [0,999] and we
also filter out samples that the results are not in this
range. We randomly sample 10, 000 prompts from
valid candidates.

3.2 Localizing Arithmetic Neurons

To evaluate the impact of individual neurons on
solving arithmetic problems, we employ the activa-
tion patching technique as described in (Vig et al.,
2020; Nikankin et al., 2024). We apply this method
to all individual neurons within the middle and late
layers of the model (specifically, layers 16-31 for
Llama3-8B).

The core concept of activation patching involves
running the model on an original prompt p (e.g.,
"120+ 16 =", which should yield result ). During
this process, however, the activation of a single,
targeted neuron is replaced with a substitute acti-
vation. This substitute activation is sourced from
a separate run of the model using a counterfac-
tual (“corrupted”) prompt p’ (e.g., "543 — 165 =",
which should yield a different result 7). In prac-
tice, we first perform a standard forward pass with
the corrupted prompt p’ and store the activation of
the neuron under investigation. Then, during the
processing of the original prompt p, as the model
computes the activation for that neuron, we inter-
vene (i.e., “patch”) by substituting its activation
with the stored activation from the p’ context.

Following Stolfo et al. (2023), we quantify the
impact of this intervention by measuring its Indi-
rect Effect (IE) on the model’s output probabilities
for both the original answer token r and the coun-
terfactual answer token r’. This effect is defined
as:

1 [P*(r") = P(+)

IE(r,7) = 3 P +

P(r) =P (r)
P (r)

3)
Here, P and P* represent the probability distribu-
tions over the vocabulary before and after the in-
tervention, respectively. A high IE score for an
intervention on a specific neuron indicates its signif-
icant role in the computation for the given prompt.
This effect is averaged across multiple prompts and
measured independently for each neuron. Based
on these intervention scores, we identify the 320
neurons exhibiting the highest average IE scores
as “arithmetic neurons”. The distribution of these
arithmetic neurons across the model layers is pro-
vided in Figure 2.

—— Llama3-8B -@®
@
%
70 ®
(%]
O
3 60 /
-
>
Q
T 50
el A |
—_
340
HNauENrY
5 oo o "t N e
Z 30 r°\/ o
. \
20 ®
15 17 19 21 23 25 27 29 31

Layer ID

Figure 2: Arithmetic neuron numbers across layers

To validate the significance of localized arith-
metic neurons, we conduct ablation studies under
three experimental conditions: (1) Arithmetic abla-
tion: zeroing the activations of the 320 identified
arithmetic neurons; (2) Random ablation: mask-
ing 320 randomly selected neurons (repeated using
three different random seeds); and (3) Baseline: no
intervention. Arithmetic ablation catastrophically
degrades performance, reducing accuracy from the
baseline of 92.0% to just 0.3%. In contrast, random
ablation (averaged over the three seeds) maintains
accuracy at 92.1% (£0.5). This dramatic perfor-
mance drop following arithmetic ablation demon-
strates the successful localization of these arith-
metic neurons and confirms that they are the key
components for our investigation.

3.3 Defining Arithmetic Heuristics For
Manipulation

Instead of the five-type categorization in (Nikankin
et al., 2024), we only focus on heuristics di-
rectly related to manipulation, i.e. three types of
result-related heuristics that on the ones place (i.e.
{..-X}result), on the tens place (i.e. {.X.}result),
and on the hundreds place (i.e. {X..}result)s
where X € {0,9}. For instance, the prompt
“120 + 16="(136) fills in the heuristics {..6 }result>
{:8.}result and {1..}yesurt for three heuristic types
respectively.

4 Ranked Neurons Can Manipulate
Arithmetic Results

Having localized the arithmetic neurons and de-
fined heuristics, we next classify neurons based on

470



these heuristics and manipulate predictions using
the corresponding heuristic neurons.

