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Abstract

Large language models (LLMs) often fail to
generate text in the intended target language,
particularly in non-English interactions. Con-
currently, recent work has explored Language
Neuron Intervention (LNI) as a promising tech-
nique for steering output language. In this
paper, we re-evaluate LNI in more practical
scenarios—specifically with instruction-tuned
models and prompts that explicitly specify the
target language. Our experiments show that
while LNI also shows potential in such practi-
cal scenarios, its average effect is limited and
unstable across models and tasks, with a 0.83%
reduction in undesired language output and a
0.1% improvement in performance. Our further
analysis identifies two key factors for LNI’s
limitation: (1) LNI affects both the output lan-
guage and the content semantics, making it
hard to control one without affecting the other,
which explains the weak performance gains. (2)
LNI increases the target language token proba-
bilities, but they often remain below the top-1
generation threshold, resulting in failure to gen-
erate the target language in most cases. Our
results highlight both the potential and limi-
tations of LNI, paving the way for future im-
provements.

1 Introduction

Large language models (LLMs) have shown re-
markable progress in various generation tasks.
However, they still face challenges in consistently
generating text in the expected target language, par-
ticularly for non-English content (e.g., Chinese or
Japanese), even in high-performing models such as
Llama 3 series (Grattafiori et al., 2024) and GPT-
40 (Zhang et al., 2023; Chirkova and Nikoulina,
2024; Chen et al., 2024; Zhao et al., 2024a; Marchi-
sio et al., 2024; Wang et al., 2024). This issue,
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referred to as the non-target language output issue,
poses a significant challenge for the multilingual
applications of LLMs.

Recent studies suggest that language models
contain language-specific neurons, and activating
or deactivating these neurons can influence mod-
els’ output languages (Kojima et al., 2024; Tang
et al., 2024; Zhao et al., 2024b). Building on these
findings, Language Neuron Intervention (LNI), a
method that activates target-language neurons, has
been proposed as a lightweight approach to steering
generation toward the target language without re-
quiring additional training. Existing work (Kojima
et al., 2024; Tang et al., 2024) has preliminarily
demonstrated that in pre-trained models and in set-
tings where the prompt does not explicitly specify
the output language, LNI can steer outputs toward
the desired language. Although these findings es-
tablish the fundamental feasibility of LNI, they
do not directly address the settings under which
LLMs are most commonly used in practice. In real-
world applications, users typically interact with
instruction-tuned models, and they often specify
the desired output language directly in the prompt.
The effectiveness of LNI under such practical con-
ditions remains largely unexplored.

To fill this gap, we focus on the practical chal-
lenges of multilingual generation, particularly in
instruction-tuned models, and investigate whether
LNI can effectively reduce non-target language out-
put even when the target language is explicitly spec-
ified. Through a comprehensive evaluation across
diverse models and tasks, our results show that
while LNI has some effect in reducing non-target
language output, its average improvement is min-
imal, with negligible performance gains, and its
effectiveness remains highly inconsistent. Addi-
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tionally, our analysis reveals that LNI affects not
only output language but also content semantics,
indicating a coupling between language and con-
tent generation that explains its failure to improve
task performance. Furthermore, our LogitFlow
Analysis shows that although target-language to-
kens receive increased probabilities, they often fall
short of the top-1 result, resulting in unsuccessful
language switching. These findings expose key lim-
itations of LNI and emphasize the need for more
effective control mechanisms.

2 Preliminary

This section introduces Language Neuron Inter-
vention (LNI), a method for steering the output
language of a model by identifying and manipu-
lating language-specific neurons. The core idea is
to identify neurons that are highly sensitive to a
target language, while remaining relatively stable
for other languages, and override their activations
during inference.

Two representative approaches exist for neuron
selection (Kojima et al., 2024; Tang et al., 2024),
we adopt the Average Precision (AP)-based method
proposed by Kojima et al. (2024), as it achieves
superior effect in our preliminary experiments (Ap-
pendix B). The method consists of the following
steps: Step 1: Corpus labeling. Given a mul-
tilingual corpus, texts in the target language are
labeled as positive examples (1), and all others as
negative (0). Step 2: Activation extraction. For
each text, neuron activation values are collected
from all intermediate layers'. The activations are
then averaged over non-padding tokens to obtain
a scalar for each neuron within each text. Step
3: Scoring and selection. Each neuron is treated
as a binary classifier of the target language, and
its average activations are used to compute the AP
score against the binary language labels. Neurons
are then ranked by AP, and the top-k and bottom-k
are selected. Step 4: Intervention. During infer-
ence, the activations of these selected neurons are
replaced with their median value computed from
target-language texts.

