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Abstract

In recent years, large language models (LLMs)
have achieved remarkable success across di-
verse natural language processing tasks. Nev-
ertheless, their capacity to process and re-
flect core human experiences remains under-
explored. Current benchmarks for LLM evalua-
tion typically focus on a single aspect of linguis-
tic understanding, thus failing to capture the
full breadth of its abstract reasoning about the
world. To address this gap, we propose a multi-
dimensional paradigm to investigate the capac-
ity of LLMs to perceive the world through tem-
poral, spatial, sentimental, and causal aspects.
We conduct extensive experiments by partition-
ing datasets according to different distributions
and employing various prompting strategies.
Our findings reveal significant differences and
shortcomings in how LLMs handle temporal
granularity, multi-hop spatial reasoning, subtle
sentiments, and implicit causal relationships.
While sophisticated prompting approaches can
mitigate some of these limitations, substantial
challenges persist in effectively capturing hu-
man abstract perception, highlighting the dis-
crepancy between model reasoning and human
behavior. We aspire that this work, which as-
sesses LLMs from multiple perspectives of hu-
man understanding of the world, will guide
more instructive research on the LLMs’ percep-
tion or cognition.!

1 Introduction

Large Language Models (LLMs) have made sig-
nificant strides in advancing natural language pro-
cessing (NLP) (Brown et al., 2020; Kojima et al.,
2022; Zhao et al., 2024a; Chu et al., 2024a), show-
casing impressive abilities in understanding and
generating human-like text (Sicilia and Alikhani,
2022; Gao et al., 2023b; Minaee et al., 2024). How-
ever, their comprehension of fundamental human
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experiences—such as time, space, sentiment, and
causality—remains largely underexplored. Mau-
rice Merleau-Ponty, a renowned phenomenologist,
highlighted the embodied nature of perception, as-
serting that our bodily and affective experiences are
central to how we engage with the world (Merleau-
Ponty et al., 2013). He argued that consciousness
is deeply intertwined with physical existence, chal-
lenging the Cartesian dualism of mind and body.
This perspective suggests that a deeper understand-
ing of human perception requires considering the
pivotal role of the body in shaping experience.

In recent years, research has started to investi-
gate specific facets of LLMs’ world perception. For
example, studies have examined their understand-
ing of sentimental scenarios through the frame-
work of appraisal and coping theory, revealing that
while LLMs’ responses generally align with hu-
man patterns in sentimental appraisal and coping
dynamics, they differ in their sensitivity to key ap-
praisal dimensions (Yongsatianchot et al., 2023).
Additionally, evaluations of their causal reasoning
capabilities have uncovered challenges in handling
complex causal structures and distinguishing be-
tween correlation and causation (Liu et al., 2025;
Zhou et al., 2024). To further explore the under-
standing and cognition of the world in terms of
LLMs, we need to comprehensively evaluate their
perception in multiple dimensions, including the
dimensions emphasized by Merleau-Ponty’s phe-
nomenological sense.

This study aims to evaluate the world percep-
tion of LLMs through a multi-dimensional frame-
work that encompasses time, space, sentiment, and
causality. We have elected two datasets for each
dimension and annotated them with relevant fea-
tures based on different data distributions for eval-
uvation. To guide this assessment, we employ a
variety of prompting techniques, including basic,
Chain-of-Thought (CoT), few-shot, and few-shot
CoT prompting. Few-shot prompting (Dai et al.,
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2022) involves providing the model with a few
examples to help guide its responses, while CoT
(Wei et al., 2022) prompting encourages the model
to generate intermediate reasoning steps, thereby
improving its problem-solving abilities.

The main contributions of this study are as fol-
lows. (1) We introduce a novel framework for eval-
uating LLMs’ world perception across four critical
dimensions: time, space, sentiment, and causality
from the perspective of data distribution. (2) By
employing a variety of prompting strategies, this
study explores how different prompting methods
influence the performance of LLMs across the four
dimensions. (3) We reveal the strengths and lim-
itations of current LLMs in handling various rea-
soning tasks, providing valuable insights for future
LLM development and applications.

2  WorldInsight BENCH

2.1 Benchmark Design

WorldInsight BENCH is designed to assess the ca-
pacity of large language models to reason the world
at the abstract level of human cognition and percep-
tion. Given the multifaceted nature of perceptual
domains, we structure our evaluation into four criti-
cal dimensions: time, space, sentiment, and causal-
ity. Each of these dimensions is examined through
two specialized datasets. Based on different data
distributions, we analyze how LLM interprets and
processes the world.

Temporal dimension focuses on the models’ abil-
ity to understand and reason about the passage of
time and the relationships between temporal events.
Spatial dimension centers on the model’s capacity
to grasp and interpret spatial relationships. Senti-
ment recognition evaluates the model’s understand-
ing of human sentiments exposed to various scenes,
and its ability to discern sentimental states, inten-
sity, and the underlying psychological dynamics.
Causal perception examines the models’ ability
to infer causal relationships, distinguish between
correlation and causation, and reason in counterin-
tuitive causal scenarios.

2.2 Challenges

Complex reasoning tasks in natural language pro-
cessing mirror real-world cognitive challenges.
They require not only language comprehension but
also intricate logical inference, recognition of im-
plicit relationships, and the integration of multidi-
mensional information (Niu et al., 2024; Xiang and

Wang, 2022; Wang et al., 2024).

