
Proceedings of the 8th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP, pages 433–451
November 9, 2025 ©2025 Association for Computational Linguistics

On the Representations of Entities in Auto-regressive Large Language
Models

Victor Morand1 Josiane Mothe2 Benjamin Piwowarski1

1Sorbonne Université, CNRS,
Institut des Systèmes Intelligents et de Robotique (ISIR),

F-75005 Paris, France

2INSPE, UT2J, Université de Toulouse, IRIT
UMR5505 CNRS, F-31400 Toulouse, France

Abstract

Named entities are fundamental building
blocks of knowledge in text, grounding fac-
tual information and structuring relationships
within language. Despite their importance, it
remains unclear how Large Language Models
(LLMs) internally represent entities. Prior re-
search has primarily examined explicit relation-
ships, but little is known about entity represen-
tations themselves. We introduce entity men-
tion reconstruction as a novel framework for
studying how LLMs encode and manipulate
entities. We investigate whether entity men-
tions can be generated from internal represen-
tations, how multi-token entities are encoded
beyond last-token embeddings, and whether
these representations capture relational knowl-
edge. Our proposed method, leveraging task
vectors, allows to consistently generate multi-
token mentions from various entity represen-
tations derived from the LLMs hidden states.
We thus introduce the Entity Lens, extending
the logit-lens to predict multi-token mentions.
Our results bring new evidence that LLMs de-
velop entity-specific mechanisms to represent
and manipulate any multi-token entities, includ-
ing those unseen during training.1

1 Introduction

Despite the remarkable achievements of LLMs
across a range of natural language processing tasks,
the mechanisms underlying their ability to repre-
sent and manipulate knowledge remain opaque,
making it challenging to enhance their interpretabil-
ity and control. Among the various components
of knowledge expression, entities are fundamental
building blocks. They serve as anchors for factual
information and relationships within text. A key
challenge is therefore to understand how LLMs
internally represent named entities (e.g. Eiffel

1Code is available here, including all the hyper-parameters
used in the experiments.

LLM

layers

fel towerthe

𝑒𝑚𝑏

𝑁𝐿

1

Eif beenhas... ...

Does this representation

identify ‘Eiffel Tower’ ?

Target entity mention

Figure 1: Representation extraction principle: the repre-
sentation zℓ (in green) of the last token of a target entity
mention - here tower for the named entity Eiffel tower -
is extracted at a given layer ℓ of the transformer model.

tower) in a given context and how these repre-
sentations persist, evolve, and encode information
across model layers. Understanding how entity
knowledge is stored and retrieved may enable us to
better monitor when and why LLMs hallucinate or
generate factually inconsistent responses.

Current interpretability research has primarily fo-
cused on entity relationships and factual knowledge
rather than the internal representation of entities
themselves (Geva et al., 2021, 2023; Hernandez
et al., 2024; Niu et al., 2023). Many named entities
span multiple tokens, yet prior work has largely
used single-token probing. Our work seeks to fill
this gap by exploring how LLMs build unified en-
tity representations from multiple token.

In this work, we posit that LLMs compute layer-
agnostic entity representations that can be isolated
and manipulated. Our primary objective is to es-
tablish a direct association between these internal
representations and named entities, focusing specif-
ically on their mention in text. To evaluate this
association, we measure how accurately the corre-
sponding mention can be generated from the repre-
sentation at hand. The core of our methodology is

433

https://github.com/VictorMorand/EntityRepresentations


presented in Section 3.1, addressing the following
research question:

RQ 1. How well entity mentions can be decoded
from their representation?

Our results show that LLMs possess specific
mechanisms for representing and manipulating en-
tities, allowing them to consistently generate men-
tions from their internal entity representations. We
also find that decoding capacity depends more on
an entity frequency in the training data than on its
token length.

Our next research question challenges the cur-
rent assumption of using the last token’s represen-
tation at a given layer. We address it in Section 4.

RQ 2. Can we find better representations than the
last token representations from LLMs?

As alternatives, we propose averaging the men-
tion token representations and cleaning the entity
representation, and show those help the model to
decode entity mentions.

Our last research question relates to the addi-
tional knowledge entity representations capture; it
is developed in Section 5:

RQ 3. Does the structure of the entity representa-
tion space capture (relational) knowledge?

By transforming the representation of subject to
related object entities with a linear transformation,
we show that we can extract more than the sole
entity mention from those representations.

We also introduce a practical application of our
method called the Entity Lens. It allows to visual-
ize which entity the model is “thinking” about at
a given layer, extending logit lens (nostalgebraist,
2020) to generate multi-token entity mentions, in-
stead of projecting a token’s hidden state onto the
vocabulary.

2 Related Work

The question of knowledge representation has been
studied very early in the development of neu-
ral network approaches for language modeling.
Word2Vec (Mikolov et al., 2013) shows that re-
lationships between words (e.g., singular to plural,
capital to country) could be represented as trans-
lations between word representations. This moti-
vated the development of knowledge base repre-
sentations where entities were linked by geomet-
rical transformation – e.g., TransE (Bordes et al.,
2013) that explicitly uses the translation observed
in Word2Vec.

With the development of contextual word – and
then token – embeddings, such as ELMo (Peters
et al., 2019) and BERT (Devlin et al., 2019), the
question of how knowledge is encoded and how
entities are represented was temporarily put aside.

Then, early work (Petroni et al., 2019) showed
that pre-trained LLMs can act as "knowledge
bases" by retrieving factual information through
prompt-based queries. To understand how this re-
trieval occurs in LLMs, Geva et al. (2021); Meng
et al. (2022) hypothesized that feed-forward layers
act as key-value memories, storing and retrieving
factual associations during inference. Even if this
idea has been challenged (Niu et al., 2023), Hernan-
dez et al. (2024) showed that, within LLMs, sim-
ple relations can often be approximated by a linear
mapping of the subject to the object entity represen-
tation at a middle decoder layer – echoing (Mikolov
et al., 2013) in the context of LLMs. This sug-
gests that LLMs operate, at least partially, within a
structured entity representation space where enti-
ties can be manipulated. Recent research employ-
ing sparse auto-encoders supports this hypothesis,
with Ferrando et al. (2025) identifying a feature
within this entity representation space that quanti-
fies how much the model "knows" about an entity.

This raises the question of how entities them-
selves are represented. Research suggests that
earlier layers capture surface-level details, while
deeper layers encode more abstract and task-
specific features (Jawahar et al., 2019; Voita
et al., 2019; Geva et al., 2023). While entities
are processed across all layers, their representa-
tions—especially for multi-token entities—may
not always be coherent or robust.

While probing methods are used to determine
whether specific types of information (e.g., syntac-
tic structure or factual content) can be extracted
from the model’s representations (Conneau et al.,
2018; Tenney et al., 2019), these probes are not
fine-grained and do not allow to understand how
knowledge is processed and represented. To gain
some insight on how LLM processes knowledge,
a specific type of probe, called ‘logit attribution’
or ‘logit lens’ has been developed (nostalgebraist,
2020; Yu et al., 2023; Dalvi et al., 2019). With logit
lens, the LLM hidden states are projected onto the
vocabulary using the unembedding matrix, allow-
ing to identify which tokens would be predicted at
a given layer of the LLM.

Representing multi-token entities, like
‘Eif|fel|_tower’, presents unique challenges

434



𝑒𝑚𝑏

1

𝑁𝐿

fel tower[context] Eif>_

Eif fel

fel

tower

Eif

Extraction Generation

</s>

𝑒𝑚𝑏

1

𝑁𝐿

(a) Uncontextual entity mention decoding: The entity repre-
sentation zℓ at layer ℓ is extracted in context (left, green), its
mention is then generated using a learned task vector θℓ that
prompts the model to generate the mention from zℓ only.

fel tower Eif

Eif fel

fel

tower

Eif

Target Entity mention

>.[...]