3 LNI Evaluation on Non-Target Output

In this section, we investigate the potential of lan-
guage neuron intervention (LNI) in mitigating non-
target language. Our primary objectives are to mea-

"Excluding the embedding and output projection layers.

sure (1) the ratio change of non-target language
outputs, and (2) their effect on task performance.

3.1 Experimental Settings

LNI Implementations Following Kojima et al.
(2024), we identify language neurons using a bal-
anced dataset of 500 samples from each of six lan-
guages (English, French, German, Spanish, Chi-
nese, and Japanese), sourced equally from PAWS-X
(Yang et al., 2019) and FLORES-200 (Team et al.,
2022). We also experimented with task-specific
settings on XL-Sum dataset, but observed no con-
sistent improvement (Appendix C). Therefore, we
adopt the general multilingual setting for all exper-
iments. For neuron selection, we set & = 1000,
based on our parameter tuning experiments over
k € {50,150, 250,500, 1000} (Appendix D).

Models To evaluate LNI’s effectiveness across
different model families and scales, we experiment
with both English-centric and multilingual LLM:s.
For English-centric models, we evaluate represen-
tative open-source models from the Llama series:
Llama2-Chat 7B and 13B (Touvron et al., 2023),
and Llama3-8B Instruct (Grattafiori et al., 2024).
For multilingual models, we evaluate Bloomz-7b1-
p3 (Muennighoff et al., 2022). All these models
are instruction-tuned on generation tasks.

Datasets Previous work (Marchisio et al., 2024)
showed that non-target language output issues are
more prevalent in non-English languages, particu-
larly Chinese (Zh) and Japanese (Ja). Thus, we fo-
cus on these two languages. To ensure broader cov-
erage, we also include four other languages: French
(Fr), Spanish (Es), Hindi (Hi), and Indonesian (Id),
which together represent both high-resource and
low-resource settings.

We focus on generation tasks, including XL-
Sum (Hasan et al., 2021), a news summarization
dataset, and Dolly (Conover et al., 2023), a dataset
spanning diverse generation tasks, where we pri-
marily use the QA subset. See dataset details in
Appendix A.

Evaluation We evaluate on the following two
metrics: NT Ratio: The percentage of responses
generated in non-target languages, detected using
fastText (Joulin et al., 2016, 2017)? with a threshold
of 0.5. Task Performance: Text generation quality,
measured by ROUGE-L score (Lin, 2004). See
generation details in Appendix A.2.

2https://github.com/facebookresearch/fastText
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Dolly XL-Sum
NT Ratio (%) RougeL NT Ratio (%) RougeLL
Model Before After A Before After A || Before After A Before After A
Japanese
Llama2-Chat 7B 28 22 -6 0.09 0.10 +0.01 100 98 -2 0.01 0.01 0.00
Llama2-Chat 13B 19 16 -3 0.10 0.11  +0.01 4 10 +6 0.17 0.16 -0.01
Llama-3-8B-Instruct 7 2 -5 0.14 0.14  0.00 3 2 -1 0.20 0.20  0.00
BLOOMZ-7B1-P3 72 25 47 0.02 0.05  +0.03 85 46 -39 0.02 0.08 [ +0.06
Chinese
Llama2-Chat 7B 43 30 -13  0.13 0.15 +0.02 100 99 -1 0.01 0.02 +0.01
Llama2-Chat 13B 44 36 -8 0.13 0.15 +0.02 18 31 +13 0.18 0.16 | -0.02
Llama-3-8B-Instruct 14 7 -7 0.19 0.21  +0.02 3 8 +5 0.24 0.23  -0.01
BLOOMZ-7B1-P3 6 10 +4 0.12 0.11  -0.01 84 83 -1 0.03 0.03  0.00
Spanish
Llama2-Chat 7B 1 4 +3 0.20 0.20  0.00 56 51 -5 0.09 0.10 +0.01
Llama2-Chat 13B 0 1 +1 0.20 0.20 0 6 5 0.00 0.15 0.16 +0.01
Llama-3-8B-Instruct 0 0 0 0.20 0.20  0.00 0 0 0 0.18 0.18  0.00
BLOOMZ-7B1-P3 10 6 -4 0.10 0.12  +0.02 10 16 +6 0.17 0.16 -0.01
French
Llama2-Chat 7B 12 10 -2 0.19 0.18  0.00 70 69 -1 0.09 0.09 0.00
Llama2-Chat 13B 3 4 +1 0.20 0.19 0 7 6 0.00 0.17 0.18 +0.01
Llama-3-8B-Instruct 1 0 -1 0.20 0.20  0.00 0 0 0 0.21 0.20 -0.01
BLOOMZ-7B1-P3 9 5 -4 0.11 0.12 +0.01 25 11 -14 0.17 0.18 +0.01
Hindi
Llama2-Chat 7B 28 24 -4 0.10 0.10  0.00 100 100 0 0.00 0.00 0.00
Llama2-Chat 13B 13 10 -3 0.11 0.12  +0.01 96 97 +1 0.01 0.01  0.00
Llama-3-8B-Instruct 1 0 -1 0.18 0.17 -0.01 0 0 0 0.21 0.20 -0.01
BLOOMZ-7B1-P3 39 45 +6 0.04 0.03  0.00 57 63 +6 0.07 0.05 -0.02
Indonesian
Llama2-Chat 7B 15 9 -6 0.15 0.16 +0.01 33 18 -15 0.13 0.15 +0.02
Llama2-Chat 13B 17 11 -6 0.15 0.16 +0.01 17 28 - 0.15 0.14 -0.01
Llama-3-8B-Instruct 1 1 0 0.19 0.18 -0.01 1 0 -1 0.20 0.20 0.00
BLOOMZ-7B1-P3 19 15 -4 0.08 0.09 +0.01 13 34 - 0.19 0.14 | -0.05