Temporal Logic and Event Sequencing Analyz-
ing temporal information involves understanding
event ordering, duration, frequency, and typical
time. This analysis requires managing several tem-
poral relationships concurrently, inferring implicit
logic, and constructing accurate event sequences
(Dong et al., 2024). The challenge increases when
multiple time frames or ambiguous temporal cues
are involved.

Complex Spatial Relationship Inference Infer-
ring spatial relationships entails identifying both
direct and indirect cues that determine the relative
positions of entities (Hu et al., 2024). This process
becomes more difficult as the number of objects
and the complexity of their arrangements grow.
Sentiment Analysis with Implicit Context De-
tecting sentiment in text demands sensitivity to
subtle sentimental nuances, including sarcasm and
implicit emotions (Wang and Luo, 2023). The
task will be further complicated when texts con-
vey mixed emotions or when broader situational
factors exist in text (Zhang et al., 2024).

Complex Causal Relationship Analysis Under-
standing causal relations in text involves tracking
multiple events and their interactions (Lyu et al.,
2022), particularly when causal links are implied
rather than explicitly stated. Moreover, Large lan-
guage models can be confused when reasoning
about counterfactual scenarios.

2.3 Datasets

In response to the challenges, we selected two
datasets per dimension, each undergoing a sec-
ondary annotation process. We segmented these
datasets based on their intrinsic data distributions
to enable a fine-grained evaluation of LLLM per-
formance. This methodology is motivated by the
understanding that an LLM’s "perception” is fun-
damentally shaped by the data it is trained on and
the specific characteristics of the data it encoun-
ters during inference. By moving beyond simply
evaluating overall performance on a task, we can
analyze performance under specific data conditions
relevant to human perception, thereby diagnosing
where and why LLMs succeed or fail.

2.3.1 Temporal Cognition

TempNLI (Thukral et al., 2021) contains time-
related premise-hypothesis pairs with logical labels:
Entailment, Contradiction, and Neutral. It is seg-
mented to evaluate temporal reasoning across two
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primary distributions, including time granularity
and Language complexity.

MCTACO (Zhou et al., 2019) presents short con-
texts followed by temporal reasoning questions
with multiple valid answers. It evaluates the mod-
els’ reasoning ability from multiple temporal rela-
tionship types, comprising time frequency, order,
duration, stationarity, and typical event time.

2.3.2 Spatial Intelligence

Multi-hop Space (Li et al., 2024) evaluates the
models’ capability in reasoning about complex
spatial relationships through multiple steps. The
dataset presents scenarios of increasing complexity,
ranging from 1-hop to 10-hop, in which the model
must determine the relative position between two
objects based on a series of intermediate spatial
relationships.

SpaceTrans (Comsa and Narayanan, 2023) aims
to assess the capability of LLMs to process spa-
tial transfer relations conveyed through spatial
prepositions in diverse contexts, including physical,
metaphorical, and mixed scenarios. The dataset
specifically examines whether models can distin-
guish between cases where spatial transitivity holds
(in physical scenarios) versus cases where it breaks
down (in metaphorical or hybrid contexts). This
helps evaluate LLMs’ understanding of how spatial
reasoning rules apply differently across contexts.

2.3.3 Sentimental Insight

Yelp-5 (Zhang et al., 2015) contains restaurant re-
views labeled with sentimental intensity ratings
from O to 4, where O indicates strong negative sen-
timent and 4 indicates strong positive sentiment.
The reviews discuss various aspects of dining expe-
riences, including food quality, service, ambiance,
and value. This dataset enables assessment of mod-
els’ ability to detect fine-grained sentimental ex-
pressions in long-form consumer feedback.
IronyEval (Van Hee et al., 2018) comprises so-
cial media posts labeled as either sarcastic or non-
sarcastic. Each post is classified as "explicit" and
"implicit" based on whether it contains overt sar-
casm markers or contextual cues that suggest sar-
casm. This dataset tests models’ capability to iden-
tify both overt and subtle forms of sarcastic expres-
sion common in social media communication.

2.3.4 Causal Comprehension

ECI (Gao et al., 2023a) consists of sentences con-
taining event pairs, where the model must identify

whether one event causes another. The dataset is
categorized into man-made causality and natural
causality based on different types of causal fea-
tures. Concurrently, the textual distance between
event entities within the context is classified into
close-range and far-range.

FantasyR (Srivastava et al., 2023) presents sce-
narios involving fictional elements like magic, su-
pernatural beings, and fantastical situations, and
is segmented based on the explicitness of causal
relationships depicted in the text. It tests whether
LLMs can maintain causal coherence and apply
consistent logic within hypothetical worlds.

2.4 Evaluation Metrics

In this work, we utilize a range of evaluation met-
rics to assess the performance of LLMs on chosen
tasks. The evaluation metrics include accuracy, F1-
score, exact match, tolerant accuracy, etc. However,
due to space limitations, we only report the accu-
racy in the main body, while the detailed scores for
other metrics are provided in the Appendix B.

3 Approaches

3.1 Model Setup and Implementation

We evaluate a range of widely used LLMs, encom-
passing both open-source and proprietary models.
The open-source models included in this evalua-
tion range from the Llama 2 series to Llama 3.3
(Touvron et al., 2023; Grattafiori et al., 2024), with
parameter sizes varying from 8B to 70B. Addition-
ally, the proprietary GPT-40 model is also assessed.