Classification via Absolute Maximum Acti-
vation Value Misses 80% of the Neurons
In (Nikankin et al., 2024), neurons are classified
by first extracting prompts that maximally acti-
vate them (i.e., those eliciting the highest absolute
activation values). Then, for each heuristic, the
intersection between these maximally activating
prompts and the prompts expected to activate for
that specific heuristic is examined. If the result-
ing matching score exceeds a threshold (0.6), the
neuron is classified as belonging to that heuristic.

However, when we attempt to replicate this ap-
proach to classify neurons using our defined heuris-
tics, we find that 20% (66 out of 320) of the arith-
metic neurons were associated with at least one
heuristic. This low classification rate suggests that
relying solely on maximally activating prompts pro-
vides an incomplete understanding of how heuris-
tics operate on these arithmetic neurons, indicating
a more complex underlying mechanism.

4.1 Ranking Neurons via Importance to Each
Heuristic

Instead of using high activation values, we design
a classification task: For each heuristic type, we
leverage prompts to train a heuristic classifier us-
ing a simplified two-layer MLP without bias and
activation functions (i.e., two linear transformation
matrices) on neuron activations. Formally, the two-
layer MLP is defined as:

yt —a. Winput . W::)utput’ (4)

where a € R320%N s the sets of activation val-
ues of arithmetic neurons of N prompts and y¢ €
RX*N is the corresponding classification predic-
tions for all heuristics of heuristic type t. The classi-
fier is then optimized using cross-entropy between
label y; and prediction ¢; with the AdamW op-
timizer. The results achieve over 90% accuracy
across all types, indicating that neuron activations
are key indicators for separating heuristics. The
product of the two matrices can be viewed as a
weighted matrix Wy = WP . woutput o
R320xX 2 mapping from each neuron to each
heuristic, indicating the neuron importance ranking
for each heuristic. By ranking the absolute values

2 Although W, has the same expressive power as Wi"PUt.

WOMPY i practice we find that the latter is easier to opti-
mize.

471

of weights for each heuristic, we can rank the im-
portance of individual neurons for each heuristic.
We use 8000 samples for training and the remain-
ing 2000 samples for evaluation. Detailed training
parameters are provided in Appendix A.

4.2 Manipulating Predictions

After ranking neurons by their importance to each
heuristic, we next study how to alter neuron ac-
tivations to influence the final result, i.e., how to
manipulate results.

100
{_,_\2
90 o\
A
80 R
— o
X )
- 70 Py \\\
9 |
S 60 N d
©
£ 50 \.
o
o \
Yy—
= -—.\‘
U 40 | — Relavent (ones place) A_‘\ ;
(a1
---lIrrelevant (ones place) -l
30 Relavent (tens place)
Irrelevant (tens place)
20 Relavent (hundreds place)
Irrelevant (hundreds place)

0 10 20 30 40 50
Number of Zero-out Neurons

Figure 3: Accuracy drops more dramatically by zeroing
out relevant heuristic neurons (solid lines) than irrele-
vant heuristic neurons (dashed lines).

Zeroing Out Heuristics We start by zeroing out
certain heuristics, i.e., disabling Llama3-8B’s arith-
metic capabilities related to a particular heuristic.
For instance, for heuristic {..6result}, we set the
activations of the neurons ranked in the top-K on
the importance list in Section 4.1 to zero. Then,
we pass evaluation prompts containing heuristic
{..6result} to the edited model. Figure 3 plots the
accuracy drops across all .. X .esu1t heuristics as K
increases. It is clear that with a larger K (mean-
ing more heuristic-specific neurons are masked),
the performance on heuristic-related prompts drops
dramatically, while other prompts are only mildly
affected. We assume this drop in performance on
these other prompts can be attributed to superposi-
tion.