Generated mention

_

II – Label Generation

......

𝑒𝑚𝑏

1

𝑁𝐿

(b) Contextual entity mention decoding: Also using a learned
task vector θℓ, the entity mention is now generated using both
the extracted representation zℓ and the surrounding context
from which it can be copied.

Figure 2: Our entity mention decoding method, in both uncontextual (left) and contextual (right) senarii.

for LLMs. Their internal representation may fail
to capture the entity’s full meaning consistently.
Using the logit lens can help, but is insufficient
to properly associate representations with the
entire multi-token mention. This issue is further
highlighted by (Liu, 2021), who found that
tokenization granularity can significantly affect
the quality of representations for multi-word
expressions. In this contribution, we extend logit
lens by proposing the Entity lens that decodes
full entity mentions from internal representations.
To address these challenges, researchers have
explored strategies like attention-based aggregation
(Clark et al., 2019), contextual subword pooling
(Schick and Schütze, 2021), and token-level
masking (Joshi et al., 2020). More recent methods
such as Patchscopes (Ghandeharioun et al.,
2024) and SelfIE (Chen et al., 2024) extends the
limitations of the logit lens to produce multi-token
explanations from an extracted representation. In
contrast with generating general explanations, our
work focuses on entity mention, allowing the use
of quantitative metrics such as exact match. Our
work specifically studies the problem of how to
represent and manipulate multi-token entities.

3 Retrieving entity mentions from LLM
representations

3.1 Methodology

In transformer-based language models (Vaswani
et al., 2017), text is tokenized into a sequence
of tokens (t1, . . . , tn) ∈ Vn, with V the vocabu-
lary used by the tokenizer. These tokens are em-
bedded into a sequence of initial representations
(z0

1, . . . ,z
0
n) ∈ Rd, with d the model’s representa-

tion space dimension. These representations are
sequentially passed through the transformer layers:
each layer ℓ ∈ {1, . . . , NL} generates a new series
of representations (zℓ

1, . . . ,z
ℓ
n) ∈ Rd, building on

the representations from the preceding layer.

Decoding In this contribution, we aim at associ-
ating a given representation z ∈ Rd at hand with
a named entity by trying to generate the mention
from which the representation was extracted. Fol-
lowing the literature (Meng et al., 2022; Geva et al.,
2023), zℓ is extracted from the last token of the
entity mention at layer ℓ (See Figure 1). Section 4
extends our experiments to other representations.
To generate a mention for the representation zℓ, we
insert it bypassing the embedding layer and prompt
the model to reconstruct the corresponding entity
mention. This is done using a soft prompt or embed-
ding vector, θℓ ∈ Rd, optimized for the task. This
method is known as Prompt Tuning (Lester et al.,
2021). Because this vector is functional rather than
semantic, we refer to θℓ as a task vector, inspired
by Hendel et al. (2023).

Motivation of using Task Vectors Prompt tun-
ing is a parameter-efficient method to prompt the
model to perform a variety of tasks (Lester et al.,
2021). It is however not the only method that can
be used to generate text. Since our focus is on in-
terpretability while keeping the LLM unchanged,
fine-tuning is excluded. Probes have also been ex-
plored in this context (see for instance Pal et al.
(2023)), but they do not easily allow to decode an
arbitrary-lenght sequences of tokens, nor to prompt
the model to retrieve a mention from a context.
To the best of our knowledge, our task vector ap-
proach is the only method that can address all these

435



constraints and challenges of entity reconstruction.
Our results furthermore show that this method per-
forms well for the considered task.

Uncontextualized Decoding In this setting, the
model’s only input is the representation zℓ along
with the task vector θℓ. The goal is to generate the
entire entity mention. This allows us to measure
how much information about the entity mention is
retained in zℓ. This setting is illustrated Figure 2a.

Contextualized Decoding. In contextualized de-
coding, we include the textual context from which
the representation was extracted before prompting
the transformer with the task vector θℓ. Figure 2b
provides an overview of this methodology. In this
setting, the model can just copy the mention from
the context. This is however not a trivial task as the
model must first identify the correct span within the
context, i.e. essentially performing Named Entity
Recognition (NER).

Evaluation In both settings, our setup allows
to generate a complete mention from a given en-
tity representation z ∈ Rd. We can then evalu-
ate the reconstruction performance using the exact
match metric (EM) between generated mentions
and the original mentions from which the represen-
tations were extracted. Entity mentions are how-
ever known to be ambiguous, and a more general
problem would consider all possible mentions for
a given entity (e.g. NYC or New York City). The
metric used in our uncontextual setup only mea-
sures the ability to reconstruct the specific mention
from which the representation was extracted in the
context, without accounting for possible additional
ambiguous mentions. Although well posed, the re-
sults are therefore only a lower bound for the more
general problem. For instance, New York City
could be considered as an accurate generation from
the representation of the mention NYC; our evalu-
ation metric, however, considers it a failure. This
limitation does not apply in the contextual setup,
where the model is instructed to copy the mention
directly from the provided context.

Task Vector Training In both settings, for each
layer ℓ of the model, the task vector θℓ is learned
by maximizing the log-likelihood of generating the
entity mention, given both the representation and
θℓ. We use cross-entropy, the standard loss for
language modeling tasks. More implementation
details and code can be found in the reproducibility
statement, in Appendix A. Training a task vector

for each layer allows us to evaluate which layers
provide the most accurate entity representations.

3.2 Dataset and Experiment Setup
Data Our experiment involves extracting the rep-
resentation of an entity mention within its context,
and then trying to reconstruct the entity mention
from this representation. This requires a dataset
containing sentences with labeled spans of entity
mentions: in other words, a NER dataset, for
which we ignore the entity categories. We use
the CoNLL-2003 dataset (Sang and De Meulder,
2003), a widely used NER benchmark. It provides
a diverse set of named entities across various types,
lengths and frequencies, making it well-suited for
studying entity representations. In the CoNLL-
2003 dataset and using the Pythia tokenizer, most
entity mentions are tokenized into 2 or 3 tokens,
while some span up to 8-12 tokens (see Figure 3).
This diversity in token length allows us to explore
the robustness of the models in handling both short
and long multi-token entities, a key aspect of this
study. More details on the dataset statistics can be
found in Appendix A.

0 5 10 15
0

500

1,000

1,500
Median: 3.0 tokens

Number of tokens in entity mention

C
ou

nt
s

0 5 10 15
0%

10%

20%

30%

Figure 3: Distribution of the number of tokens for
named entity mentions in the test set (PYTHIA tok-
enizer). 87% of them are tokenized with two or more
tokens. The dashed line is the median token count (3).

Models We focus on decoder-only architectures,
used in the vast majority of recent models, and
known for their superior performance. We experi-
ment with different models from two families. First,
the PYTHIA family (Biderman et al., 2023), which
includes several models of various sizes, trained
with the same data and close settings. This allows
the study of the impact of architecture parameters
on performance, especially the model size. We
also use the recent PHI family, a set of models
trained with the latest techniques and curated data
(Li et al., 2023). We use the available non-instruct
versions, namely PHI-1.5 (Li et al., 2023) and PHI-
2 (Javaheripi and Bubeck, 2023), allegedly trained
on identical text data, with the particularity that

436



knowledge from PHI-1.5 has been distilled into
PHI-2. We also use PHI-32 (Abdin et al., 2024),
the next iteration of the PHI family which follows
the LLAMA-2 architecture, and has the particular-
ity of having a significantly smaller vocabulary size
(32k tokens compared to 50k tokens for all other
models considered in this work) and of being in-
struction fine-tuned – which is the only version
available. We utilize models ranging from 140m
to 7B parameters, which offers a fair range for
studying the impact of model size, while limiting
resource consumption. The architecture parameters
of all the models we experimented with are detailed
in appendix (Table 4).