The open-source models (Llama 2, Llama 3,
Llama 3.1 and Llama3.3) are deployed locally
across 8 x NVIDIA A800 80GB PCle, while the
GPT-40 model is accessed via API. For all experi-
ments, we configure the temperature to 0.0 to en-
force greedy decoding (Prabhu, 2024).

3.2 Evaluation Methods

In this study, we evaluate the LLMs using four dis-
tinct prompting strategies: Basic prompting, Chain
of Thought (CoT) prompting, and their combina-
tion with Few-Shot setting. The aim is to inves-
tigate the competence of LLMs to understand the
world in an abstract dimension, and whether differ-
ent prompting methods can enhance their relevant
reasoning.

Basic Prompting, also denoted as zero-shot (ZS),
provide the model with specific instructions for
each task. In the few-shot (FS) setting, the model
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receives several QA pairs as demonstrations to
guide the responses to new questions. The prompts
P can be formulated as follows

Pzs = {INST} @ {Q} (1)

n
Prs = {INST} P ({Q:} & {Ai}) @ {Q} @
i=1
where INST, @, A represent the instruction, ques-
tion, and answer, respectively. And ¢ is the index
of instance.

CoT Prompting builds on standard prompting by
adding guidance for reasoning steps. In specific,
we append a reasoning trigger "Let’s think step by
step” to encourage the model to break down the
problem into logical steps before providing an an-
swer. In the few-shot CoT setting, we also provide
demonstrations with CoT to guide the reasoning
process. The prompt formulations are as follows

Peor = {INST} & {Q} & {TRIG}  (3)

Peorps = {INST} B, ({Qi} @ {Ri} @ {A:}) ® {Q}

“4)
where TRIG denotes the reasoning trigger and R
represents the reasoning examples.

4 Experimental Results

4.1 Zero-shot Results

Our evaluation of LLMs on the four dimensions of
abstract reasoning, covering time, space, sentiment,
and causality, revealed significant performance dif-
ferences (Table 1). In the zero-shot setting, GPT-40
achieved the highest overall average score (63.8%),
outperforming all open-source models across every
dimension. This superior performance is likely due
to its training on large-scale data, which enables
it to capture complex patterns and implicit struc-
tures across diverse domains. However, in causal
reasoning ECI, GPT-4o0 performed lower relative to
most models in the Llama series, despite its overall
highest average score. This is possibly because
of its focus on lexical co-occurrence and syntac-
tic structures, rather than understanding the causal
nature of events.

Open-source models generally excelled in sen-
timental and causal reasoning tasks but struggled
with temporal and spatial inference. Spatial rea-
soning showed the greatest variability among mod-
els, with GPT-40 averaging 68.5% versus Llama-2-
13b’s 30.3%. This disparity likely reflects the ad-
vantage of more advanced models that benefit from

larger, more diverse training sets, which facilitate
the learning of finer, more abstract spatiotemporal
relationships.

4.2 The Impact of CoT Prompting

CoT prompting yields performance improvements.
However, it is highly dependent on both the specific
model and the type of reasoning task. In tempo-
ral reasoning, CoT prompting significantly boosts
the performance of larger, more advanced mod-
els like GPT-40 (6.5%7) and particularly Llama-
3.3-70b (12.5%7). Conversely, older or smaller
models such as Llama-2 and Llama-3 showed mini-
mal (1.5%7) or even detrimental effects, suggesting
they may not possess adequate autonomous reason-
ing capabilities. For spatial reasoning, Llama mod-
els generally benefited from CoT, with Llama-3.3
showing a notable 12.3% improvement, especially
in multi-hop tasks where step-by-step reasoning
proved advantageous. Sentimental reasoning and
spatial reasoning exhibited mixed trends, with GPT-
40 and Llama-3.1 showing performance declines in
sentimental reasoning but improvements in spatial
reasoning, underscoring the task-specific property
of CoT’s benefits.

4.3 Few-shot Setting and CoT Prompting

The utilization of few-shot has consistently en-
hanced performance. The average score of GPT-
40 increases from 63.8% to 70.4%, while Llama-
3.1-70b rises by 5.8%, and only the Llama-3-8b
model shows a slight performance decline. For
these abstract dimensions, the temporal, spatial,
and sentimental reasoning capabilities of the LLMs
are improved to varying degrees. Causal reason-
ing improvements are more pronounced in GPT-4o,
but remains limitation across most Llama models.
It suggests that GPT-40 shows exceptional poten-
tial in learning causal inference from instances in
the few-shot scenario, whereas most Llama models
still struggle to extract patterns of causal reasoning
from examples.

Examples can strengthen and stabilize CoT
reasoning. Combining few-shot with CoT yields
the highest benefits, with the causal reasoning of
GPT-40 jumping by 21.3%, and the sentimental
reasoning of Llama-2-13B improving by 21.4%.
Notably, few-shot CoT prompting mitigated the
decline in reasoning capabilities caused by CoT in
some models. This suggests that relying solely on
CoT may lead to misleading results when the model
lacks sufficient context. The addition of few-shot
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Method | Temporal | Spatial | Sentimental | Causal | Overall Score

