Understanding How CodeLLLMs (Mis)Predict Types with
Activation Steering

Francesca Lucchetti & Arjun Guha
Khoury College of Computer Sciences
Northeastern University
Boston, MA 02115
{lucchetti.f,a.guha}@northeastern.edu

Abstract

Large Language Models (LLMs) are widely
used by software engineers for programming
tasks. However, research shows that LLMs
often lack a deep understanding of program se-
mantics. Even minor changes to syntax, such as
renaming variables, can significantly degrade
performance across various tasks. In this work,
we examine the task of type prediction: given a
partially typed program, can a model predict a
missing type annotations such that the resulting
program is more typed? We construct a dataset
of adversarial examples where models initially
predict the correct types, but begin to fail after
semantically irrelevant edits. This is problem-
atic, as models should ideally generalize across
different syntactic forms of semantically equiv-
alent code. This lack of robustness suggests
that models may have a shallow understanding
of code semantics.

Despite this, we provide evidence that LLMs
do, in fact, learn robust mechanisms for type
prediction—though these mechanisms often
fail to activate in adversarial scenarios. By
using activation steering, a method that manip-
ulates a model’s internal activations to guide
it toward using latent knowledge, we restore
accurate predictions on adversarial inputs. We
show that steering successfully activates a type
prediction mechanism that is shared by both
Python and TypeScript, and is more effec-
tive than prompting with in-context examples.
Across five different models, our comprehen-
sive evaluation demonstrates that LLMs can
learn generalizable representations of code se-
mantics that transfer across programming lan-
guages.

1 Introduction

Large Language Models (LLMs) are widely used
by software engineers on many programming tasks.
Despite their impressive capabilities, research has
shown that they are not robust to semantically ir-
relevant features of programs: syntactic changes

such as reordering conditions or renaming variables
can significantly impact LLM performance on pro-
gramming tasks (Hooda et al., 2024a). This raises
a fundamental question: do contemporary LLMs
learn to reason about program semantics, or do they
merely learn textual features such as the associa-
tions between variable names and their types? For
example, predicting that a variable named n has
type int, regardless of how it is used.

Reasoning about programs involves a number
of different tasks (Gu et al., 2024). In this paper,
we focus on the type prediction task for gradually
typed programming languages, specifically Python
and TypeScript, defined as follows.

Definition 1 (Type Prediction) Given a partially
typed program p, choose an untyped variable bind-
ing var € p, predict a type annotation var : T, and
insert the annotation back into the program to get
a new program p’ that also passes the type-checker.

Types are fundamental to programming lan-
guages. Reliably predicting types requires under-
standing control flow and data flow in a program,
and gradual type prediction is particularly chal-
lenging. Unlike type inference (e.g., in Haskell or
OCaml), where classical algorithms work, gradual
type prediction is undecidable (Migeed and Pals-
berg, 2020). Moreover, it is always possible to
predict the any type, which is imprecise, but some-
times necessary in very dynamic code. The chal-
lenge is to predict a type that is both precise and
consistent with program semantics (Phipps-Costin
et al., 2021), and classical algorithms so far do no
scale to modern programming languages (§2).

LLMs are remarkably good at type prediction
for Python and TypeScript (Yee and Guha, 2023;
Fried et al., 2023). However, as we show in this
paper, when a model successfully predicts the type
T of a variable var € p™, we can often construct a
variation p~— with minimal syntactic changes that
make the model mispredict the type. The question

358

Proceedings of the 8th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP, pages 358-397
November 9, 2025 ©2025 Association for Computational Linguistics

we ask is, why do these type mispredictions occur?

In this paper, we give evidence that models learn
a robust internal mechanism for type prediction in
hidden layers ¢. However, this mechanism can fail
to activate when the input program p— has adversar-
ial syntactic features that mislead prediction (e.g.
unreliable variable names). We show that we can
correct such mispredictions by editing model lay-
ers ¢ with targeted steering vectors v*. This allows
us to demonstrate that:

1. Adding v* to layers ¢ activates the mechanism
and significantly improves type prediction per-
formance (§4.1);

2. v is shared across languages; we can im-
prove Python type prediction with v¢ com-
puted from TypeScript and vice versa (§4.3);
and

3. v enables prediction but does not control pre-
cision of types. In other words, when a model
predicts a type such as any, v* does not make
the prediction more precise (§4.5).