3.3 Results
The results in both settings are presented in Fig-
ure 4a (uncontextual decoding) and Figure 4b (con-
textual). Without access to any context, some mod-
els (PYTHIA-6.9B, PHI-2 and PHI-3) are able to
decode exactly the whole mention of up to 65% of
the named entities from the test set. Upon analysis
of the results, we observe that failed samples typi-
cally exhibit high semantic similarity with the orig-
inal mention (see Table 3 in appendix for examples
of failures). Model size unsurprisingly improves
performance, supporting a well-known property
that larger models memorize more knowledge, in-
cluding named entities.3 Figure 4a also shows that
representations from the middle layers achieve bet-
ter performance in mention decoding, corroborat-
ing findings reported in (Meng et al., 2022, 2023).

We unsurprisingly achieve significantly better
generation results in the contextual setting where
the model can copy the mention from the given
context (Figure 4b). Near-optimal performance is
reached: 93% EM when generating entity men-
tions using representations of their last tokens with
PHI-2 (layer 20) – it was only 64% in the uncontex-
tual setup. These results reveal a key new insight:
LLMs do not, in general, store the entire entity
mention within the representation of its last token.
This challenges the common assumption that the
final token’s representation encapsulates the full en-
tity meaning (Meng et al., 2022; Geva et al., 2023),
and suggests that alternative encoding approaches
may be needed to better capture multi-token entity
representations.

Unlike sentence embedding models – which
2more specifically Phi-3-mini-4k-instruct.
3Best performance as a function of model size is reported

in appendix, Figure 11.

have been shown to encode almost all tokens from
the input sentence (Morris et al., 2023) – auto-
regressive language models are not trained to en-
code tokens explicitly in their internal representa-
tions. Instead, if an entity is already mentioned
in the context, the model can retrieve it thanks to
the attention mechanism and simply copy it, as
shown in various mechanistic interpretability stud-
ies (Wang et al., 2022; McDougall et al., 2023).

Multi-token entities and frequency Decoding
the one-token entity France from its embedding or
representation at any layer zℓ is much easier than
decoding Mand-el-bro-t from the sole represen-
tation of token 't'. To further analyze how the
number of tokens affects decoding performance,
we split the test set based on tokenized mention
length. Then, following the intuition that entity
mentions frequent in the LLM training set should
be easier to generate than rare ones, we also split
the test set into quantiles based on mention n-gram
frequency in the Pile (Gao et al., 2020).4 We evalu-
ate both settings across all models. In both cases,
entity frequency – and not the number of tokens –
is the main factor for accurate entity mention de-
coding (though the two are naturally correlated, see
Figure 5 for results on the three PYTHIA models in
the uncontextual setting).

Baseline - Decoding any sequence We setup a
control experiment to confirm that the unveiled
mention decoding ability is specific to entities
rather than a general capability of LLMs to de-
code prior tokens. Using the same methodology as
in Section 3, we replace all entity mentions in our
original dataset with randomly sampled sequences
of three5 tokens from the data, constraining the
last token to be the end of a word for fairer com-
parison. We then train new task vectors for each
model layer, so they instruct the LLM to decode
the 3-token sequence from the final-token’s repre-
sentation. The results are presented in both set-
tings in Figure 4, (control) restricted to the best-
performing model (PHI-2) for clarity. In the uncon-
textual setup, this baseline reaches only 9% Exact
Match (EM), compared to 65% when decoding en-
tity mentions, strongly supporting our claim that
LLMs detect and represent entities in a specific

4n-gram frequencies are obtained using the API from (Liu
et al., 2024).

5Three is the median entity length in our data, see Fig-
ure 3. We also show in Appendix B.1 the generation results
for arbitrary sequences of one and two tokens.

437

https://huggingface.co/microsoft/Phi-3-mini-4k-instruct


0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

layer ℓ/NL (0 is embedding)

E
xa

ct
M

at
ch

(a) Uncontextual mention decoding results by layer.

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

layer ℓ/NL (0 is embedding)

Pythia-160m

Pythia-410m

Pythia-1.4b

Pythia-2.8b

Pythia-6.9b

Phi-1.5

Phi-2

Phi-3

Phi-2, control

(b) Contextual mention decoding results by layer.

Figure 4: Context improves decoding. Better performances are obtained on representations extracted in middle
layers. Curves present the rate of exact match (on y-axis) after training a task vector on representations extracted at
layer ℓ (x-axis is normalized layer ℓ/NL, as model have a different number of layers NL).

9 ⋅ 107

4 ⋅ 106

2 ⋅ 105

9 ⋅ 103

4 ⋅ 102

2 ⋅ 101

0

En
tit

y 
co

un
ts

in
 th

e 
Pi

le

Number of tokens in entity mention Number of tokens in entity mention Number of tokens in entity mention

Figure 5: Uncontextual mention generation performance is higher for more frequent entities. Performance is
analyzed by entity length and mention frequency in the Pile (Gao et al., 2020). For each model, we chose the layer
with best exact match on the test set. Empty cells indicate fewer than five samples. See Appendix D.2 for full results
across models and settings.

manner. In the contextual setup, the task seems
trivial: The model must only find the extracted to-
ken in the context and copy it along with the two
preceding tokens. However, results are surprisingly
poor, with a maximum 19% EM (layer 9 of Phi-2,
compared to 93% EM with 3-token entity mentions
in the original contextual experiment). This further
supports the idea that, unlike counting tokens, ma-
nipulating entity mentions –and potentially other
meaningful units – is a natural task for which LLMs
develop specialized circuits.

Conclusion Overall, our results in Section 3
bring strong evidence that LLMs develop specific
mechanisms for representing and manipulating en-
tities. In both settings, with only a single learned
task vector, we successfully prompt the model to
generate the correct entity mention from its rep-
resentation. For named entities that are frequent
in the LLM training set, the last token represen-
tation at middle layers is enough to retrieve their
whole mention, just as if the latter was part of the

vocabulary (Figure 5). For less common entities,
LLMs however do not store the whole mention in
its last token representation (even if they could, see
the supplementary experiment in Appendix B.4).
Still, when provided with the context, LLMs can
very robustly detect and copy them, achieving near
optimal performance in our setup (see Figure 4b).
These results also demonstrate that representations
are layer-agnostic since the LLM is still able to
process them when injected at the embedding level,
using only a simple task vector. Additional experi-
ments investigating how those representations are
built are detailed in Appendix B.3. We also confirm
that task vectors generalize across different settings
and layers (see Appendix B.2), further supporting
our claim that they activate to a given extent the
same specific circuits within LLMs.

4 Obtaining better representations

In this section, we question the optimality of us-
ing the last token representation of an entity. We

438



extend our initial experiments by using alternative
representations for named entity mentions. For ex-
periments, we chose to focus on PHI-2, because
it is newer compared to PYTHIA, has a reasonable
number of parameters allowing fast inference and
got the best results in the first set of experiments.

Average representations The most common
way to extract representations of sentences with
language models is to average the representations
of all their tokens (Jurafsky and Martin, 2009). As
superpositions are the building blocks of LLMs
(Elhage et al., 2022), this seems a natural choice.
Formally, for a given named entity mention e =
(te1 , ..., te2), we compute its average representa-
tion at layer ℓ over the mention tokens, z̄ℓ as
z̄ℓ =

∑e2
i=e1

zℓ
i

e2−e1+1 .