| TempNLI MCTACO | M-h Space  SpaceT | Yelp-5 IronyEval | ECI  FantasyR | Temp. Spat. emot. Causal Avg.
GPT-40 63.50 53.75 48.75 88.25 61.50 79.00 35.25 80.00 58.63 68.50 7025 57.63 63.75
+COT 70.25 60.00 42.50 89.50 59.25 77.50 59.00 81.00 65.13  66.00 68.38 70.00 67.38
+FS 70.25 57.25 46.75 89.25 63.50 90.25 64.75 81.00 63.75 68.00 76.88 72.88  70.38
+FS CoT 70.75 74.50 52.75 92.00 60.25 81.75 66.50 91.50 72.63 7238 71.00 79.00 73.75
Llama-3.3-70b |  53.50 54.75 36.00 8250 | 5775 7400 | 5850 7550 | 54.13 5925 65.88 67.00 61.56
+COT 70.00 63.25 4825 8725 | 5800 7625 | 5425  80.00 | 66.63 6775 67.13 6713 67.16
+FS 71.25 58.50 5475 8575 | 5750 8225 | 3175 7950 | 64.88 7025 69.88 55.63 65.16
+ES CoT 74.50 7275 45.00 8875 | 5575 7850 | 59.50  83.00 | 73.63 6688 67.13 7125 69.72
Llama-3.1-70b 50.50 49.25 38.00 86.25 58.25 73.75 43.75 78.50 49.88 62.13 66.00 61.13 59.78
+COT 64.50 57.50 44.00 87.50 52.75 72.50 55.50 76.00 61.00 6575 62.63 6575 63.78
+FS 63.00 4475 50.00 87.50 | 56.50  83.00 | 5575  84.00 | 53.88 68.75 69.75 69.88  65.56
+FS CoT 72.00 66.50 44.00 9175 | 5350 7850 | 68.00 8200 | 6925 67.88 6600 75.00 69.53
Llama-3-70b 50.25 33.25 25.25 79.75 55.00 72.50 70.25 63.00 41.75 5250 6375 66.63  56.16
+COT 48.25 31.25 31.75 85.25 57.75 73.75 49.75 76.50 39.75 5850 6575 63.13 56.78
+FS 51.75 48.75 40.25 83.00 | 59.50  81.00 | 2875  76.00 | 5025 61.63 7025 5238 58.63
+FS CoT 7075 47.00 28.25 89.00 | 5625 7950 | 5650  77.00 | 58.88 58.63 67.88 6675 63.03
Llama-3-8b 46.25 37.75 23.25 71.50 46.25 59.75 71.00 70.50 42.00 4738 53.00 70.75 5328
+COT 41.00 1825 15.50 7500 | 5075 5675 | 4725 7050 | 29.63 4525 5375 58.88  46.88
+FS 50.00 41.50 20.25 7050 | 5175 7375 | 3875 6150 | 4575 4538 6275 50.13 51.00
+ES CoT 50.75 28.50 2275 84.00 | 57.50  77.50 | 4675 7400 | 3963 5338 67.50 6038 55.22
Llama-2-70b 45.50 24.50 22.75 65.25 29.50 61.50 19.00 61.50 35.00 44.00 4550 4025 41.19
+COT 47.25 19.25 25.25 76.00 59.50 52.00 45.75 75.00 3325 50.63 5575 6038 50.00
+FS 48.50 14.25 21.00 63.25 50.25 70.00 21.50 64.00 31.38 42,13 60.13 4275  44.09
+FS CoT 45.75 23.00 24.25 85.50 58.50 69.50 38.75 73.00 3438 54.88 64.00 5588 52.28
Llama-2-13b 49.50 7.75 9.00 51.50 47.25 42.00 31.75 66.50 28.63 3025 4463 49.13 38.16
+COT 47.00 13.25 17.75 75.00 39.50 49.50 38.75 64.50 30.13 4638 4450 51.63 43.16
+FS 44.25 15.50 12.50 57.25 33.00 57.75 21.25 66.50 29.88 34.88 4538 43.88  38.50
+FS CoT 49.00 15.00 23.50 71.25 60.50 71.50 37.75 60.50 32.00 47.38 66.00 49.13 48.63

Table 1: Main experimental results over 8 datasets. All the models are aligned models (-chat-hf or -instruct).
Accuracy is reported here, and additional evaluation metrics can be found in Appendix B.

prompting provides more task-relevant information
and guidance, helping the model process diverse
reasoning steps, avoiding over-reliance on single
reasoning path, and thus enhancing the accuracy of
causal reasoning.

S Analysis and Discussion

We conduct a further analysis of the capacities of
various LLMs to model different aspects of the
world primarily through the lens of data distribu-
tion.

5.1 Evaluation on Temporal Inference

LLMs underperform in large temporal granu-
larities, with the performance worsening even
more at mixed granularities. As illustrated in Fig-
ure 1, LLMs generally show higher performance
on small time scales (e.g., 9 a.m.) than on large
time scales (e.g., after May 1939). This trend
is attributed to the fact that the greater symbolic
complexity involved in large time scales express-
ing—which often require implicit knowledge of
calendars, historical context, or broader temporal
relationships—introduces ambiguity and requires
more context to understand.

The capacity varies in different LLMs when
dealing with different language complexities.

Notably, GPT-40, Llama-3.3, and Llama-3.1 ex-
hibit superior performance on simple time expres-
sion tasks, whereas Llama-3 and Llama-2 demon-
strate greater proficiency on compound or multiple
time expression tasks. The observed performance
disparity can arise from differences in the mod-
els’ pre-training corpora, particularly in terms of
their exposure to temporal expressions (Zhao et al.,
2024b). Additionally, variations in model architec-
ture, including the design of attention mechanisms
that capture relationships across different positions
within the input sequence, may also contribute to
this discrepancy. Appendix D provides further ex-
perimental exploration based on this speculation.