Table 1: Results on the Dolly and XL-Sum datasets across six languages: Japanese (ja), Chinese (zh), Spanish
(es), French (fr), Hindi (hi), and Indonesian (id). NT Ratio: Non-target language output ratio (%, lower is
better). RougeL: ROUGE-L F1 score (higher is better). Change (A) is computed as (After - Before). For NT
Ratio, negative A indicates improvement (fewer non-target outputs, green); for RougeL, positive A indicates
improvement (higher score, green). Color intensity reflects change magnitude (green, red). Best scores in bold.

3.2 Experiments Results

Table 1 presents the full results on the XL-Sum
and Dolly tasks across six languages. In summary,
although LNI shows potential in mitigating non-
target language output, its effectiveness remains
limited, with an average NT ratio reduction of only
0.83% and negligible performance gains (ROUGE-
L +0.1%) across all language-task combinations.
Moreover, its effectiveness is also highly unstable
across different models, and task.

Inconsistent Effect across Models The effec-
tiveness of neuron control varies significantly
across model types. For instance, on Japanese tasks,
the multilingual model Bloomz achieves substan-

tial NT Ratio reductions (47% on Dolly and 39% on
XL-Sum), In contrast, English-centric LLMs like
Llama 2 and Llama 3 show only marginal changes
(1-6%), indicating a large disparity.

Effect of Task Type The effect of LNI shows
strong task dependency. On Dolly, a question gen-
eration task, most models exhibit a consistent im-
provement in both the NT Ratio and performance.
However, on the XL-Sum task, nearly all models
perform worse than Dolly. And half of the settings
show degradation rather than improvement in both
metrics.
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4 Analysis of Failure Cases

To better understand the limitations of LNI, we ana-
lyze the failure cases observed in our experiments.

4.1 Language-Content Interplay

We observed that in some cases, while LNI reduced
non-target language output, task performance re-
mained unchanged or even declined (e.g., Llama3-
8B on the Dolly task). If LNI solely controlled
language selection, aligning the output language
with the reference should improve ROUGE scores.
However, performance degradation suggests that
LNI interferes with content generation, possibly
causing information loss, content distortion, or am-
biguity. This suggests that LNI may not function
solely as a language switch, but also interacts with
deeper content generation mechanisms.

Analysis Settings We conduct a sample-wise
analysis by comparing model outputs before and af-
ter LNI to examine its effects on both language and
content consistency. For Language Consistency,
we use fastText to detect language changes and
classify them as correct and incorrect. For Content
Consistency, we compute the BLEURT (Sellam
et al., 2020) score’ against reference labels before
and after LNI, and compute their difference (A =
after - before). The difference is used to categorize
each sample as positive, negative, or neutral. We
report the distribution of each category®.

Analysis Results Table 2 presents representative
results from our sample-wise analysis®. The re-
sults confirm our initial hypothesis: LNI consis-
tently introduces semantic changes to the output
content across all models, regardless of whether
the language control is successful. These explain
why performance improvements are not reliably
observed, highlighting the entanglement between
language-specific neurons and content generation.

4.2 Understanding the Mechanisms of LNI

From the experimental results, LNI yielded limited
reductions in non-target language output, with most
samples failing to switch to the target language. To
understand this behavior, we analyze LNI’s mech-
anism and address a key question: why do most
samples retain their original language despite inter-
vention?

3A metric that can measure semantic similarity between
texts even when languages are different.

*Full details are provided in Appendix E.
SFull results are provided in Appendix Table 8.