Manipulating Results After demonstrating that
using dozens of heuristic-important neurons can
successfully disable a certain heuristic, we then



Table 1: Manipulating rate of the top 50 neurons for heuristic pairs {.. X esult } — {--Xresult }

Source Heuristic

Target 0 1 2 3 4 5 6 7 8 9 Row Avg.
0 N/A 99.0% 97.1% 93.7% 78.8% 70.8% 69.3% 762% 94.2% 99.4% 86.5%
1 98.6% N/A 992% 982% 862% 82.8% 81.7% 729% 85.6% 97.6% 89.2%
2 952% 98.7% N/A 99.5% 97.4% 96.0% 94.3% 85.0% 842% 90.2% 93.4%
3 89.1% 99.5% 99.5% N/A 992% 98.8% 97.1% 92.2% 84.1% 82.6% 93.6%
4 552% 83.4% 90.1% N/A 84.4% 85.1% 53.4% 59.2%
5 60.6% 84.2% 96.4% 98.0% N/A 97.4% 83.4% 71.9%
6 61.8% 842% 82.8% 843% 89.1% N/A 922% 89.8% 61.1% 77.0%
7 87.1% 89.7% 83.8% 89.3% 96.0% 97.5% 98.5% N/A 99.9% 98.1% 93.3%
8 85.6% T77.1% 629% 61.4% 69.3% 73.7% 92.4% 97.8% N/A 98.0% 79.8%
9 934% 91.3% 69.3% 58.0% 65.6% 84.8% 953% N/A  70.4%
Col Avg. 73.8% 81.4% 84.8% 855% 81.8% 813% 86.8% 82.0% 785% 77.1% 81.4%

investigate how to manipulate the results from
one source pattern (heuristic) to a target heuris-
tic. For example, if we zero out the top neu-
rons for {..6result} but activate the top neurons
for {..7result}, will the predictions for arith-
metic problems with answers fitting the pattern
{..6result} now shift to answers fitting the pattern
{..Tresult}? To do so, we first set the correspond-
ing top source neuron activations to 0, as described
above, and then adjust the top target neuron acti-
vations to the mean activation value of all prompts
that fit the target heuristic. Interestingly, with only
K = 50, we can manipulate the outcomes for over
80% (81.4%) of problems in the ones place and
nearly 70% (68.1%) in the tens place. Tables 1 pro-
vides the detailed manipulation rates for K = 50.
Experiments concerning the tens, hundreds place
and other values of K are presented in Appendix
D.1.

Failure Manipulation Analysis We performed
an error analysis on one successful manip-
ulating pair and one unsuccessful manipulat-
ing pair: {..0}resuit — {--2}resurt (accuracy
95.2%) and {..0}yesuit — {--4}result (accuracy
29.9%), respectively. The failed manipulations
for {.0}resuit — {--2}resurt are most likely
due to special cases, such as problems resulting
in sums that are multiples of one hundred (e.g.,
299+1 =) or where opl = op2 (e.g., 360+360 =).
In contrast, the failure cases for {..0}resuit —
{..4} resurt vary. We put some error cases in Ap-
pendix D.2.

One interesting finding is that, particularly in
the ones place, poor manipulation accuracy often
occurs between two heuristics whose values differ
significantly (e.g., by 4 or 5). Conversely, adja-
cent heuristics, such as {..1}resut and {..2}resuit>
exhibit very close manipulation outcomes. We as-
sume this might be related to the intern helical rep-
resentation of numbers (Kantamneni and Tegmark,
2025), which we leave for future work.

5 Characteristics and Mechanisms of
Ranked Neurons

In this section, we investigate the success behind
the ranking approach: why highly ranked neurons
perform well.

5.1 Clean Channel Metaphor

To better understand what makes high-ranking neu-
rons different, we first visualize activation value dis-
tributions across different heuristic types on these
high-ranking neurons. Some neuron visualizations
reveal clear distinctions in activation ranges be-
tween specific heuristics, as exemplified in Figure
1 (c) (ranked 2,,4/320 in {..7} esult), Where the
{..T}resurt heuristic demonstrates markedly dif-
ferent activation characteristics compared to other
{--X}resurt variants. We also plotted the same
visualizations for these low-ranking neurons in Ap-
pendix E. In these instances, no such clear distinc-
tions between different heuristics are evident.
This observation motivates our clean channel
metaphor: each arithmetic neuron operates anal-

472



ogously to a radio receiver, with activation val-
ues corresponding to frequency channels. When a
heuristic’s activations maintain sufficient distinc-
tion from others in value space, they establish
a clear communication channel—the neuron re-
liably executes the corresponding heuristic func-
tion when inputs resonate within this activation
range. Conversely, for each heuristic, two failure
modes might emerge: 1) indistinguishable activa-
tion ranges among heuristics create noisy, overlap-
ping channels, and 2) near-zero activations indicate
inactive channels where the neuron remains func-
tionally dormant for this heuristic type. In prac-
tice, the two aforementioned failure modes often
co-occur.