Iterative development of the LL.Ms has made
the models show a steady improvement in han-
dling event ordering issues. From llama2 to
llama3.3, the model performance has continued
to rise, which is exhibited in Figure 2. This is due
to the inclusion of more diverse and complex data,
along with optimized attention mechanisms and the
resulting better contextual understanding (Harsha
et al., 2024).

The model is limited in its ability to make au-
tonomous choices, but few-shot and CoT can
bring significant improvements. Unlike the deter-
ministic answers of the other four types of tasks in

419



Cross
Large

E

S
>
Small HE BN n 8
Campound - 0 O
Simple <
0 AL AR AL AR AL LA © KD K0 & O K0 KD K0 &5 A
<& >f<%o°,5:\°io° x‘<%o°,\:\°to° x‘<%o°,,,:\°io° LTS LSS LTS CS
& R RS R R & & &
& & & & & & x
& 0 > a g
\}’b \)’b vV vV WV

Figure 1: Performance of the LLMs on TempNLI. The dataset is divided into Large, Small and Cross-granularity
according to the time granularity, and clasified into Simple and Compound based on the language complexity.
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Figure 2: Performance of the LLMs on MCTACO. This dataset is grouped into Event Duration, Event Duration,

Frequency, Stationarity and Typical Time.

MCTACO, "typical time" task is more like an open-
ended multi-select question, requiring LLM to se-
lect all possible and reasonable situations. In the
zero-shot scenario, the performance of the LLMs
is limited. Few-shot and CoT bring more examples
or structured contexts to the models, which opens
the models’ ability to make autonomous choices.

5.2 Evaluation on Spatial Reasoning

Most models are not yet adequate for multi-hop
spatial reasoning tasks involving complex rela-
tionships between multiple objects. In n-hop
tasks (Figure 3), when n > 4, the average accuracy
of LLMs is always below 30% under all methods.
Although methods such as few-shot or CoT will
bring some performance improvements when n is
small, this improvement disappears when n >= 6.
In addition, in 10-hop tasks, few-shot and CoT
even become introduced noise and can no longer
help LLMs process and summarize more complex
spatial relationships.

Metaphorical relations make it difficult for
models to maintain consistent performance.
Within the SpaceTrans task (Figure 4), LLMs gen-
erally perform well on physical spatial relations,
achieving high accuracy in all prompting strategies.
However, when it comes to metaphorical spatial
prepositions, LLMs perform poorly. The improve-
ment brought by few-shot or CoT also does not
catch up with the former. On physical-metaphorical
composite spatial relations, models like Llama-2-

Accuracy

Complexity

Figure 3: Average performance of all the LLMs on
Multi-hop Space, ranging from 1-hop to 10-hop.

13b and Llama-2-70b show lower accuracy, indicat-
ing that the mixture of different types of semantic
relations may confuse the model and negatively
affect its performance.

Few-shot CoT prompting can significantly im-
prove the performance of LL.Ms in processing
composite spatial semantic relations. Although
LLMs are not satisfactory in processing metaphors
or physical-metaphor compound relations, the per-
formance of LLMs can be greatly improved when
using Few-shot CoT prompting. In particular, the
improvement in physical-metaphor compound re-
lations exceeds that of pure metaphorical relations.
The phenomenon shows that although the complex-
ity of the task increases with mixed relations, the
models benefit from the additional context provided
by the few-shot examples and their thought chains.
This helps them improve the ability to distinguish
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Figure 4: Performance of the LLMs on SpaceTrans, which is segmented into physical, metaphorical, and mixed
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Figure 5: Confusion Matrix of GPT-40 in Yelp-5 utiliz-
ing CoT Few-shot prompting. The confusion matrices
for all the models are demonstrated in Appendix C.

between both physical and metaphorical relations,
thereby better handling the related tasks.

5.3 Evaluation on Sentimental Reasoning

LLMs have the ability to judge the polarity of
sentiment, but they are often erratic at a fine
granularity. For most models, the dark colors
of the confusion matrix are mainly on the diago-
nal, and confusion mainly occurs on adjacent grids.
This demonstrates that LLMs can effectively judge
the sentiment tendency of the text but will bring
deviation to refined scoring. Further, CoT Few-
shot (Figure 5) will even deepen the confusion in
most models, indicating that LLMs still have dif-
ficulty learning fine-grained scoring criteria from
examples.

LLMs encounter notable difficulties in detect-
ing subtle implicit irony. As shown in Figure 6,
the performance of LLMs on the explicit and im-
plicit irony datasets reveals significant variations,
with most models performing better on explicit
irony, where clear markers are present. For in-
stance, GPT-40 achieved 97.5% accuracy in detect-
ing explicit irony, but the performance dropped to
66.9% for implicit irony.
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GPT-40 97.5 66.94
+FS 96.8 85.95
Llama-3.3-70b 98.7 57.85
+FS 96.2 73.14
Llama-3.1-70b 98.7 57.44
+FS 98.7 72.73
Llama-3-70b 96.8 56.61
+FS 96.8 70.66
Llama-3-8b 98.7 34.30
+FS 97.5 58.26
Llama-2-70b 100.0 37.45
+FS 99.4 50.83
Llama-2-13b 100.0 9.80 Explicit
+FS 100.0 30.17 Implicit

Accuracy (%)

Figure 6: Performance on IronyEval, which is devided
into explicit and implicit expressions.