Model Language (%) \ Content (%)

Corr. Wro. Unch.\Pos. Neg. Neutral

Llama2-7B 20 16 64 |31 7 62
Llama3-8B 10 6 84 |19 18 63
Bloomz-7B 58 5 37 122 11 67

Table 2: Sample-wise analysis of LNI effects on the
Dolly task (Japanese). LNI alters both output language
(Correct, Wrong, Unchanged) and content semantics
(Positive, Negative, Neutral).

1.84% m Upward
3  mTrade-off
m Downward

1.63%

Figure 1: Logit change categories for target-language
tokens after LNI on the XL-Sum Japanese task using
Llama2 7B. Upward shifts dominate, while trade-off
and downward shifts are rare.

Analysis Settings We use LogitFlow Analysis to
quantify how target language token probabilities
shift before and after intervention. This method
tracks changes in token probability across differ-
ent generation stages, providing insights into how
LNI influences internal model dynamics. Specif-
ically, we represent each token’s transition from
pre- to post-states using a 2D vector, constructed
from two key metrics: (1) the number of target
language tokens in the top-k logits (x-axis) and (2)
the earliest rank where a target token appears in the
top-k logits (y-axis). We then classify and visualize
these shifts into three patterns: Upward: Increased
target-language probability (via improved ranking
or frequency); Downward: Decreased probability
or ranking; and Mixed: Trade-offs between ranking
and frequency shifts®.

Analysis Results As shown in Figure 1, our anal-
ysis revealed that LNI consistently increases the
probability of target-language tokens in most cases.
However, these improvements are often insufficient
to surpass competing tokens and reach the top-1
position, resulting in no change in the output lan-
guage’. Given that higher sampling temperatures

6See detailed classification criteria in Appendix F.
"For a more detailed view, see the Token Distribution Flow
Field maps (e.g., Figure 2) in Appendix F.
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exacerbate language confusion (Marchisio et al.,
2024), we use deterministic generation (tempera-
ture = 0.0) in this experiment, where the model
always selects the highest probability token. Under
this setting, only tokens that reach the top-1 posi-
tion can be generated, meaning that even if LNI
increases the probability of the target token, it re-
mains ineffective unless it overtakes the top-ranked
token, leading to failed language switching.

This finding suggests that combining LNI with
appropriate decoding strategies (e.g., temperature
scaling and beam search) might enhance its abil-
ity to control language output. Additionally, we
observe cases where target language token probabil-
ities decrease, potentially due to language switch-
ing occurring at different stages of text generation,
leading to instability. This indicates that LNI alone
is insufficient, suggesting the need for more robust
control mechanisms in multilingual generation.

5 Related Work

Non-target Language Output Issue Prior work
has observed that LLMs often struggle to con-
sistently generate text in the intended target lan-
guage. This phenomenon, commonly referred to as
off-target language generation or language confu-
sion, has been widely documented in recent stud-
ies (Zhang et al., 2023; Chirkova and Nikoulina,
2024; Chen et al., 2024; Zhao et al., 2024a; Marchi-
sio et al., 2024; Wang et al., 2024). Marchisio et al.
(2024) systematically evaluate language confusion
in LLMs and show that English-only instruction-
tuning amplifies models’ preference for English,
leading to English outputs even when prompted in
other languages.

To mitigate language confusion, Marchisio et al.
(2024) demonstrates that providing few-shot ex-
amples and applying multilingual SFT are effec-
tive strategies.Lee et al. (2025) propose an ORPO
method, which incorporates penalties for undesired
output languages into standard SFT. In addition,
several inference-time approaches have been in-
troduced, which directly steer the language vec-
tor (Yunfan et al., 2025) or manipulate language-
specific neurons (Tang et al., 2024; Zhao et al.,
2024b; Kojima et al., 2024; Tan et al., 2024) to
control the output language.

LNI Method The findings of Mahowald et al.
(2024) and Zhang et al. (2024) lay the groundwork
for work on language-specific neurons in this area.
Mahowald et al. (2024) found that while LLMs

perform well on formal language tasks such as
grammar, they exhibit instability in functional lan-
guage use, suggesting a dissociation between lan-
guage processing and cognitive abilities. Zhang
et al. (2024) extend these findings by revealing
that only 1% of model parameters are critical for
language performance, and perturbing this subset
leads to substantial degradation in multilingual per-
formance.