Training a linear layer to clean the entity Rep-
resentations are highly dependent on the context
(Ethayarajh, 2019). In other words, for a given en-
tity mention, the representations extracted from the
inner layers of transformer models are very likely
to contain, along with the representation of the
entity, a lot of noise that comes from the context.
Passing the extracted representation z into a linear
layer that would clean or reinforce some relevant
features might produce entity representations of
better quality, in the sense that the model could bet-
ter decode the entity mention from them. For both
uncontextual and contextual settings, we therefore
train a linear model with parameters (W, b) that is
applied to the extracted representation z to obtain
a cleaned representation Cz = Wz + b ∈ Rd.

0 5 10 15 20 25 30

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PHI-2 layer (0 is embedding)

E
xa

ct
M

at
ch

Contextual, last Contextual, last cleaned

Contextual, Avg Contextual, Avg cleaned

Uncontextual, last Uncontextual, last cleaned

Uncontextual, Avg Uncontextual, Avg cleaned

Figure 6: Entity mention generation with different repre-
sentations. Representations are extracted as described in
Section 3.1(last), by averaging (avg) or cleaning (clean)
mention representations, as detailed Section 4. Each
experiment was conducted 5 times to get an estimate of
the variance. (not clearly visible since it is quite small)

Results Overall, we see in Figure 6 that in both
uncontextual and contextual setups, the average
representation of the tokens from a named entity
mention allows to better decode it than the sole rep-
resentation of the last token (See Figure 6 compar-
ing the red and orange curves). The gain compared
to representations of the last token is aligned with
the conclusion of our uncontextual mention genera-
tion experiment (see Figure 4a), suggesting that the
representation of the last token in auto-regressive
LLMs does not in general encode all the tokens of
the entity mention.

In the embedding layer (layer 0 in Figure 6) rep-
resentations z̄0 are just the average of embeddings.
For uncontextual decoding, performance jumps to
51% compared to the 33% of exact matches ob-
tained when generating only from the last token’s
embedding (solid red and orange curves) – this
holds to a lesser extent for contextual decoding too.
If the model can disentangle all the tokens from
their superposed representation in z̄0, it still has to
figure out their order to retrieve the original men-
tion.6 Upper layers representations may therefore
encode a notion of relative token position. The fact
that last token representations from middle layers
yield better results than the average of the token
embeddings (up to 64% vs 51%) however shows
that there is more than only token superposition in
the representation of an entity mention.

Transforming the representation with a linear
model before inserting it at the embedding layer
also improves the reconstruction performance in
both settings (Green and blue curves in Figure 6).
The generation performance gain means that re-
moving or boosting some relevant features – prob-
ably associated with non-entity representation sub-
spaces, common to all entity representation, helps
the model in generating the correct entity mention.

Overall, this demonstrates that using the sole last
token representation at a given layer may not be
the best choice to represent an entity. Further work
is needed though to understand precisely the effect
of the linear transformation and averaging.

5 Generalizing relation decoding and
logit lens

Relation Extraction Here, we study a comple-
mentary question on whether the discussed entity
representations can be manipulated (RQ 3). Recent
work on the explainability of knowledge manipula-

6For instance, “ITALY” is decoded as “YALIT”

439



tion in transformers (Meng et al., 2022, 2023; Geva
et al., 2023; Hernandez et al., 2024; Gottesman and
Geva, 2024) support the hypothesis that, for a re-
lation r linking subject and object entities s and o,
the representation of the object zo can be extracted
from the representation of the subject zs.

0 5 10 15 20 25 30

0

0.2

0.4

0.6

Layer

C
hr

-F

Average Last

Last cleaned Average cleaned

Figure 7: Linear relation decoding on the
Landmarks_to_country dataset (links landmarks
to their home country, e.g “Eiffel tower” and
“France”). Averaging or cleaning the representations
degrades the semantic information of raw representa-
tions from the last token of the entity mention.

We reproduce the idea from Hernandez et al.
(2024) that for some basic relations, the association
between zs and zo can be approximated by a linear
model. Our work extends those results by properly
accounting for multi-token entities. We train a
linear model L : zs 7→ Wzs + b that aims to
project the subject representation zs on the object
representation zo, i.e. L(zs) ≈ zo.

Experimental settings We use datasets from
Hernandez et al. (2024) for which there are enough
samples to train our linear model. Following their
methodology, The data is filtered to keep only sam-
ples for which the relation is encoded in the model’s
parametric memory, guaranteeing that the object
entity is represented somewhere. We then optimize
our linear model parameters (W, b) using mean-
square error on 50 training samples with stochas-
tic gradient descent. We perform this procedure
for each layer ℓ, using all studied representations
(zℓ,z̄ℓ, Czℓ or Cz̄ℓ) for subject and object entities,
allowing to identify which representations carry the
most semantic information about an entity.

Results Our mention generation method (See
Section 3.1) allows the generation of a mention
for the obtained representation and then use ex-
act match as a metric instead of only comparing
the first token only as in (Hernandez et al., 2024;
Geva et al., 2023). In practice, we present the re-
sults using the Character F-score (Chr-F), which is
not binary and thus produces smoother plots. Fig-
ure 7 shows that, training a linear model on only

50 samples leads to over 72% Chr-F (74% EM)
on the Landmarks_to_country test set. We show
the application to other relation datasets with sim-
ilar results in appendix (Figure 14). Moreover, if
using average or cleaned representations yields bet-
ter performance on mention decoding, this seems
to be at the price of losing semantic information,
particularly when it comes to encoding relations to
other entities – as shown by the fact that averaging
or cleaning representations degrades the results.

Entity Lens Thanks to our task vectors, we can
generate a mention from representations of any to-
ken in a text. This allows visualizing which entity
the model is “thinking” about when processing a
token. We name this method the Entity Lens, gen-
eralizing the logit lens (nostalgebraist, 2020), that
associates multi-token mentions with any given
representation, using the learned task vectors from
Section 3. For instance, applying the Entity Lens
to the sentence “The City of Lights iconic
landmark” shows that the model associates the
mention “City of Lights” with Paris, and re-
trieves a representation associated with “Eiffel
Tower” while processing the token “landmark”.
Figure 8 shows entities decoded from various hid-
den representations from PHI-2.

6 Conclusion

In this study, we have demonstrated that LLMs
develop specialized mechanisms for representing
and manipulating entities. Our experiments show
that they can effectively be prompted using trained
task vectors to generate complete mentions from
entity representations. When given context, they
reliably detect and copy mentions of entities, in-
cluding those outside their parametric memory. Ad-
ditionally, we showed that these representations
can be semantically manipulated to decode basic
relations, extending previous work. A direct appli-
cation of our methodology, the Entity Lens, allows
for instance to visualize which entity the model is
“thinking” about at a given layer.

Overall, our results support the existence of an
entity representation space within LLMs. This un-
derstanding paves the way for further research into
how LLMs handle and manipulate knowledge, po-
tentially leading to more explainable and control-
lable language models.

440



Figure 8: Example application of the Entity Lens on the sentence “The City of Lights iconic landmark”,
applied with with the task vectors trained on representations from PHI-2 in the uncontextual setup. PHI-2 associates
“City of Lights” with Paris, “landmark” with the Eiffel Tower in this context. The token predicted with the logit
lens is also shown in parenthesis. Additional examples can be found in Appendix D.1.

7 Limitations

Generalization of Task Vectors Our method
also assumes that the representations are layer-
agnostic, meaning the LLM operates within a
single representation space. More importantly,
we assume that the task vector -the only learned
parameters- is sufficient to instruct the LLM to
decode the entity mention without providing any
further information.

This discrepancy between contextual and uncon-
textual settings is reflected by the fact that learned
task vectors are not the same across layers (see Fig-
ure 13 in appendix), although we see that they tend
to generalize well to other layers (see in appendix,
Table 5). This design choice was motivated by the
known performance of prompt tuning (Lester et al.,
2021), which successfully trains embedding vec-
tors to prompt the model into performing specific
tasks.