Model Event Type Text Distance

Natural Man-made close Far
GPT-40 65.45 66.67 62.11  72.25
Llama-3.3-70b 61.82 59.13 56.83  63.01
Llama-3.1-70b 70.91 67.54 66.52  69.94
Llama-3-70b 49.09 57.68 5286  61.27
Llama-3-8b 50.91 46.09 4449  49.71
Llama-2-70b 38.18 38.84 36.56  41.62
Llama-2-13b 40.00 37.39 39.21 35.84

Table 2: Performance comparison of different models
on ECI with few-shot and CoT setting.

5.4 Evaluation on Causal Reasoning

The LLMs have roughly equivalent causal iden-
tification ability for two categories of events. Ta-
ble 2 suggests that GPT-40 and Llama demonstrate
a similar level of accuracy in identifying causal rela-
tionships across different event categories, whether
"natural" or "man-made." This indicates that the
models can recognize and process causal events in
both contexts without significant bias.

Current LLMs exhibit notable limitations in
identifying causal relations within close textual
distance. It is attributable to rapid context shifts
and token proximity. This emphasizes the need for
enhanced contextual awareness and improved dis-
ambiguation of closely related events (Joshi et al.,
2024).

Most models can make accurate inferences



in counterintuitive scenes. However, this doesn’t
conclude that the model is capable of human-like
thinking, because the model may just replace the
subjects or concepts based on the shortcut reason-
ing paradigms learnt (Du et al., 2023). Just as
although few-shot CoT can bring an 11.5% im-
provement to GPT-40, CoT and few-shot can only
bring a 1% improvement when acting alone.

CoT and Few-shot demonstrate significant
potential in reducing the performance discrep-
ancy of the model’s causal reasoning ability be-
tween explicit and implicit data. From Llama-2
to Llama-3, CoT and few-shot settings each demon-
strates different debiasing effects (Table 3). These
approaches together contribute to a more balanced
reasoning way, enabling the models to perform con-
sistently across distinct causal reasoning tasks, thus
reducing the performance discrepancies.

5.5 Summary of Findings and Directions for
Future Enhancements

LLMs exhibit glaring deficiencies in processing
large and mixed temporal granularities, complex
linguistic phenomena, and metaphorical relations,
exposing critical limitations in current generative
models. While iterative development of the LLMs
enhance event ordering and causal reasoning, many
models still falter in multi-hop spatial reasoning,
detecting subtle irony, and fine-grained sentiment
analysis. Few-shot and chain-of-thought prompt-
ing significantly boost performance in tasks re-
quiring autonomous decision-making (e.g., multi-
select questions), mixed spatial semantic process-
ing, and aligning explicit and implicit causal rea-
soning, highlighting promising directions for future
development. However, their benefits are still task-
and model-dependent, sometimes showing minimal
improvement or even detrimental effects. We argue
that CoT is not a stable and reliable method for
performance enhancement, as it guides the model
to produce the final answer by continuously gener-
ating probabilistically relevant intermediate tokens.

Given that LLMs struggle with large temporal
granularities, we suggest that future research could
focus on pre-training data diversification that in-
cludes more complex temporal expressions and ab-
stract time concepts, or architectural modifications
to better capture long-range temporal dependen-
cies. Since performance drops significantly for
n > 4 hops (Figure 3), we will propose develop-
ing explicit multi-step reasoning modules or incor-
porating structured knowledge bases that encode

spatial relationships and transitivity rules, rather
than relying solely on implicit patterns learned
from text. The "introduced noise" for larger n
when using few-shot and CoT suggests that ba-
sic prompting improvements are not sufficient, im-
plying a need for more fundamental reasoning en-
hancements. For fine-grained sentiment and im-
plicit irony, we suggest that models may bene-
fit from training on datasets explicitly designed
for capturing subtle emotional cues and conversa-
tional pragmatics, potentially through post-traning
with contrastive learning or reinforcement learn-
ing. Given that explicit and implicit biases persist
in some models (Table 3), we propose to explore
causality-specific pre-training objectives or fine-
tuning strategies designed to distinguish correlation
from causation and to reason over counterfactuals,
rather than merely modeling co-occurrence.

6 Related Work

Recent research has increasingly focused on ex-
ploring the intersections between LLMs and hu-
man cognitive processes. Cognitive psychology
techniques reveal that, although task-specific esti-
mates from LLMs can sometimes align with hu-
man behavior, these models exhibit substantial
variability across tasks (Niu et al., 2024; Chu
et al., 2024b; Suresh et al., 2023), and their induc-
tive reasoning—exemplified by GPT-3 and Chat-
GPT—differs markedly from human patterns (Lam-
prinidis, 2024). These findings highlight both the
promise and limitations of LLMs as cognitive mod-
els, indicating a need for further research.
Temporal reasoning has been explored via graph-
based paradigms that use synthetic datasets and
CoT symbolic reasoning (Xiong et al., 2024; Yuan
et al., 2024), as well as through synthetic and hier-
archical benchmarks that reveal performance gaps
between LLMs and human (Fatemi et al., 2024;
Chu et al., 2024b). Moreover, knowledge induction
frameworks have been applied to improve tempo-
ral QA, with dedicated QA datasets and prompt
engineering strategies addressing specific vulnera-
bilities (Wei et al., 2023; Chen et al., 2024).
Spatial reasoning investigations have shown that
prefix-based prompts can enhance zero-shot per-
formance on 3D trajectory tasks (Sharma, 2023),
while studies in visual question answering and nav-
igation highlight performance variability and eth-
ical concerns (Dugar and Asesh, 2023; Yamada
et al., 2024). Qualitative assessments in common-
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Method GPT-40 Llama-3.3-70b Llama-3.1-70b Llama-3-70b Llama-3-8b Llama-2-70b Llama-2-13b
basic 8.79 -6.92 -4.51 -10.77 -8.02 -8.68 -3.19
CoT 3.74 -6.59 4.84 -3.19 -3.63 3.30 2.53