We also show that this internal type prediction
mechanism is hard to access without directly
adding v' to the model. Specifically, in-context
learning has a negligible impact on accuracy of
type prediction for problems where a direct model
edit is successful (§4.4).

Our extensive evaluation shows that results gen-
eralize across five different LLMs from four model
families (Hui et al., 2024; Yang et al., 2024; Dubey
et al., 2024; Roziere et al., 2023; Li et al., 2023).
These include both pretrained and instruction-tuned
LLMs, LLMs trained exclusively on code, and
general-purpose LLMs trained on code and data.

2 Background and Related Work

Classical type prediction and type inference
Type prediction is distinct from type inference as
found in languages such as OCaml and Haskell. In
those languages, every variable is typed, even if the
types are implicit (Harper and Mitchell, 1993). In
contrast, a gradually typed programming language
allows programs to freely mix typed and untyped
code, giving programmers more flexibility than tra-
ditional static typing affords (Siek and Taha, 2006;
Tobin-Hochstadt and Felleisen, 2006). However,
untyped code still needs to type-correct for the pro-
gram to run correctly. With omitted or weak type
annotations, type errors may not be caught until
program execution.

def is_palindrome(s: [FILL]):
s = s.lower ()

return s[::-1] == s

(a) The abstract type prediction task.

<fim_prefix>

def is_palindrome(s:
s = s.lower ()
return s[::-1]

<fim_suffix>):
== g<fim _middle>

(b) A fill-in-the-middle prompt for the task.

[USER] Continue this program with the
correct substitution for <FILL>:
def is_palindrome(s: <FILL>):
s = s.lower ()
return s[::-1]==s
[ASSISTANT] def is_palindrome (s:

(c) A prompt for an instruction-tuned model.

Figure 1: An example type prediction task, formulated
for each type of model.

There is prior work on rule-based type predic-
tion algorithms (Phipps-Costin et al., 2021; Rastogi
etal., 2012; Siek and Vachharajani, 2008; Campora
et al., 2018; Henglein and Rehof, 1995; Cartwright
and Fagan, 1991). But, these papers present al-
gorithms for variations of the lambda calculus or
simple functional languages such as Scheme, and
have not been scaled to more complex, modern
programming languages.

Neural type prediction Over the past decade,
prior work has explored leveraging neural net-
works, including LLMs, for type prediction (Hel-
lendoorn et al., 2018; Jesse et al., 2022, 2021;
Pandi et al., 2021; Wei et al., 2020). Unlike classi-
cal approaches that target idealized programming
languages, these works attempt to predict types
for widely-used programming languages like Type-
Script and Python. A practical approach to auto-
mated type prediction would be significant. Airbnb,
Dropbox, Slack, Netflix, and many others have
each taken several years to manually add type an-
notations to their multi-million line gradually typed
codebases (Rudenko, 2020; Lehtosalo, 2019; Fe-
lix Rieseberg, 2017; Luke Autry; Sumana Mohan
et al., 2022; Abacus, 2019; Mihai Parparita, 2020;
Jake Zimmerman, 2022).

Mutation testing and program transformations
In our experiments, we construct type prediction
prompts by renaming variables to arbitrary names,
or deleting some type annotations in the context.

359

class Point: class” Type0:

def _ init__ (self, x, y): def _ init (self, x, y):
self.x = x self.x = x
self.y =y self.y = y

def delta_x(p: Poinﬁ, x: float): def delta_x(p: TypeO, x: float):
pP.-X = p.x + X e pP.X = p.X + X

(a) The original progtam.

1 (b) Type renaming.
class Point: \ class Point:
def _ init__ (self, x, y): | def _ init_ (self, x, y):
self.x = x o] self.x = x
self.y = y / ---- self.y =y
def delta_x(p: Point, tmp: float): def delta_ﬁ.{fp, x: float):
pP.X = p.xX + tmpe — p.Xx = p.Xx + X
(c) Variable renaming. (d) Type annotation removal.