Building on this line of work, recent research
introduces different approaches to identifying
language-specific neurons and validating their ef-
fects by intervening in these neurons (Tang et al.,
2024; Zhao et al., 2024b; Kojima et al., 2024;
Tan et al., 2024). These works demonstrate that
language-specific neurons play a crucial role in
multilingual behavior. However, prior works
mainly focus on scenarios with ambiguous or im-
plicit target languages (Kojima et al., 2024) using
pre-trained models, or are limited to small-scale
case studies (Tang et al., 2024), without systemat-
ically evaluating the effectiveness of LNI in mit-
igating non-target language outputs, particularly
under the setting with explicitly specified target
languages, which are more representative of real-
world LLLM usage scenarios and motivate our in-
vestigation. As a concurrent work, Mondal et al.
(2025) also evaluated the effectiveness of LNI but
from a cross-lingual transfer perspective.

6 Conclusion

In this paper, we systematically evaluate LNI’s po-
tential in addressing non-target language output
issues. Our results show that while LNI shows
potential in reducing non-target language output,
its average effect is limited and unstable across
models and tasks, with only a 0.83% reduction in
undesired output and a 0.1% improvement in task
performance.

Through sample-wise analysis, we identified an
intrinsic coupling between language and content
generation. This explains why controlling language
neurons unexpectedly degrades performance. To
better understand its limitations, we introduced
LogitFlow Analysis, an analysis method for track-
ing token probability shifts before and after inter-
vention, Our findings reveal that although LNI in-
creases the probability of target language tokens,
it often fails to reach the top-1 position, leading to
instability in generation.
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Limitations

While our study advances the understanding of lan-
guage neuron intervention (LNI) and demonstrates
its potential and failures in addressing non-target
language outputs, there are several limitations.

Regarding model selection, our analysis primar-
ily focuses on representative model families - the
English-centric Llama series and the multilingual
Bloomz model. Although we examine different
model scales (7B and 13B) and contrasting archi-
tectural approaches (English-centric versus multi-
lingual pre-training), this represents only a subset
of the diverse landscape of large language models.

In terms of language selection, our primary ex-
periments focus on Chinese and Japanese, which
frequently exhibit non-target language output is-
sues and present challenges due to their linguistic
distance from English. To verify the generality of
our findings, we additionally evaluate LNI on four
additional languages—French, Spanish, Hindi, and
Indonesian—covering both high-resource and low-
resource settings. The results are consistent with
our main findings. Future work may further ex-
plore LNI behavior in other scripts or typologically
diverse languages.

Besides, neuron overlap across languages is also
a potential factor influencing the effectiveness of
LNI. Due to space limitations, we did not discuss
this factor in the main text, but we conducted addi-
tional experiments to evaluate its impact. Specif-
ically, we compared settings with and without fil-
tering overlapping neurons, particularly between
English and the target language. The results indi-
cate that such filtering does not improve output lan-
guage accuracy or task performance, and in some
cases, slightly degrades them. Full details are pro-
vided in Appendix G.

Ethical Considerations

Our study conducted experiments on open-source
models and publicly available datasets, mitigating
risks related to data contamination, privacy leaks,
and ethical concerns associated with data collec-
tion and human annotation. However, these models
may already contain biases introduced during pre-
training and instruction tuning. Such biases could
impact the tasks examined in this study, particularly
news summarization, which demands factual accu-
racy, and QA generation, where responses may
exhibit randomness. This raises concerns about
potential inaccuracies or misleading outputs, espe-

cially in non-English languages such as Chinese
and Japanese. Given these challenges, careful eval-
uation and responsible deployment of LLMs in
multilingual settings are crucial for minimizing un-
intended biases and ensuring reliable outputs.
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A Datasets and Generation

A.1 Datasets

XL-Sum dataset is a news summary task that pro-
vides a news article to summarize the main content.
We randomly sampled 888 samples per language
from the test datasets.

The databricks-dolly-15k dataset is a Wikipedia-
based human-generated dataset; it contains various
generation tasks, including Closed QA, Open QA,
Summarization, and others. The original dataset
is not available for Chinese and Japanese, we use
its machine-translated version. the chinese-dolly-
15k (Ziang Leng and Li, 2023)® and databricks-
dolly-15k-ja’.

In this experiment, we mainly tested on the ques-
tion generation task. Specifically, with the random
seed 42, we randomly sampled 200 samples from
each of the open_ga and general_ga categories.
In the Chinese-dolly-15k dataset, the reference re-
sponse is only available in English. Thus, we trans-
lated it into Chinese using ChatGPT API, with the
model GPT-40 mini.

A.2 Generation Settings

Marchisio et al. (2024)’s work reported that lan-
guage confusion is aggregated by high sampling
temperatures, therefore, we employ a temperature
of 0.0 and a Top-p of 0.9. The Max new tokens
is set to 100. We use English prompt setting and
specify the output language in the prompt. For
XL-Sum task, we adapted the prompts from the
templates provided by PromptSource (Bach et al.,
2022). Detailed prompt settings for each dataset
are provided in Table 3.