5.2 Quantity Clean Channels Using SNR

Inspired by the above clean channel metaphor, we
use the term Signal-to-Noise Ratio (SNR), as it is
commonly used to quantify clean channels in radio.

Modeling Heuristic Activations as Gaussian Dis-
tributions First, we need to model each heuris-
tic’s activation distribution as a Gaussian distribu-
tion. Formally, we have the Gaussian probability
density function (PDF) as:

1 _(==p)?
e 27 5)

flzyp,0) = T

Let X = z1,x9,...,x, represent all activation
values for a certain heuristic on the neuron, where
n is the number of activation values. Then, we
estimate the parameters /i and ¢ of the Gaussian
distribution via Maximum Likelihood Estimation
(MLE).

R o U
u—n;mz 6)
6= lf:@c'—“)Z (7)
n 2 i M

Quantifying Clean Channels Using SNR Next,
we quantify the clean channel for the neural ra-
dio: for each heuristic in the heuristic type, we
calculate the SNR using Cohen’s d effect size be-
tween the target heuristic distribution (signal) and
the combined distribution of all other groups (noise

groups).

SNR =

Hsignal — Hnoise (8)

2

2
O gnal + T hoise

p — .0
.1
— .2
— .3
4
.‘ — .4
— .5
! =
EE Q\} ° .7
cl 2 R \'\ X — .8
o e o) 0
=2
wn

20 40 60 80
Number of Top-K Neurons

Figure 4: Average SNR scores of Top- K neurons drop
as K increases

Where the distribution of the combined noise
groups is as follows:

1 N
Mnoise = N ; i )

Onoise —

N

1

N Z (012 + (luZ - :anoise>2) (10)
i=1

In practice, we use the SNR in dB form:

SNRpgp = 10 x log;o(SNR?) (11)

A higher dB value indicates a cleaner channel
for the target heuristic for the neural radio. We
plot the the average SNRpg scores across different
top- K ranked neurons in Figure 4. It is clear that
higher-ranking neurons are more likely to have a
higher score in SNRpg. We also tried to use SNR
as the ranker to select top-K and the performance
is much better than random but have a clear gap
than classifier ranking approach.

6 Additional Findings

6.1 Finding 1: Heuristic Manipulation Can
Correct Wrong Predictions

We applied the aforementioned manipulation tech-
nique to correct incorrect predictions made by the
original model. Despite the model’s strong arith-
metic capabilities, it still makes mistakes. For ex-
ample, in the ones place, the model itself made a
total of 388 incorrect predictions. By applying the
manipulation technique, we were able to correct
213 of these predictions using the top-50 neurons.
A detailed breakdown is shown below in Figure 5.

473



Incorrect
80 N Correct

60
50

Count

{.03 {.1} {.2} {.3} {.4} {.5} {..6} {..7} {..8} {..9}

Figure 5: Manipulating can correct some predictions

6.2 Finding 2: Manipulating with Heuristics
of Operands Can Improve Performance

A limitation of the previous approach is that
we only utilized result-based heuristics. We
also incorporated corresponding operands-based
heuristics to further improve performance be-
yond what was achievable with only result-based
heuristics. Specifically, for each result heuris-
tic pair {..A}yesuit — {--Bl}result, We set two
offsets C, D for opl and op2 respectively that
{-'X}opl — {..X+C}op1 and {--Y}0p2 —
{.Y + D}qp2, where C + D = |B — A|. By do-
ing so, we can align the calculation of operands
with the target result. We observed mild improve-
ments compared to using only result-based ap-
proaches, achieving an average improvement of
3.5% across five manipulation pairs that previously
performed poorly when using only result-based
heuristics. We plot the results to Figure 6.