Entity Lens Our experiments with task vectors,
trained specifically on entities, extend the logit
lens by enabling multi-token generation of entity
mentions from any representation within the trans-
former. While our current implementation serves
as a preliminary demonstration of this capability,
further research is needed to fully explore its po-
tential.

Currently, our approach generates only a single
mention, whereas the traditional logit lens can re-
trieve the top-k mappings. This limitation could
be addressed by employing beam-search genera-
tion, which would allow us to generate the "top-k"
entity mentions for a given representation, thereby
enhancing the versatility and applicability of our
method. Additionally, the task vectors we train are
layer-specific, whereas a more practical implemen-
tation would leverage one generalist task vector,
which we leave for future work.

8 Acknowledgements

The authors acknowledge the ANR – FRANCE
(French National Research Agency) for its finan-
cial support of the GUIDANCE project n°ANR-
23-IAS1-0003 as well as the Chaire Multi-
Modal/LLM ANR Cluster IA ANR-23-IACL-
0007. This work was granted access to the HPC
resources of IDRIS under the allocation 2024-
AD011015440R1 made by GENCI.

441



References
Marah Abdin, Sam Ade Jacobs, A. A. Awan, Jyoti

Aneja, Ahmed Awadallah, H. Awadalla, Nguyen
Bach, Amit Bahree, Arash Bakhtiari, Harkirat Singh
Behl, Alon Benhaim, Misha Bilenko, Johan Bjorck,
Sébastien Bubeck, Martin Cai, C. C. T. Mendes,
Weizhu Chen, Vishrav Chaudhary, Parul Chopra, and
65 others. 2024. Phi-3 Technical Report: A Highly
Capable Language Model Locally on Your Phone.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory
Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit,
Usvsn Sai Prashanth, Edward Raff, Aviya Skowron,
Lintang Sutawika, and Oskar Van Der Wal. 2023.
Pythia: A suite for analyzing large language models
across training and scaling. In Proceedings of the
40th International Conference on Machine Learning,
volume 202 of Proceedings of Machine Learning
Research, pages 2397–2430. PMLR.

Antoine Bordes, Nicolas Usunier, Alberto García-
Durán, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Neural Information Processing
Systems.

Trenton Bricken, Chris Olah, and Aldy Tempelton. 2023.
Towards Monosemanticity: Decomposing Language
Models With Dictionary Learning.

Haozhe Chen, Carl Vondrick, and Chengzhi Mao. 2024.
Selfie: self-interpretation of large language model
embeddings. In Proceedings of the 41st Interna-
tional Conference on Machine Learning, ICML’24.
JMLR.org.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D. Manning. 2019. What does BERT
look at? an analysis of BERT‘s attention. In Pro-
ceedings of the 2019 ACL Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP,
pages 276–286, Florence, Italy. Association for Com-
putational Linguistics.

Alexis Conneau, German Kruszewski, Guillaume Lam-
ple, Loïc Barrault, and Marco Baroni. 2018. What
you can cram into a single $&!#* vector: Probing
sentence embeddings for linguistic properties. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 2126–2136, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Fahim Dalvi, Nadir Durrani, Hassan Sajjad, Yonatan Be-
linkov, Anthony Bau, and James Glass. 2019. What
is one grain of sand in the desert? analyzing individ-
ual neurons in deep nlp models. In Proceedings of
the Thirty-Third AAAI Conference on Artificial Intelli-
gence and Thirty-First Innovative Applications of Ar-
tificial Intelligence Conference and Ninth AAAI Sym-
posium on Educational Advances in Artificial Intelli-
gence, AAAI’19/IAAI’19/EAAI’19. AAAI Press.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Nelson Elhage, Tristan Hume, Catherine Olsson,
Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain,
Carol Chen, Roger Grosse, Sam McCandlish, Jared
Kaplan, Dario Amodei, Martin Wattenberg, and Chris
Olah. 2022. Toy Models of Superposition.

Kawin Ethayarajh. 2019. How Contextual are Con-
textualized Word Representations? Comparing the
Geometry of BERT, ELMo, and GPT-2 Embeddings.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 55–65,
Hong Kong, China. Association for Computational
Linguistics.

Javier Ferrando, Oscar Obeso, Senthooran Rajamanoha-
ran, and Neel Nanda. 2025. Do i know this entity?
knowledge awareness and hallucinations in language
models. Preprint, arXiv:2411.14257.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn
Presser, and Connor Leahy. 2020. The pile: An
800gb dataset of diverse text for language modeling.
Preprint, arXiv:2101.00027.

Mor Geva, Jasmijn Bastings, Katja Filippova, and Amir
Globerson. 2023. Dissecting recall of factual associa-
tions in auto-regressive language models. In Proceed-
ings of the 2023 Conference on Empirical Methods in
Natural Language Processing, pages 12216–12235,
Singapore. Association for Computational Linguis-
tics.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer
Levy. 2021. Transformer feed-forward layers are key-
value memories. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 5484–5495, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Asma Ghandeharioun, Avi Caciularu, Adam Pearce, Lu-
cas Dixon, and Mor Geva. 2024. Patchscopes: A
Unifying Framework for Inspecting Hidden Repre-
sentations of Language Models. In Forty-First Inter-
national Conference on Machine Learning.

Daniela Gottesman and Mor Geva. 2024. Estimating
knowledge in large language models without gen-
erating a single token. In Proceedings of the 2024

442

https://proceedings.mlr.press/v202/biderman23a.html
https://proceedings.mlr.press/v202/biderman23a.html
https://api.semanticscholar.org/CorpusID:14941970
https://api.semanticscholar.org/CorpusID:14941970
https://transformer-circuits.pub/2023/monosemantic-features
https://transformer-circuits.pub/2023/monosemantic-features
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/P18-1198
https://doi.org/10.18653/v1/P18-1198
https://doi.org/10.18653/v1/P18-1198
https://doi.org/10.1609/aaai.v33i01.33016309
https://doi.org/10.1609/aaai.v33i01.33016309
https://doi.org/10.1609/aaai.v33i01.33016309
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.48550/ARXIV.2209.10652
https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.18653/v1/D19-1006
https://arxiv.org/abs/2411.14257
https://arxiv.org/abs/2411.14257
https://arxiv.org/abs/2411.14257
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027
https://doi.org/10.18653/v1/2023.emnlp-main.751
https://doi.org/10.18653/v1/2023.emnlp-main.751
https://doi.org/10.18653/v1/2021.emnlp-main.446
https://doi.org/10.18653/v1/2021.emnlp-main.446
https://doi.org/10.18653/v1/2024.emnlp-main.232
https://doi.org/10.18653/v1/2024.emnlp-main.232
https://doi.org/10.18653/v1/2024.emnlp-main.232


Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3994–4019, Miami, Florida,
USA. Association for Computational Linguistics.

Roee Hendel, Mor Geva, and Amir Globerson. 2023.
In-context learning creates task vectors. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2023, pages 9318–9333, Singapore.
Association for Computational Linguistics.

Evan Hernandez, Arnab Sen Sharma, Tal Haklay, Kevin
Meng, Martin Wattenberg, Jacob Andreas, Yonatan
Belinkov, and David Bau. 2024. Linearity of rela-
tion decoding in transformer language models. In
Proceedings of the 2024 International Conference on
Learning Representations.

Mojan Javaheripi and Sébastien Bubeck. 2023. Phi-2:
The surprising power of small language models.

Ganesh Jawahar, Benoît Sagot, and Djamé Seddah.
2019. What does BERT learn about the structure of
language? In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3651–3657, Florence, Italy. Association for
Computational Linguistics.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld,
Luke Zettlemoyer, and Omer Levy. 2020. Spanbert:
Improving pre-training by representing and predict-
ing spans. Transactions of the association for com-
putational linguistics, 8:64–77.