Task
XL-Sum

Prompts

Write one sentence to summarize
the given document. The docu-
ment is: {Input}

Summarize in lang:

Dolly Answer the following question in

lang.{Input}

Table 3: Prompt settings for XL-Sum and Dolly.

8silk-road/chinese-dolly-15k
°Illm-jp/databricks-dolly-15k-ja

Lang. Change \ Content Change

Method
Correct Wrong | Positive Negative

JA

AP 1.6 0.0 3.0 32

LAPE 0.1 0.2 2.1 2.8
ZH

AP 1.0 0.0 6.5 43

LAPE 0.0 0.2 29 34

Table 4: Comparison of neuron selection methods on
Llama2-Chat 7B for Japanese (JA) and Chinese (ZH)
datasets. AP achieves higher language control and con-
tent quality improvements, leading to its adoption in
this work.

B Preliminary Experiments on Different
LNI Approaches

Two representative approaches exist for neuron se-
lection (Kojima et al., 2024; Tang et al., 2024), both
targeting neurons with strong language specificity
but differing in selection details. Since no prior
work has evaluated these methods under the same
settings, we conducted preliminary experiments to
determine which approach performs better for our
tasks.

Using the same settings as the formal experi-
ments, including generation inference parameters
and neuron control configurations, we evaluated
both methods on the Llama2-Chat 7B model with
Chinese and Japanese datasets on the XL-Sum task.
The results, shown in Table 4, indicate that the
AP-based method from Kojima et al. (2024) out-
performs the alternative. Therefore, we adopt this
method in our study.

C Dataset for Neuron Identification

In this section, we compare two approaches to neu-
ron identification: one based on general multilin-
gual data (following Kojima et al. (2024)), and the
other based on task-specific data from XL-Sum.
In the general setting, language neurons are iden-
tified using a balanced dataset of 500 samples per
language, drawn from PAWS-X (Yang et al., 2019)
and FLORES-200 (Team et al., 2022). In the task-
specific setting, the same identification procedure
is applied to samples from the XL-Sum validation
set. Both settings use 500 samples per language
across six languages: English, French, German,
Spanish, Chinese, and Japanese. We evaluate the
two settings on the XL-Sum test set, comparing

460


https://huggingface.co/datasets/silk-road/chinese-dolly-15k
https://huggingface.co/datasets/llm-jp/databricks-dolly-15k-ja

their effects on non-target language output ratio
(NT Ratio) and task performance.

As shown in Table 5, neither setting consistently
outperforms the other across languages or metrics.
Given this, we adopt the general setting in our main
experiments for its simplicity and better alignment
with prior work.

D Parameter-tuning on Neuron Number
Selection

We investigate how the number of selected neu-
rons k affects model behavior on the XL-Sum task.
We tested values & € {50, 150,250, 500,1000},
where for each setting, both the top-k and bottom-
k neurons are selected. This results in a total of 2k
neurons being used for activation manipulation.

The results are provided in Table 6. We observe
that:

* Task performance, as measured by ROUGE-L,
remains largely stable across different values
of k.

* The non-target language output ratio (NT Ra-
tio) fluctuates depending on the model and
language, but no consistent trend emerges.

Given these observations, we set kK = 1000 for all
main experiments. This choice is further supported
by the findings of Kojima et al. (2024), who report
that £ = 1000 achieves a strong trade-off between
language control and task performance across mul-
tilingual settings.

E Sample-wise Language and Content
Consistency Analysis

We conduct a sample-wise analysis comparing
model outputs before and after neuron intervention
to understand LNI’s effect on both language and
content consistency. For language consistency, we
primarily examine language changes—whether the
output remains unchanged, is correctly changed, or
is incorrectly changed. For each sample, we clas-
sify the changes into three patterns. This enables
a better understanding of how the language and
content change; these patterns are as follows :

e Pattern-1: No change
* Pattern-2: Correct language change only

* Pattern-3: Correct language change with con-
tent change
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* Pattern-4: Content change only
* Pattern-5: Incorrect language change

 Pattern-6: Incorrect language change with
content change

For language output classification, we employ fast-
Text'” to determine the output language. Con-
tent changes are identified using BLEURT (Sel-
lam et al., 2020) scores, where a score below 0.8
between pre- and post-intervention predictions indi-
cates substantial content modification. The results
are provided in Table 7. The last two columns rep-
resent the computed ratio of correct and incorrect
language changes, which are used in Table 2.

While this classification reveals high content
modification rates (> 90%) across all settings, we
further analyze the quality of these content changes
by comparing BLEURT scores between predictions
and ground truth labels. Changes are categorized as
positive (score difference > 0.1), negative (< -0.1),
or neutral (-0.1 to 0.1), allowing us to distinguish
between beneficial and detrimental content modifi-
cations. The results for both the Dolly and XL-Sum
datasets are provided in Table 8.