Figure 2: Examples of three semantics-preserving edits. The type prediction site is £1oat. We ensure that each edit
is internally consistent. E.g., in (2¢), when we rename the binding x to tmp, we rename references to the binding.

class KafkaAvroBackend (RepositoryBackend) :
def __ _init__ (
self, eenfig __ tmp0 : dict, producer=AvroProducer, loader=AvroMessageloader,

value_serializer: Callable = to_message_from_dto,
get_producer_config: Callable = get_producer_config,
get_loader_config: Callable = get_loader_config

) —> None:

producer_config = get_producer_config(eenfig _ tmp0)

Figure 3: A fragment of a Python steering pair. The original code is 70 lines of text. The dict is the expected predic-
tion. But, renaming configto ___tmp0 makes the model mispredict Repository, which is a hallucination.

We construct our edits such that they do not break ations in prompts. Prior work uses a black-box
program syntax, and all the information necessary approach to study these phenomena by looking at
for type prediction is still present in the program. model performance on programming tasks (Hooda
To do so, we take inspiration from mutation test- et al., 2024b; Tambon et al., 2024). In contrast,
ing (DeMillo et al., 1978). The goal of mutation = we investigate type prediction with a whitebox ap-
testing is to test a program’s test suite. To do so, a proach. We use activation steering to query what a
mutator injects small bugs that alter the semantics ~ model’s inner activations on code prompts reveal
of a program, such as changing a O to a 1 or turning about its understanding of type systems.

x > yinto x < y. The hypothesis is that a good
test suite should be able to catch these artificial
bugs, and there is a substantial evidence that the editing technique used to control model behavior.
ability to catch both artificial and real-world bugs ~ Research has shown that steering can moderate neg-

is strongly correlated (Just et al., 2014). ative qualities like deceitfulness and sycophancy in
model outputs (Rimsky et al., 2024; Li et al., 2024).

Steering uses targeted steering vectors computed

Activation steering is an inference-time model

Our technique differs from mutation testing in
a key way: we make program edits that would not i ' _
affect test cases, but affect LLM predictions. We from model activations over positive and negative
make minimal, semantics-preserving edits that lead oytputs. The intuition 15 that by quar_1t1fy1ng the
to type mispredictions for a given LLM. The nature difference between positive and negative outputs,

of code allows us to construct these edits inasound ~ W€ €an edlt.(steer) prediction away from the neg-
and scalable way (§3.1). ative. Steering can be used to interpret the causal

features behind model predictions by verifying that
Activation Steering It is well known that even the structure of model internal representations is
the most capable LLMs are sensitive to small vari- consistent with how language works. For exam-

360

ple, steering has been used to verify that models
encode faithful representations of English gram-
mar and verbs (Ravfogel et al., 2021). Similarly,
we use steering to show that models have a robust
understanding of code and type systems.

3 Methodology

3.1 Adversarial Type Prediction Tasks

Our goal is to build a dataset of type prediction
tasks that models fail to solve correctly, but have
known working solutions. Different models fail
and succeed at different tasks, so the datasets will
be model-dependent.

We present a variation of mutation testing that
constructs minimal, semantics-preserving edits that
trigger mispredictions. These edits are automated
and applied randomly to programs from GitHub,
allowing us to build challenging type prediction
tasks at scale. Our edits produce programs that
have unconventional syntax, but have the structure
and behavior of real code.

Type Prediction Prompt Format We build
datasets for both LLMs pretrained on code and
instruction-tuned models.

Contemporary LLMs trained on code typically
preprocess their training data to fill-in-the-middle
(FIM) (Bavarian et al., 2022; Fried et al., 2023).
FIM training (1) splits ~ 50% of training items
into three chunks—prefix, middle, and suffix—of
random lengths; (2) adds special tokens to the start
of each chunk; and (3) reorders the middle chunk
to appear last. The language modeling training
objective remains unchanged. At inference time,
this allows models to generate the middle chunk,
conditioned on the prefix and the suffix using a
decoder-only LLM. Figure 1a shows an example
type prediction task, where we want the model
to predict the type annotation for the argument s,
which is in the middle of the program. To do so, we
construct a prompt that marks the prefix and suffix
with the model-specific FIM tokens (Figure 1b).

In contrast, for instruction-tuned models, we for-
mulate type prediction as a two-turn conversation
between the user and assistant using the model-
specific chat template (Figure 1c). The prompt
includes the instruction to fill in the target type an-
notation site <FILL>. We include the prefix in
the model’s answer so that the model produces a
well-formed program.