D. Jurafsky and J.H. Martin. 2009. Speech and Lan-
guage Processing: An Introduction to Natural Lan-
guage Processing, Computational Linguistics, and
Speech Recognition. Prentice Hall Series in Artificial
Intelligence. Pearson Prentice Hall.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3045–3059, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie
Del Giorno, Suriya Gunasekar, and Yin Tat Lee. 2023.
Textbooks are all you need ii: phi-1.5 technical re-
port. arXiv preprint arXiv:2309.05463.

Jiacheng Liu, Sewon Min, Luke Zettlemoyer, Yejin
Choi, and Hannaneh Hajishirzi. 2024. Infini-gram:
Scaling unbounded n-gram language models to a
trillion tokens. In First Conference on Language
Modeling.

Weishu Liu. 2021. Caveats for the use of web of science
core collection in old literature retrieval and historical
bibliometric analysis. Technological Forecasting and
Social Change, 172:121023.

Callum McDougall, Arthur Conmy, Cody Rushing,
Thomas McGrath, and Neel Nanda. 2023. Copy
Suppression: Comprehensively Understanding an At-
tention Head. Preprint, arXiv:2310.04625.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022. Locating and Editing Factual As-
sociations in GPT. Advances in Neural Information
Processing Systems, 35:17359–17372.

Kevin Meng, Arnab Sen Sharma, Alex Andonian,
Yonatan Belinkov, and David Bau. 2023. Mass edit-
ing memory in a transformer. The Eleventh Inter-
national Conference on Learning Representations
(ICLR).

Tomas Mikolov, Kai Chen, G.s Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. Proceedings of Workshop at
ICLR, 2013.

John Morris, Volodymyr Kuleshov, Vitaly Shmatikov,
and Alexander Rush. 2023. Text embeddings reveal
(almost) as much as text. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 12448–12460, Singapore.
Association for Computational Linguistics.

Neel Nanda and Joseph Bloom. 2022. Transformerlens.
https://github.com/TransformerLensOrg/
TransformerLens.

Jingcheng Niu, Andrew Liu, Zining Zhu, and Gerald
Penn. 2023. What does the Knowledge Neuron The-
sis Have to do with Knowledge? In The Twelfth
International Conference on Learning Representa-
tions.

nostalgebraist. 2020. Interpreting GPT: The logit lens.
LessWrong.

Koyena Pal, Jiuding Sun, Andrew Yuan, Byron Wal-
lace, and David Bau. 2023. Future lens: Anticipating
subsequent tokens from a single hidden state. In Pro-
ceedings of the 27th Conference on Computational
Natural Language Learning (CoNLL), page 548–560.
Association for Computational Linguistics.

Matthew E. Peters, Mark Neumann, Robert Logan, Roy
Schwartz, Vidur Joshi, Sameer Singh, and Noah A.
Smith. 2019. Knowledge enhanced contextual word
representations. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 43–54, Hong Kong, China. Association for
Computational Linguistics.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and

443

https://doi.org/10.18653/v1/2023.findings-emnlp.624
https://doi.org/10.18653/v1/P19-1356
https://doi.org/10.18653/v1/P19-1356
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://openreview.net/forum?id=u2vAyMeLMm
https://openreview.net/forum?id=u2vAyMeLMm
https://openreview.net/forum?id=u2vAyMeLMm
https://doi.org/10.1016/j.techfore.2021.121023
https://doi.org/10.1016/j.techfore.2021.121023
https://doi.org/10.1016/j.techfore.2021.121023
https://doi.org/10.48550/arXiv.2310.04625
https://doi.org/10.48550/arXiv.2310.04625
https://doi.org/10.48550/arXiv.2310.04625
https://doi.org/10.18653/v1/2023.emnlp-main.765
https://doi.org/10.18653/v1/2023.emnlp-main.765
https://github.com/TransformerLensOrg/TransformerLens
https://github.com/TransformerLensOrg/TransformerLens
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://doi.org/10.18653/v1/2023.conll-1.37
https://doi.org/10.18653/v1/2023.conll-1.37
https://doi.org/10.18653/v1/D19-1005
https://doi.org/10.18653/v1/D19-1005


Alexander Miller. 2019. Language models as knowl-
edge bases? In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 2463–2473, Hong Kong, China. Association
for Computational Linguistics.

Erik F. Sang and Fien De Meulder. 2003. Introduction to
the CoNLL-2003 shared task: Language-independent
named entity recognition. In Proceedings of the Sev-
enth Conference on Natural Language Learning at
HLT-NAACL 2003, pages 142–147.

Timo Schick and Hinrich Schütze. 2021. It‘s not just
size that matters: Small language models are also few-
shot learners. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 2339–2352, Online. Association
for Computational Linguistics.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019.
BERT rediscovers the classical NLP pipeline. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4593–
4601, Florence, Italy. Association for Computational
Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Elena Voita, Rico Sennrich, and Ivan Titov. 2019. The
bottom-up evolution of representations in the trans-
former: A study with machine translation and lan-
guage modeling objectives. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 4396–4406, Hong Kong,
China. Association for Computational Linguistics.

Kevin Wang, Alexandre Variengien, Arthur Conmy,
Buck Shlegeris, and Jacob Steinhardt. 2022. In-
terpretability in the Wild: A Circuit for Indirect
Object Identification in GPT-2 small. Preprint,
arXiv:2211.00593.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, and 3 others. 2020. Hugging-
face’s transformers: State-of-the-art natural language
processing. Preprint, arXiv:1910.03771.

Qinan Yu, Jack Merullo, and Ellie Pavlick. 2023. Char-
acterizing mechanisms for factual recall in language
models. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 9924–9959, Singapore. Association for Com-
putational Linguistics.

A Reproducibility statement

All Task vector training have been trained using
the CoNLL2003 NER Dataset, as detailed in Sec-
tion 3.2. We performed 15 epochs on the train split
using Adam Optimizer. (Kingma and Ba, 2015)

We provide a repository where we provide a
rendered demo notebook, training code, all hyper-
parameters as well as some checkpoints.7 We used
the transformer lens (Nanda and Bloom, 2022),
a wrapper around the transformers library (Wolf
et al., 2020).

All experiments were conducted on cluster nodes
with 80GB NVIDIA A100, 16 or 32GB NVIDIA
V100 GPUs.

CoNLL Split Train Test

Number of samples 22449 11120
Number of unique Entities 7820 2521

Mean text length (in tokens) 26.4 26.4
Mean entity mention length 3 tok 3 tok

Table 1: Statistics of our dataset, processed from
CoNLL2003 (Sang and De Meulder, 2003)

B Additional experiments

B.1 Generating random sequences of fixed
token length

We provide Figure 9 all the results obtained for our
control experiment described in Section 3.3

B.2 Generalization of learned Task Vectors
Other layers Each task vectors has been trained
with representations from a specific transformer
layer, this methodology allows to further analyze
the impact of the layer on the quality of the repre-
sentations. Even if they are not particularly similar
(cf Figure 13), task vectors generalize well to other
layers. This can be seen in Table 5, where we apply
the Entity Lens using the same task vector θ20 for
all layers. The generated mentions are still consis-
tent even if the representations are not extracted at
layer 20.