F LogitFlow Analysis

Vector Construction For each generation step,
we analyze the top-k (k=20) logits distribution be-
fore and after neuron control. The vector is con-
structed using two metrics:

* Position (y-axis): The earliest position where
a target language token appears in the top-k

e Count (x-axis): The number of target lan-
guage tokens in top-k

Vector Classification We classify the vectors
into the following types based on the changes in
position and count:

* Improvement: Position improves (ranks ear-
lier), or position stays the same with increased
count

e Trade-off: Position worsens, but count in-
creases.Because prior to the position metric,
it is more important to count.

Degradation: Position worsens with no count
increase, or position stays the same with de-
creased count

Ohttps://github.com/facebookresearch/fastText
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NT Ratio (})

Performance (1)

Model Lang
General  Task-specific General  Task-specific

Llama2-Chat 7B JA 0.98 0.99 0.01 0.01

ZH 0.99 0.99 0.01 0.01
Llama2-Chat 13B JA 0.09 0.07 0.16 0.16

ZH 0.29 0.24 0.15 0.16
Llama-3-8B-Instruct JA 0.11 0.07 0.20 0.19

ZH 0.04 0.06 0.23 0.23
BLOOMZ-7B1-P3 JA 0.49 0.46 0.08 0.09

ZH 0.87 0.97 0.03 0.01

Table 5: Comparison of neuron identification using general data (FLORES+PAWS-X) and task-specific data
(XL-Sum) on the XL-Sum task. NT Ratio (]) and Performance (1, ROUGE-L) are reported under the same control

setting. Best scores are highlighted in bold.

NT Ratio (]) | Performance (1)
Model 1K 500 250 150 50 ‘ 1K 500 250 150 50
Japanese
Llama2-Chat 7B 0.98 0.99 1.00 0.99 1.00 0.01 0.01 0.01 0.01 0.01
Llama2-Chat 13B 0.09 0.08 0.04 0.04 0.03 0.16 0.16 0.17 0.17 0.17

Llama-3-8B-Instruct 0.11

0.00 000 0.03
BLOOMZ-7B1-P3 049 048 062  0.69

0.03 020 020 0.21 020 020
0.85 008 008 006 005 0.03

Chinese
Llama2-Chat 7B 0.99 0.99 0.99 1.00 1.00 0.01 0.01 0.01 0.01 0.01
Llama2-Chat 13B 0.29 0.22 0.18 0.20 0.18 0.15 0.17 0.18 0.17 0.18

Llama-3-8B-Instruct
BLOOMZ-7B1-P3 0.87

0.04 003 0.02 0.05
0.84 088 0.87

004 | 023 024 024 024 024
0.87 003 004 003 003 0.03

Table 6: NT Ratio (] lower is better) and Performance (1 higher is better) for Japanese and Chinese across different

parameter settings.

* Unchanged: No change in both metrics

The full results of the LogitFlow for XL-Sum
are provided in Figure 2 and for Dolly in Figure 3,
respectively.

G Neuron Overlap Analysis

Neuron overlap across languages is also a potential
factor influencing the effectiveness of LNI. While
prior work (Kojima et al., 2024) suggests such an
overlap ratio is typically limited (under 5%), we
conducted additional experiments to evaluate its
impact.

We considered two aspects: (1) a small por-
tion of neurons may overlap between each target
language and English, and (2) most non-target
outputs tend to be in English. Based on this,
our overlap-aware intervention strategy filters out
target-language neurons that overlap with English.
We then enhance the activation of the remaining
target-specific neurons (by replacing their activa-
tion with the target language’s median), while si-

multaneously deactivating English neurons (by set-
ting them to zero).

Table 9 compares results with and without over-
lap filtering. We observe no consistent improve-
ment; in most cases, NT ratio increases and task
performance declines. Therefore, overlap filtering
was not applied in our main experiments.

H License and Intended Use

We list the license of each model we utilized as
follows:

e Llama 2: Llama2-Chat 7B, 13B [Meta AI]

e Llama 3: Llama3-8B-Instruct [Llama 3
License]

* Bloomz: BLOOMZ-7B1 [Hugging Face]

Both Llama families are designed for commercial
and research use in English, with their instruction-
tuned versions (used in this study) optimized for
assistant-like chat. Bloomz is recommended for
performing tasks expressed in natural language.
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Figure 2: Token Distribution Flow Field Analysis on XL-Sum dataset across different models and languages. Each
subplot shows the changes in token position and count after neuron control, with arrows indicating the direction and

magnitude of change.

around 3 to 5 hours.