361

Semantics-preserving Code Edits For each
model M, we first build a dataset of “easy” type
prediction tasks that M solves correctly.! For
Python, we use ManyTypes4Py (Mir et al., 2021),
a dataset of code from 5,382 Python projects with
Python type annotations that successfully type-
check. For TypeScript, we filter The Stack (Ko-
cetkov et al., 2023) to find 1.1M TypeScript files
that type-check. This ensures that the expected
gold labels for type annotations are correct. Ev-
ery program p in the dataset may have several type
annotations var : t € p, and each of these anno-
tations is a potential type annotation task. From
these files, we build a large set of type prediction
prompts (p*,t) where M succeeds at type predic-
tion. This dataset is potentially class-imbalanced,
since models are unsurprisingly are better at pre-
dicting builtin types than user-defined types. We
make sure to balance the distribution of types for
our experiments §3.1.

Secondly, for each model M, we build a dataset
of “hard” type prediction tasks that M cannot
solve. We select an easy task from the previous
dataset, (p*, t) and incrementally apply the follow-
ing semantics-preserving program edits at random.
1) Rename variable: We select a function/method
argument and rename it to an arbitrary name that
does not conflict with other variables. 2) Remove
type annotation: We select a type annotation (ex-
cluding the target t) and delete it. In a gradually
typed language, removing or relaxing an annotation
does not alter program semantics. 3) Rename user-
defined type: We select an arbitrary type definition
(e.g., a class name or a type alias) and rename it to
an arbitrary name that does not conflict with other
names in the program. 4) Rename builtin type: We
introduce a type alias for a builtin type. Figure 2
illustrates several separate edits to a program.

The aforementioned edits do not change the type
structure of the program. They make p™ look differ-
ent, but the target type ¢ remains unchanged. After
applying each edit, we prompt M to predict the
type annotation. If M mispredicts, we stop and
use the current program as a failing type prediction
task (p—, t). By construction, this is an adversarial
type prediction task that M fails to solve due to
syntactic changes.

If p* is particularly simple, we may fail to con-
struct (p~, t). In practice, we get several thousand

IThese files are in the training corpora for most models
and we find that models easily predict types.

challenging examples for each model, even in abla-
tions where we restrict set of edits that we perform.
Figure 3 illustrates a real example from our dataset
that makes a model mispredict. Note that a single
edit often alters p™ at several points.

We automatically construct p~— by manipulating
the concrete syntax tree of TypeScript and Python
using TreeSitter-based parsers. This allows us to
build these edits correctly and at scale.

Test sets and class balance For each model, we
build test sets of 100 type prediction tasks (p~, t)
that the model gets wrong. The natural distribution
of type annotations is heavily skewed toward built-
in and primitive types, thus we class-balance the
test set to ensure that no target type ¢ occurs more
than four times. Each test set has a mix of both
built-in and user-defined types. This ensures that
our evaluation is not skewed by reporting success
on the most common types. We use the same class-
balancing approach to construct the steering dataset
for activation steering vectors, described below.

3.2 Finding the Type Prediction Mechanism

Why might a model fail to solve a type prediction
task (p—, t), when it succeeded at the original task
(p™,t)? Note that since p™ is sourced from GitHub-
based datasets, the model was trained on these pro-
grams, whereas for the edited program p~, by con-
struction the model has likely never been trained
on similar syntax. There are two hypotheses: 1. the
model has not learned a robust mechanism for type
prediction that generalizes outside of training data
and resists adversarial prompts, basing its predic-
tion on text features rather than program seman-
tics; 2. the model has a robust mechanism for type
prediction, but it does not activate on adversarial
prompts. We argue that hypothesis 2 is correct. Us-
ing activation steering, we build steering vectors
v* that, when added to layer ¢, can activate robust
type prediction on adversarial prompts. We present
how we construct v¢ below.

Constructing Steering Vectors For a given
model M, we construct a dataset of triples
(p;r, p; ,ti) € D where p; is an edited version
of pj, the maximum likelihood generation is
M(p}) = t;, and M (p~) # t. We apply forward
passes M (p;"), M (p;”) and save model activations
of the last token before the type prediction token.
Concretely, this involves pausing the model’s for-
ward pass at a layer /; of the transformer and sav-
ing the output of that layer, before it gets fed to

subsequent layers. We write Ay(x) to denote the
activation vector at layer £ for prompt . We com-
pute steering vectors vy—one for each layer—as
the mean difference between positive and negative
activations at that layer:

1

D] > (4D - Ar))

(p] p; 1)ED

Vy =

We compute steering tensors using hundreds of
positive and negative prompt pairs for each of our
edits, described previously §3.1.