FS -0.66 -2.97 -4.84 4.84 -2.09 1.76 -3.19

FS CoT 0.11 0.22 -5.71 -4.62 -11.43 -1.98 7.36

Table 3: The difference in model accuracy between the explicit and implicit data ("explicit" minus "implicit").
Applying different prompting methods has a significant effect in helping the model eliminate explicit and implicit

biases in FantasyR. The smallest absolute value of the bias for each model is marked in bold.

sense spatial tasks and tic-tac-toe reveal further
limitations, with chain-of-symbol prompting no-
tably improving spatial planning (Cohn, 2023; Liga
and Pasetto, 2023; Cohn and Hernandez-Orallo,
2023). Evaluations of sentimental understanding
(Lei et al., 2024; Sun et al., 2023; Fei et al., 2023)
indicate that LL.Ms generate appropriate yet not
fully human-aligned responses (Huang et al., 2024;
Wang et al., 2023; Li et al., 2023a; Balamurali et al.,
2023), while studies in causal reasoning demon-
strate accurate causal argument generation along-
side persistent failure modes (Kiciman et al., 2024;
Jin et al., 2024; Vashishtha et al., 2023; Cai et al.,
2024; Li et al., 2023b).

Distinguished from other works, our study exam-
ines the capacity of LLMs to comprehend the world
from the perspective of data distribution, leveraging
secondary annotations of comprehensive data.

7 Conclusion

Although large language models demonstrate ex-
ceptional language processing capabilities, they
continue to face significant challenges in captur-
ing complex human experiences. Variability in
performance across time, space, sentiment, and
causality indicates that even advanced models have
limitations. Enhanced prompting methods, such as
chain-of-thought and few-shot approaches, provide
improvements but do not fully resolve these issues.
These insights offer a clear direction for future re-
search focused on strengthening abstract reasoning
and understanding in language models.

Limitations

This work evaluates LLMs from multiple abstract
perspectives of human perception of the world, re-
lying on the selected datasets, which may not fully
reflect the diversity of human perceptions of the
world. Although prompting strategies can enhance
performance, they do not address the inherent gaps
in the model architecture and training data. Future
research should investigate more diverse datasets
and more comprehensive evaluation methods to

gain deeper insights into how to strengthen the ab-
stract reasoning capabilities of the LLMs.
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A Dataset Instances

Examples from the datasets employed in this study
are presented in Figure 7.

B Full Results

This study evaluates model performance across
eight datasets, each using specific scoring metrics
to assess different aspects of effectiveness. For the
TempNLI, SpaceTrans, and IronyEval datasets, ac-
curacy (Acc) is used. The MCTACO, Yelp-5, and
ECI datasets are evaluated with exact match (EM),
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F1 score, and tolerant accuracy (ToAcc). The Fanta-
syR dataset includes Acc along with implicit (Acc-
1) and explicit (Acc-e) accuracy variants to capture
nuanced performance. The full experimental re-
sults can be found in Table 4.

Here we explain the evaluation index ToAcc. For
the MCTACO dataset, the default evaluation met-
rics employ a strict matching criterion, awarding
a score of 1 for an exact correspondence between
the prediction and the ground truth label, and O
otherwise. To accommodate instances of partial
correctness, we introduce a tolerant scoring mech-
anism. For example, a prediction of "right" or
"below" would receive a predefined partial score
when the ground truth label is "lower-right". This
is achieved through a scoring matrix M, where
scoring coefficients are explicitly defined for each
prediction-label pair.

The tolerant score ToAcc, denoted as
S(lirues lpreq), for a true label l.,. and pre-
dicted label I).¢q is given by

S(ltru67 lpred) = MZ j (5)

where ¢ and j are the indices of [y and lp,.cq in M,
respectively. The scoring matrix M (A: above, B:
below, L: left, LL: lower-left, LR: lower-right, O:
overlap, R: right, UL: upper-left, UR: upper-right)
for metric ToAcc-1is

A B L LL LR O R UL UR
1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.3
0.0 1.0 00 03 03 00 0.0 00 0.0
0.0 0.0 1.0 0.6 0.0 00 00 0.6 0.0
0.0 03 06 1.0 0.0 0.0 0.0 0.0 0.0
0.0 0.3 00 0.0 1.0 0.0 06 0.0 0.0
0.0 0.0 00 0.0 0.0 1.0 0.0 0.0 0.0
0.0 0.0 00 00 06 0.0 1.0 00 0.6
UL 03 0.0 06 0.0 00 00 0.0 1.0 0.0
UR 03 0.0 0.0 0.0 00 00 0.6 00 1.0

(6)