For inference without lan-

I Computational Setup

We primarily use GPUs for inference, as all mod-
els in this paper are instruction-tuned, open-source
models. Experiments were conducted on the MDX
platform (Suzumura et al., 2022), a cloud-based
infrastructure designed for data science and inter-
disciplinary research.

We use A100 (40GB) GPUs for all models. For
language neuron identification and intervention ex-
periments, we use 8 GPUs. The 7B models require
approximately 1 hour, while larger models take

guage neuron exploration, a single GPU is used

across all models.
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Figure 3: Token Distribution Flow Field Analysis on Dolly dataset across different models and languages. Each
subplot shows the changes in token position and count after neuron control, with arrows indicating the direction and

magnitude of change.
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Pattern Distribution | Language change (%)

Model Lang.
Pl P2 P3 P4 P5 P6 | Correct Wrong
Dolly

Llama-2-7B JA 13 - 78 247 - 62 20 16
ZH 19 1 89 232 - 59 23 15

Llama-2-13B JA 11 - 70 269 2 48 18 13
ZH 36 1 68 242 1 52 17 13

Llama-3-8B JA 25 - 38 315 - 22 10 6
ZH 40 - 60 271 1 28 15 7

Bloomz-7B JA 40 - 188 81 - 15 58 5
ZH 96 1 6 147 - 23 3 8

XL-Sum

Llama-2-7B JA 9 0 14 865 0 0 2 0
ZH 18 0 9 861 0 0 1 0

Llama-2-13B JA 50 0 4 777 0 57 0.5 6
ZH 83 3 73 525 4 200 9 23

Llama-3-8B JA 41 0 41 781 0 25 5 3
ZH 167 0 11 654 0 57 1 6

Bloomz-7B JA 25 0 392 404 1 62 44 7
ZH 155 0 38 607 0 88 4 10

Table 7: Sample pattern distribution and overall language change rates. Patterns: P1 (No change), P2 (Correct
language change only), P3 (Correct language change with content change), P4 (Content change only), P5 (Wrong
language change), P6 (Wrong language change with content change).

Model Lang. A Language Change Content Change
NT Ratio ROUGE Correct Wrong Pos. Neg.
Dolly

Llama-2-7B JA 6 0.01 20 16 31 7
ZH 13 0.02 23 15 31 12

Llama-2-13B JA 3 0.01 18 13 26 9
ZH 8 0.02 17 13 24 11

Llama-3-8B JA 5 0.00 10 6 19 18
ZH 7 0.02 15 7 29 13

Bloomz-7B JA 47 0.03 58 5 22 11
ZH -4 -0.01 3 8 11 19

XL-Sum

Llama-2-7B JA 2 0.00 2 0 3 3
ZH 1 0.01 1 0 7 4

Llama-2-13B JA -6 -0.01 0.5 6 7 7
ZH -13 -0.02 9 23 9 8

Llama-3-8B JA 1 0.00 5 3 8 13
ZH -5 -0.01 1 6 6 11

Bloomz-7B JA 39 0.06 44 7 24 7
ZH 1 0.00 4 10 9 11

Table 8: Analysis of LNI effects on Dolly and XL-Sum datasets. A NT Ratio: Change in non-target language output
ratio; A ROUGE: ROUGE-L score change; Correct/Wrong: Correct or incorrect language changes; Pos./Neg.:
Positive/negative content changes. We highlight contrasting cases. For example, in Dolly, Llama-3-8B (JA) shows
balanced content changes despite the NT Ratio improved.
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NT Ratio | ROUGE-L

Model w/o w A |  wlo w A
Japanese

Llama-2-7B-Chat 0.98 0.99 +0.01 0.01 0.01 0.00

Llama-2-13B-Chat 0.09 0.07 -0.02 0.16 0.16 0.00

Llama-3-8B-Instruct 0.11 0.11 0.00 0.20 0.18 -0.02

Bloomz-7B1-P3 0.49 0.60 +0.11 0.08 0.07 -0.01
Chinese

Llama-2-7B-Chat 0.99 0.99 0.00 0.01 0.03 +0.02

Llama-2-13B-Chat 0.29 0.55 +0.26 0.15 0.11 -0.04

Llama-3-8B-Instruct 0.04 0.38 +0.34 0.23 0.20 -0.03

Bloomz-7B1-P3 0.87 0.92 +0.05 0.03 0.03 0.00

Table 9: Effect of neuron overlap filtering on non-target language ratio (NT) and performance, ROUGE-L (RL) on
XL-Sum dataset. “w/0” and “w/” refer to without and with overlap filtering, respectively. A = w/ - w/o. Lower NT
and higher RL indicate better results.

466