I Only Result
s Improvement (Opl+0p2)

49.9%
50

Accuracy (%)
8 s

N
5]

10

° {..0}->{..4} {..0}->{..5} {..0}->{..6} {..8}->{..4} {..9}->{..4}

Figure 6: Heuristics on Operands can further increase
manipulation rate

7 Related Work
7.1 Mechanistic Interpretability

Mechanistic interpretability (MI) seeks to uncover
how language models work internally by studying
their structural components. A circuit refers to a
small group of interconnected elements that car-
ries out a particular computation (Olah et al., 2020;
Elhage et al., 2021). Methods like activation patch-
ing (Vig et al., 2020; Meng et al., 2022; Stolfo et al.,
2023) allow researchers to test the causal influence
of these circuits on model outputs. Rai et al. (2025)
provides a detailed survey on MI. In this study, we
apply such activation patching methods to detect
and rank heuristic-specific neurons as sub-circuits
for arithmetic computation and confirm their func-
tional role through focused manipulation.

7.2 Mechanistic Study on Arithmetic

Recent work in mechanistic interpretability has ex-
plored the emergence of arithmetic competence
in LLMs through fine-grained, neuron-level anal-
ysis. These studies have identified arithmetic
sub-circuits within MLP layers, uncovering digit-
position-specific mechanisms in which distinct neu-
ronal groups independently compute units in paral-
lel (Levy and Geva, 2024; Rhys Gould and Conmy,
2023; Jack Lindsey, 2025). Further investigations
have demonstrated that arithmetic behavior is me-
diated by sparse collections of neurons that im-
plement simple heuristics, including digit-specific
operations and modular arithmetic patterns (Stolfo
et al., 2023; Nikankin et al., 2024). Building on
this line of inquiry, our work advances the field by
systematically identifying and manipulating heuris-
tic neurons, and by showing that targeted activation
edits enable reliable control over arithmetic outputs
beyond simple accuracy degradation.

8 Conclusion

This paper studies how to systematically identify
and causally manipulate arithmetic heuristic neu-
rons of LLMs. The goal is to steer the model’s pre-
dictions towards specific arithmetic outcomes, go-
ing beyond simply disrupting the model’s accuracy.
By training a classifier to identify heuristic classes
based on their activation, we can rank neurons by
their importance to each heuristic. Targeting just
50 important neurons, we demonstrated significant
success in controlling the outcomes (over 80% for
the ones place). We then show that these top neu-
rons are more effective due to “cleaner channels”,

474



supported by higher SNRs. This work offers a
method to dissect, test, and influence LLLM arith-
metic, enhancing understanding and enabling more
precise model interventions.

9 Limitations

This work has two limitations. The first is that
our analysis focuses on LLMs that combine digits
in tokenization. That is, each token can contain
more than one digit. The robust algorithms used
by humans depend on our ability to separate larger
numbers into single digits. Thus, a similar analysis
might lead to different conclusions for models that
perform single-digit tokenization. The second lim-
itation is that the manipulation is not perfect. We
assume this is because of superposition, which we
leave for future work.

References

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom
Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly, and
1 others. 2021. A mathematical framework for
transformer circuits. Transformer Circuits Thread,

1(1):12.

Mor Geva, Avi Caciularu, Kevin Ro Wang, and Yoav
Goldberg. 2022. Transformer feed-forward layers
build predictions by promoting concepts in the vo-
cabulary space. arXiv preprint arXiv:2203.14680.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer
Levy. 2020. Transformer feed-forward layers are key-
value memories. arXiv preprint arXiv:2012.14913.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, and 1 others. 2024. The llama 3 herd
of models. arXiv e-prints, pages arXiv—2407.