And the scoring matrix M for metric ToAcc-a is

M =

moLZErwm>

A B L LL LR O R UL UR
1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.6
0.0 1.0 0.0 06 06 00 0.0 00 0.0
0.0 0.0 1.0 03 00 0.0 0.0 03 0.0
0.0 06 03 1.0 0.0 0.0 0.0 0.0 0.0
0.0 06 00 0.0 1.0 0.0 03 0.0 0.0
0.0 0.0 0.0 00 0.0 1.0 0.0 0.0 0.0
0.0 0.0 00 00 03 00 1.0 0.0 0.3
UL 06 0.0 0.3 00 00 0.0 0.0 1.0 0.0
UR 06 0.0 0.0 0.0 0.0 0.0 03 0.0 1.0

(7N
For the Yelp-5 dataset, the tolerant score ToAcc
is also follows equation 5, where the scoring matrix

M =

oL Erw>

M is

o 1 2 3 4
0.0 0.5 0.0 0.0 0.0
0.5 1.0 0.0 0.0 0.0
0.0 05 1.0 0.5 0.0
0.0 00 00 1.0 0.5
0.0 0.0 0.0 0.5 1.0

®)

LW = O

C Confusion Matrices on Yelp-5

The confusion matrices for all the LLMs on Yelp-5
are illustrated in Figure 8. For most models, the
dark part of the confusion matrix appears mainly
on the diagonal, but there is still confusion on
nearby prediction-label pairs (such as 1-2, 2-3).
The Llama-2 models show a non-diagonal distri-
bution and confusion on prediction-label pairs at
longer distances.

D Further exploration on the attention
mechanism

To understand how different components of the
model handle positional information in text, we
perform a quantitative analysis of the functional
characteristics of the attention heads in the open-
source Llama models.

After extracting the attention weights from all
layers of models, we calculate the positional sen-
sitivity of each attention head in every layer for
each model. Specifically, for the attention matrix
of a given head in a particular layer, we identify
all token pairs that are separated by a distance d
and compute the average attention for these pairs.
Then, we fit a linear regression between attention
and distance to obtain the slope of the regression
line. If the slope is negative, i.e. attention decreases
as the distance increases, the attention head is con-
sidered to exhibit positional sensitivity. The larger
the absolute value of the slope, the faster the decay
in attention and the stronger the positional sensitiv-
ity. If the slope is positive or zero, the positional
sensitivity is set to 0, indicating that the head does
not focus on positional information.

The heatmaps of the positional sensitivity ma-
trices for different models are demonstrated in fig-
ure 9, with the horizontal and vertical axes rep-
resenting the attention heads and layers, respec-
tively. Notably, the positional sensitivity matrices
of Llama-3.3-70b and Llama-3.1-70b are highly
similar, while Llama-3-70b shows a related distri-
bution but with some numerical differences. The
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matrices for Llama-3-8b, LLlama-2-70b, and Llama-
2-13b are all distinct.

Additionally, we present visualizations of atten-
tion matrices for some input instances at specific
layers and attention heads in figure 10, illustrat-
ing the distribution of attention weights between
words. The lower and upper layers tend to attend
more broadly to contextual information, while the
middle layers focus more on transforming local
patterns.

4 )
TempNLI
Premise: Before 3 days, the grocery store will close.
Hypothesis: The grocery store will close after 54 hours.
Label: Neutral

MCTACO
C: It seemed strange to him, but not as strange as it was to see Linda the brown
chicken in the living room last spring.
Q: How often does he find a wild animal in his house?

Options: he sees a wild animal in his house once every five years; he finds a wild
animal in his house once a day; he finds a wild animal in his house once every five
years; he finds a wild animal in his house once every five seconds.

Label: yes; no; yes; no

&
4 N\
Multi-hop Space
C1: D presents left to N.
C2:Disat P's 3 o'clock.
C3: Sand P are parallel, and S is on top of P.
C4: S is positioned in the front right corner of M.
Q: What is the relation of the agent S to the agent N?
Label: upper-left
SpaceTrans
Premise: The painting is above the garden.
The garden is behind my need for a hobby.
Statement: The painting is behind my need for a hobby.
Label: no
& J
4 N
Yelp-5

C: Arriba's was not as good as they used to be, apparently the original owner
passed away and its under new ownership. Won't be coming back here again.

Label: 1 (0~4)
IronyEval
C: Waking up with a pounding headache is just what | need for this final.
Label: 1
J
4 N
ECI

C: The Third Cod War concluded in 1976, with a highly favourable agreement for
Iceland ; the United Kingdom conceded to a Icelandic exclusive fishery zone after
threats that Iceland would withdraw from NATO , which would have forfeited
NATO 's access to most of the GIUK gap , a critical anti-submarine warfare during
the Cold War .

Events: threats, conceded
Label: 1

FantasyR
C: In a world filled with magic, your family is scorned for generations for wasting
time with science. Your mother was a botanist. Your father, a biologist. Mages can
heal by touching. You developed steam locomotion when mages teleport. Your
family has never trusted magic. One day, also known as the Fateful Day, the magic
stops working. A mage is suspended in the air by magic when the Fateful Day
arrives.
Q: Can the mage touch the ground anymore?
Label: yes

- J

Figure 7: Data instances of the WorldInsight BENCH.
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Table 4: Full experimental results. All the models are aligned models (-chat-hf or -instruct).
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Figure 8: All the LLMs are assessed with confusion matrices on Yelp-5. The horizontal axis represents the predicted
value, and the vertical axis represents the true value. The color depth on the diagonal determines the ability of
models to explicit classify.
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Figure 9: Positional sensitivity matrices for LLMs.
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Figure 10: Attention matrices for Llama-3.3-70b.
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