Different setups Despite being similar, the two
setups may imply a different generation mecha-
nism from the model. In the uncontextual setup,
we require the model to retrieve a mention from
its parametric memory, whereas in the contextual

7https://github.com/VictorMorand/
EntityRepresentations

444

https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
https://aclanthology.org/W03-0419/
https://aclanthology.org/W03-0419/
https://aclanthology.org/W03-0419/
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/P19-1452
https://doi.org/10.18653/v1/D19-1448
https://doi.org/10.18653/v1/D19-1448
https://doi.org/10.18653/v1/D19-1448
https://doi.org/10.18653/v1/D19-1448
https://doi.org/10.48550/arXiv.2211.00593
https://doi.org/10.48550/arXiv.2211.00593
https://doi.org/10.48550/arXiv.2211.00593
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://doi.org/10.18653/v1/2023.emnlp-main.615
https://doi.org/10.18653/v1/2023.emnlp-main.615
https://doi.org/10.18653/v1/2023.emnlp-main.615
https://github.com/VictorMorand/EntityRepresentations
https://github.com/VictorMorand/EntityRepresentations


0 5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

layer ℓ of PHI-2 (0 is embedding)

E
xa

ct
M

at
ch

Entities

1 token

2 tokens

3 tokens

(a) Uncontextual mention decoding results by layer.

0 5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

layer ℓ of PHI-2 (0 is embedding)

(b) Contextual mention decoding results by layer.

Figure 9: Baseline – Decoding random sequences of fixed token length compared to decoding entity mentions with
PHI-2 (end token is constrained to be the end of a word). If the model can easily retrieve one represented token,
manipulating entity mentions is a more natural task then manipulating tokens. The observed behavior is similar on
the other models considered.

setup we only require it to copy the right men-
tion. Evaluating task vectors across tasks (Table 2)
shows that, despite a 50% drop in performance,
task vectors trained for one setting can be used in
the other. This demonstrates that while the two
processes are different, they however have some
similarities. Investigating which is left for future
work.

Task Vector
Uncontextual evaluation Contextual evaluation
Exact match Chr-F Exact match Chr-F

Phi-2 ℓ 20, uncontextual 64% 61% 15% 30%
Phi-2 ℓ 20, contextual 41% 40% 93% 94%

Random Vector 0% 13% 0% 17%

Table 2: Despite being trained for distinct tasks, task
vectors do show some generalization to other generation
settings.

B.3 Analyzing entity representations
Here, we explore how entity mention representa-
tions are built inside an LLM.

Successive representations We explore the con-
vergence of the successive representations to the
one that we extract at layer ℓ. We consider the co-
sine similarity of the entity representation zℓ with
the output from different layers, including Multi-
head self-attention (Attn) and Multi-Layer Percep-
tron (MLP) sublayers. Sublayers iteratively add or
remove information in the residual stream. There
is no predominant layer for the construction of zℓ

(See Figure 10).

Causal analysis is an alternative mean to assess
the contribution of one component of a transformer
layer on the representation construction. We use

emb1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Layers

0.00

0.25

0.50

0.75

1.00

Co
sin

e 
sim

ila
rit

y SubLayers
Embed
attn_out
mlp_out
resid_post

Figure 10: Similarity between the last token representa-
tions (zℓ) and intermediate representations from PHI-2.
Different sublayers are shown, including outputs from
the MLP and Multi Head Self-Attention (Attn). Ap-
plication to a specific prompt : ’Port|ugal| called|
up| Port|o| central| defender| Jo|ao| Manuel|
P|into’. The observed behavior is representative of
the general one.

sublayer knockout, as done in (Geva et al., 2023),
by zeroing out the output of one MLP or attention
block of a given layer ℓ while computing the repre-
sentation zℓ. We can measure how much this block
contributes to this representation by comparing the
similarity of the obtained representation with the
original one. We observe that, apart from the first
layer, no other blocks have a causal effect on the
final representation zℓ, confirming the observation
made above.

Conclusion Both our similarity and causal analy-
sis experiments lead us to conclude that, as pre-
vious work also suggested (Meng et al., 2022;
Geva et al., 2023), there is no clear location where
the representation of an entity is “completed”.
The construction of entity representations are a
a smooth, iterative, and massively superposed pro-
cess. This aligns with recent contributions on su-
perposition and feature disentanglement, and may
be explained by the use of dropout during LLM pre-

445



training, nudging the model to develop redundant
circuits (Elhage et al., 2022; Bricken et al., 2023).

B.4 Training Representations
We explore in this section what features in the rep-
resentation are really used to generate a mention.
To obtain the minimum information required to
retrieve the mention, we optimize blank noise to
make the model retrieve the right mention when
prompted with a task vector trained in the context
of our uncontextual mention generation experiment.
By doing it several times and averaging the ob-
tained vectors, we hope to keep only hat is needed
to regenerate the mention.

Conclusion Our findings demonstrate that it is
possible to train a vector to encode almost any
mentions, within reasonable token limits. This
confirms that the transformer’s latent space has the
capacity to store numerous tokens. LLMs however
typically do not utilize this capability when they
can access the context, as they can simply copy and
paste the appropriate tokens from it.

C Textual Examples

Original Inferred

Roberto Mancini Carlo Mazzone
Pierre Van Hooydonk Marc D’Haese

Guenther Huber Peter Huber
Wenchang Changsha

Michael Cornwell Mark Calwell
IGLS GLIS

Ole Einar Bjorndalen Bjorn Dæhlie
Alba Berlin Berlin

John Langmore John Molyneaux
Patasse Passeau

Rangoon Yangon
M. Waugh J. Waugh

Major John Major
Lahd Hlad

WARSAW WAWRZAWA
Kim Pan Keun Lee Dong-kook

David Boon J. Boon
Berisha Bushi

Gunn Margit Andreassen Ingrid Bjørnson
Abel Balbo Giuseppe Bologna

Table 3: Examples of failed generations sampled ran-
domly from the the uncontextual mention generation
results (Figure 4a) for PHI-2 at layer 15.

0 2 4 6 8

0.4

0.5

0.6

phi-1.5

phi-2
phi-3

pythia-160m

pythia-410m

pythia-1b
pythia-1.4b

pythia-2.8b

pythia-6.9b

Model size (B parameters)

E
xa

ct
M

at
ch

Uncontextual mention Decoding on CoNLL2003

0 2 4 6 8

0.6

0.7

0.8

0.9

phi-1.5

phi-2

phi-3

pythia-160m

pythia-410m
pythia-1b

pythia-1.4b
pythia-2.8b

pythia-6.9b

Model size (B parameters)

E
xa

ct
M

at
ch

Contextual mention Decoding on CoNLL2003

Figure 11: Aggregated Results comparing best perfor-
mances depending on model size. Larger models demon-
strate greater capability. Performance drop of the PHI-3
model can be explained by the use of a significantly
smaller vocabulary size (32k vs 50k for all other models
considered here) as well as the instruction tuning.

D Complementary Figures

D.1 Entity Lens visualizations

We provide here two example applications of the
Entity Lens: Figure 8 for the uncontextual setup
and Table 6 in the contextual setup. For any layer ℓ
and for each token representation zℓ

k, we generate
a mention with the layer-specific task Vector θℓ. To
test generalization capabilities through layers, we
try Table 5 to use the same task vector θ20 for all the
layers, empirically validating nice generalization
capabilities.

D.2 Performance as a function of Entity
mention size and frequency

We provide here the complete results for the analy-
sis conducted in Section 3.3. Reconstruction per-
formance on test set splitted by mention frequence
on the Pile and mention length with PYTHIAS mod-
els is shown Figure 16 in the uncontextual mention
generation setup and Figure 15 in the contextual
setup. Figure 17 gathers the results for the three

446



n_params n_layers d_model n_heads act_fn n_ctx d_vocab d_head d_mlp

PHI-1.5 1.2B 24 2048 32 gelu 2048 51200 64 8192
PHI-2 2.5B 32 2560 32 gelu 2048 51200 80 10240
PHI-3 3.6B 32 3072 32 silu 4096 32064 96 8192

PYTHIA-160M 85M 12 768 12 gelu 2048 50304 64 3072
PYTHIA-410M 302M 24 1024 16 gelu 2048 50304 64 4096

PYTHIA-1B 805M 16 2048 8 gelu 2048 50304 256 8192
PYTHIA-1.4B 1.2B 24 2048 16 gelu 2048 50304 128 8192
PYTHIA-2.8B 2.5B 32 2560 32 gelu 2048 50304 80 10240
PYTHIA-6.9B 6.4B 32 4096 32 gelu 2048 50432 128 16384

Table 4: Characteristics of the models considered in this work.