Emmanuel Ameisen Brian Chen Adam Pearce Nicholas
L. Turner Craig Citro David Abrahams Shan
Carter Basil Hosmer Jonathan Marcus Michael
Sklar Adly Templeton Trenton Bricken Callum
McDougall Hoagy Cunningham Thomas Henighan
Adam Jermyn Andy Jones Andrew Persic Zhenyi Qi
T. Ben Thompson Sam Zimmerman Kelley Rivoire
Thomas Conerly Chris Olah Joshua Batson Jack Lind-
sey, Wes Gurnee. 2025. On the biology of a large
language model. Transformer Circuits Thread.

jylin, JackS, Adam Karvonen, and Can Rager. 2024.
Othellogpt learned a bag of heuristics.

Subhash Kantamneni and Max Tegmark. 2025. Lan-
guage models use trigonometry to do addition. arXiv
preprint arXiv:2502.00873.

Amit Arnold Levy and Mor Geva. 2024. Language
models encode numbers using digit representations
in base 10. arXiv preprint arXiv:2410.11781.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022. Locating and editing factual associa-
tions in gpt. Advances in neural information process-
ing systems, 35:17359—-17372.

Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi,
Oncel Tuzel, Samy Bengio, and Mehrdad Farajtabar.
2024. Gsm-symbolic: Understanding the limitations
of mathematical reasoning in large language models.
arXiv preprint arXiv:2410.05229.

Yaniv Nikankin, Anja Reusch, Aaron Mueller, and
Yonatan Belinkov. 2024. Arithmetic without algo-
rithms: Language models solve math with a bag of
heuristics. arXiv preprint arXiv:2410.21272.

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel
Goh, Michael Petrov, and Shan Carter. 2020. Zoom
in: An introduction to circuits. Distill, 5(3):e00024—
001.

Zihan Qiu, Zeyu Huang, and Jie Fu. 2023. Unlocking
emergent modularity in large language models. arXiv
preprint arXiv:2310.10908.

Daking Rai, Yilun Zhou, Shi Feng, Abulhair Saparov,
and Ziyu Yao. 2025. A practical review of mecha-
nistic interpretability for transformer-based language
models. Preprint, arXiv:2407.02646.

George Ogden Rhys Gould, Euan Ong and Arthur
Conmy. 2023. Successor heads: Recurring, inter-
pretable attention heads in the wild. arXiv preprint
arXiv:2312.09230.

Alessandro Stolfo, Yonatan Belinkov, and Mrinmaya
Sachan. 2023. A mechanistic interpretation of arith-
metic reasoning in language models using causal me-
diation analysis. arXiv preprint arXiv:2305.15054.

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov,
Sharon Qian, Daniel Nevo, Yaron Singer, and Stuart
Shieber. 2020. Investigating gender bias in language
models using causal mediation analysis. Advances
in neural information processing systems, 33:12388-
12401.

Tianyi Zhou, Deqing Fu, Vatsal Sharan, and Robin
Jia. 2024. Pre-trained large language models use
fourier features to compute addition. arXiv preprint
arXiv:2406.03445.

A Training Details on Classification

The training dataset consists of 10,000 arithmetic
prompts. A [80:20] ratio was used to partition the
data into training (n = 8,000) and test (n = 2,000).
The two-layer linear neural network was trained for
10 epochs on a NVIDIA GeForce A100 GPU in a
total training time within 1 minute. 75% dropout

475


https://www.lesswrong.com/posts/gcpNuEZnxAPayaKBY/othellogpt-learned-a-bag-of-heuristics-1
https://arxiv.org/abs/2407.02646
https://arxiv.org/abs/2407.02646
https://arxiv.org/abs/2407.02646

was applied to FFN. Using AdamW with a learning
rate of 1e-4 and cross-entropy loss for classification.
The model was trained for 10 epoch. During train-
ing, we tracked training/evaluate accuracy, loss and
F1-score.

B Other Models

We provide our experiments on other two Llama3
variants, Llama3.2-3B and Llama3-70B. For
Llama3.2-3B, we use the exactly the same setting
as for Llama3-8B and provide the manipulation
results with K = 50 on Table 5. For Llama3-70B,
we localize 640 arithmetic neurons and provide the
manipulation results with K = 50 on Table 6. We
show the manipulation can work across different
model sizes.

C Subtraction

We provide preliminary results on Subtraction here.
We localize 640 arithmetic neurons and use the
same heuristics as in Addition. We find 640 neu-
rons’ activations still unable to produce over 90%
accuracy on heuristic classes. We assume this is
because we might need another set of heuristics
types. But still, when we use top-150 neurons to
manipulate in unit digit subtraction results, we still
achieve over 60% success rate. We provide the
Table to 4.

D Other manipulation results

D.1 Manipulation

We provide the manipulation Table 2 with K = 50
on the tens place, Table 3 with K = 100 on the
hundred place.

D.2 Error Analysis

Error Cases on good manipulation pair We
sample five failed manipulation on {..0}yesuit —
{.-2}resurt pair. It seems the models either fail to
produce outputs or some special cases.

299 + 1 =[300]
95+ 195 = NULL |
360 + 360 = [720]
70 + 390 = [ NULL|
206 + 484 = [NULL |

Error Cases on bad manipulation pair While
we also sample five failed manipulation on
{-.0}resutt = {--4}resurt pair. It seems the condi-
tions vary.

560 + 350 = [910]
200 + 460 = [ 660 |
115+ 75 = NULL|
170 4290 =[460 |
220 + 20 = [ 240

E Visualization on clean and noise
channels

We visualize two clean channels and two noise
ones.

128 N10436 R1 (Op: +, GroupType: result_mod10) (Sampled]

beyat o7 U VYN

ENR
B

Actvatior

(a) Clean Channel 1: Neuron[28,10436] ranked 10/320 at
{-~7}result

8 R1 (Op: +, GroupType: result_mod10) [Sampled]

s

i
gmm.» ot

(b) Clean Channel 2: Neuron[30,10778] ranked 2/320 at
{~-6}resu1t

Activation Value Bi

(c) Noise Channel 1: Neuron[18,10024]

L21 N4706 R1 (Op: +, GroupType: result_mod10

Activat

(d) Noise Channel 2: Neuron[21,4706]

476



Table 2: Manipulating rate of the top 50 neurons for heuristic pairs {.X.resuit } — {-X.result }

Source Heuristic (Tens Digit Range)

Target 0

3 4

5

6

7 8

9

Row Avg.

N/A
76.0%
81.5%

85.4%
57.6%
78.8%

88.0%
68.8%

o R N NN R W= O

76.4%
N/A
64.4%
73.9%
58.3%
71.3%
60.1%
73.7%
50.9%
75.2%

87.7%
76.8%
N/A
50.8%
82.3%
55.3%
71.2%

66.6%
55.6%

78.8%
55.2%
78.8%
63.1%
N/A
73.3%
71.4%

70.5%
90.4%
75.1%
N/A
84.7%
85.0%
55.4%
64.4%
55.7%
70.5%

75.3%
54.8%

64.9%
84.1%
57.8%
87.2%
85.3%
N/A
74.5%
76.8%
64.3%
74.5%

72.7%
64.0%
73.0%

87.5%
76.2%
N/A
66.9%
80.1%
59.1%

50.7% 82.1%
66.1%

54.4%
74.7%
67.0% 80.6%
87.7% 64.8%
72.9% 83.2%
N/A
70.3%

87.4%

N/A
77.5%

69.6%
66.0%

58.3%
53.1%
75.2%
55.9%
78.3%
75.4%
N/A

72.6%
69.3%
62.6%
60.2%
76.0%
71.8%
69.3%
60.4%
69.6%
69.3%

Col Avg. 70.1%

67.1%

65.6%

72.4% 66.1%

74.4%

69.2%

69.2% 64.3%

62.6%

68.1%

Table 3: Manipulating rate of the top 100 neurons for heuristic pairs {X..resuit } — {X..result }