The City of Lights iconic landmark
Emb B. City B.C. Lights iconic landmark
ℓ 6 B. City City City of Lights iconic iconic landmark
ℓ 11 B. City City of The City of Lights iconic iconic landmark
ℓ 16 B. City City of City of Lights U.S. iconic iconic landmark
ℓ 21 The City City of City of Lights iconic landmark
ℓ 26 S. City City of City of Lights Paris iconic landmark
ℓ 32 Oceania City City of Edmonton Paris Light Eiffel Tower Eiffel Tower

Table 5: The Entity Lens, applied using only one task vector (θ20, trained on representations extracted at layer 20
of PHI-2 in the uncontextual setup).The model still decodes relevant mentions from representations extracted at
different layers, showing the generalizing capabilities of θ20 to representations at any layer. This further backs our
claim that entity representations are layer agnostic.

models from the PHI family.

447



G aston Julia and Mand el bro t meet , the latter tells
Emb Geston Gaston Gaston Julia Mandelbrot Mandel Mandelbrot Mandelbrot Mandelbrot Mandelbrot Mandelbrot Mandelbrot Mandelbrot Mandelbrot

ℓ 6 G Gaston Gaston Julia
Gaston Julia

and Mandelbrot
Mand Mandel Mandelbrot Mandelbrot Meeting

Gaston Julia
and Mandelbrot

Mandelbrot tells the latter Mandelbrot
Mandelbrot

tells

ℓ 11 G Gaston Gaston Julia Gaston Julia Mand Mandelbrot Mandelbro Mandelbrot Meeting
Gaston Julia

and Mandelbrot
Gaston Julia Mandelbrot Gaston Julia

ℓ 16 G Gaston Gaston Julia Mandelbrot Mand Mandel Mandelbro Mandelbrot Meeting
Mandelbrot

tells, Mandel
Mandelbrot Mandelbrot

Mandelbrot
tells

ℓ 21 G Gaston Gaston Julia Mandelbrot tells Mand Mandelbrot Mandelbro Mandelbrot Meeting Mandelbrot tells
Mandelbrot tells

the latter
Mandelbrot Tell

ℓ 26 G Gaston Gaston Julia Mandelbrot Mand Mandelbrot Mandelbro Mandelbrot Meets
Mandelbrot

tells, the latter
Mandelbrot Mandelbrot Tell

ℓ 32 Gaston Gaston Gaston Julia Mandelbrot Mandelbrot Mandelbrot Mandelbro Mandelbrot
Mandelbrot
tells meet

Mandelbrot Mandelbrot Mandelbrot
Mandelbrot

tells

Table 6: Example application of the Entity Lens, applied with a task Vector trained on representations extracted
in PHI-2 in the contextual setup. We input the sentence “Gaston Julia and Mandelbrot meet, the latter
tells”. We can notably see that the model does associate “the latter” with the right entity.

0 0.2 0.4 0.6 0.8 1

0

20

40

60

Quantile

E
xa

ct
M

at
ch

(%
)

Exact Match per quantile for Pythias models

pythia-160m l6
pythia-410m l10
pythia-1b l6
pythia-1.4b l7
pythia-2.8b l13
pythia-6.9b l7

0 0.2 0.4 0.6 0.8 1

0

20

40

60

Quantile

E
xa

ct
M

at
ch

(%
)

Exact Match per quantile for Phi models

phi-2 l22
phi-1.5 l13
phi-3 l20

Figure 12: Performance on mention generation without
context depending on quantiles of entity frequency in
the Pile.

emb 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Layer

emb
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Co
sin

e 
sim

ila
rit

y

(a) Similarities between trained task vectors in the uncon-
textual setup

emb 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Layer

emb
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32

0.5

0.6

0.7

0.8

0.9

1.0
Co

sin
e 

sim
ila

rit
y

(b) Similarities between trained task vectors in the contex-
tual setup

Figure 13: Cosine Similarity comparison of all trained
task Vectors for PHI-2. Training at each layer seems to
lead to a different task vector, although they are shown
to generalize well (see Appendix B.2).

448



0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

Layer

C
hr

-F

Last

Average

Last + linear

Average + linear

(a) Performance on star_constellation

0 5 10 15 20 25 30

0.4

0.6

0.8

Layer

C
hr

-F

Average

Last

Last + linear

Average + linear

(b) Performance on person_native_language

Figure 14: Chr-F performance on other datasets from
Hernandez et al. (2024).

449



9 ⋅ 107

4 ⋅ 106

2 ⋅ 105

9 ⋅ 103

4 ⋅ 102

2 ⋅ 101

0

9 ⋅ 107

4 ⋅ 106

2 ⋅ 105

9 ⋅ 103

4 ⋅ 102

2 ⋅ 101

0

En
tit

y 
co

un
ts

in
 th

e 
Pi

le

Number of tokens in entity mention Number of tokens in entity mention Number of tokens in entity mention

En
tit

y 
co

un
ts

in
 th

e 
Pi

le

Number of tokens in entity mention Number of tokens in entity mention Number of tokens in entity mention

Figure 15: Reconstruction performance on test set for our uncontextual mention generation experiment. Perfor-
mance is separated based on the number of tokens that need reconstruction, as well as the n-gram frequency of the
mention in the Pile (Gao et al., 2020). For each model, we chose the layer with best exact match on the test set.
Empty cells correspond to count/frequency settings with fewer than 5 samples, making it insufficient to compute
performance.

9 ⋅ 107

4 ⋅ 106

2 ⋅ 105

9 ⋅ 103

4 ⋅ 102

2 ⋅ 101

0

9 ⋅ 107

4 ⋅ 106

2 ⋅ 105

9 ⋅ 103

4 ⋅ 102

2 ⋅ 101

0

En
tit

y 
co

un
ts

in
 th

e 
Pi

le
En

tit
y 

co
un

ts
in

 th
e 

Pi
le

Number of tokens in entity mention

Number of tokens in entity mention

Number of tokens in entity mention Number of tokens in entity mention

Number of tokens in entity mention Number of tokens in entity mention

Figure 16: Reconstruction performance on test set for our contextual mention generation experiment. Performance
is separated based on the number of tokens that need reconstruction, as well as the n-gram frequency of the mention
in the Pile (Gao et al., 2020). For each model, we chose the layer with best exact match on the test set. Empty cells
correspond to count/frequency settings with fewer than 5 samples, making it insufficient to compute performance.

450



9 ⋅ 107

4 ⋅ 106

2 ⋅ 105

9 ⋅ 103

4 ⋅ 102

2 ⋅ 101

0

En
tit

y 
co

un
ts

in
 th

e 
Pi

le

Number of tokens in entity mention Number of tokens in entity mention Number of tokens in entity mention

(a) Performance analysis for the uncontextual mention generation experiment
9 ⋅ 107

4 ⋅ 106

2 ⋅ 105

9 ⋅ 103

4 ⋅ 102

2 ⋅ 101

0

Number of tokens in entity mention Number of tokens in entity mention Number of tokens in entity mention

En
tit

y 
co

un
ts

in
 th

e 
Pi

le

(b) Performance analysis for the contextual mention generation experiment

Figure 17: Reconstruction performance depending on the number of tokens to reconstruct, as well as the n-gram
frequency of the entity mention in the Pile (Gao et al., 2020). For each model, we chose the layer with best exact
match on the test set.

451