Source Heuristic

Target¢ 0 1 2 3 4 5 6 7 8 9 RowAve
0 N/A

, 1 N/A 51.1% 66.2% 52.8%

Z 2 N/A

g3 N/A 67.9% 66.7% 73.3% 65.6% 61.7%

s 4 N/A  58.1% 51.8%

g 5 546% N/A 587% 75.1% 73.3% 72.9%
6 61.1% 83.9% 85.7% 87.1% N/A 89.2% 86.0% 85.8% 64.4%
7 70.0% 79.9% 67.0% N/A 85.1% 78.5%
8 N/A
9 61.6% 713% 84.6% 62.8% 85.1% 858% N/A  54.4%
Col Avg. 53.5% 54.1% 515% 59.0% 52.3%

477



Table 4: Manipulating rate of the top 150 neurons for {..X esuit} — {.-Xresurt } o0n LLAMA3-8B Subtraction

Source Heuristic

Target 0 1 2 3 4 5 6 7 8 9 Row Avg.
0 N/A 58.9% 71.6%

1 79.5% N/A 87.4% 65.7% 51.8% 58.1% 572% 54.7%
2 80.2% 91.5% N/A 76.4% 79.1% 82.9% 54.5% 78.1% 72.8% 16.5% 76.9%
3 66.5% 68.0% 88.7% N/A 783% 82.2% 91.0% 78.7% 72.5% 75.1%
4 77.6% 68.0% N/A 87.2% 80.0% 80.3% 67.3% 63.6%
5 571% 77.8% N/A 883% 89.6% 85.3% 60.0%
6 50.8% 59.1% 59.8% 68.8% 85.6% N/A 89.2% 88.4% 69.9% 68.6%
7 50.4% 50.7% 59.9% 81.6% 86.6% N/A 97.3% 54.5% 59.0%
8 72.8% 55.9% 62.0% 65.8% 80.5% 88.7% 94.0% N/A 91.0% 73.3%
9 78.8% 67.5% 81.1% 96.0% N/A  54.1%
Col Avg. 59.8% 57.7% 52.4% 56.0% 62.1% 69.0% 71.6% 78.5% 60.6% 61.4%

Table 5: Manipulating rate of the top 50 neurons for heuristic pairs {..Xyesuit} — {..Xresuit } on LLAMA3.2 3B

Source Heuristic

Target 0 1 2 3 4 5 6 7 8 9 Row Avg.

0 N/A  59.8% 51.9%

1 53.7% N/A 57.0% 51.9%

2 61.9% 58.7% N/A 572% 52.0% 50.5%

3 582% 63.4% N/A 569% 552% 58.6% 57.6% 53.0% 53.5%
4 559% 583% 61.7% N/A 63.8% 61.5% 64.1% 57.2% 55.8%
5 N/A  54.6% 52.5%

6 52.3% 50.1% 56.6% 63.4% 63.1% N/A 65.7% 60.0% 55.3%
7 50.4% 52.6% N/A 56.3%

8 61.4% 63.9% 51.2% 54.5% 59.5% 65.9% 63.7% 65.2% N/A 59.2%
9 61.9% 59.1% 50.3% 64.0% N/A  50.8%
Col Avg. 50.7% 52.6% 50.4% 51.0% 51.7% 50.9% 53.6% 52.8%

478



Table 6: Manipulating rate of the top 640 neurons for heuristic pairs {..Xyesuit } = {.-Xresut } on LLAMA3 70B

Source Heuristic

Target 0 1 2 3 4 5 6 7 8 9 Row Avg.

0 N/A  50.4%

1 N/A

2 N/A

3 N/A

4 N/A

5 66.2% 68.0% 69.4% 68.6% T713% N/A 79.0% 70.5% 67.6% 65.6%
6 N/A  50.0%

7 50.7% 52.9% 52.4% 52.0% 54.1% 62.3% N/A 64.8% 56.7% 54.8%
8 N/A

9 53.2% 56.0% N/A

Col Avg.

479