The intuition behind eq. (1) is that the result-
ing vector represents a transformation in activation
space that separates the model’s incorrect predic-
tions from correct ones. Thus adding vy, to layer
£ should prompt the model to shift to an internal
mechanism not usually enabled on the adversarial
prompts. We determine the layer ¢ experimentally,
and also consider steering at up to five adjacent
layers.

4 Results

4.1 Steering Improves Type Prediction on
Out-of-Distribution Tasks

Figure 4 shows TypeScript test-set accuracy on ev-
ery model with steering. Each subfigure ablates
the set of edit operations used to construct the type
prediction tasks so that we can see the effectiveness
of steering on different edits. The z-axis indicates
the relative position of layer ¢ where we apply v’.
(z = 0 indicates that ¢ is the first layer and v = 1
indicates that it is the last layer.) In these experi-
ments we apply v’ to five adjacent layers £ - - - £ +4,
which we find is more effective than steering fewer
layers (§4.2).

The figures show that steering is most effective
in the later middle layers of every model, which
suggests that this is where the type prediction
mechanism lies. Recall that every type prediction
task in the test sets are tasks that the model gets
wrong without steering, thus the baseline accuracy
is zero. When we construct p~ using all possible
edits, steering in the middle layers corrects mispre-
dicted types on 50%-60% of the test set (varying
by model). Steering is most effective when we
construct p~ by just renaming types, and corrects
mispredictions on up to 80% of the test set. We
discuss steering performance in more depth in §4.5.

Overall, results indicate that we can find a v for
each model that enables a robust type prediction

362

Steering Performance TypeScript

Remove type annotations All edits

-
o

Rename types Rename types and remove type annotations

Accuracy
o o
> ®

o
'S

o
N

Rename variables

R

o

name variables and remove type annotations

Accuracy

—— Qwen 2.5 Coder 7B
Codellama Instruct 7B
StarcoderBase 1B
StarcoderBase 7B

—— Llama 3.2 Instruct 3B

[o=

1.00.0 05
Relative Start Layer

0.0 0s
Relative Start Layer

1.00.0 05 1.0
Relative Start Layer

Figure 4: Steering accuracy for all models on the TypeScript test set, with steering on five consecutive layers. The
models have a varying number of layers, so the z-axis is normalized: for a model with n layers, x = 0 indicates
steering on the first five layers, and z = 1 indicates steering on the last five layers.

StarcoderBase 7B Performance on Python after Steering at Varying Intervals

Steering 1 Layers Steering 3 Layers

Steering 5 Layers Remove type

4
o

Accuracy
o
s

/

v/

|

oz =0

4
5

annotations

All edits

Rename types

Rename types and
—— remove type

annotations

Rename types and

variables

Rename variables

Rename variables and
remove type
annotations

Start Layer Start Layer

P VPO DDOLON DO DD
Start Layer

Figure 5: Steering accuracy for StarCoderBase 7B on Python. Each plot show steers in one, three, and five

consecutive layers respectively.

even for adversarial type prediction tasks. While
Figure 4 shows results for TypeScript, we have
similar results for Python in the appendix, where
steering is even more effective for certain edits
(Figure 12).

4.2 Types Are Predicted Over Several Layers

The type prediction mechanism may span several
layers. Therefore, we consider steering at one,
three, and five adjacent layers. Figure 5 shows
the effect of this ablation on StarCoderBase-7B
with Python: the z-axis indicates the start layer for
steering and the y-axis is test-set accuracy. We find
that steering on five layers is most effective. The
appendix has similar results for TypeScript and the
other models (appendix B, appendix C).

4.3 The Type Prediction Mechanism Is
Shared Between Languages

Python and TypeScript are syntactically distinct,
but their semantics have a lot in common (Politz
et al., 2013; Bierman et al., 2014). Both languages
are gradually typed. So, could it be that LLMs
learn a type prediction mechanism that is language
agnostic? To test this hypothesis, we evaluate if
steering vectors built on TypeScript data can im-
prove the accuracy of Python type prediction, and
vice versa. We conduct this experiment with each
of our datasets: we steer a model using vectors
from language A but evaluate on the corresponding
held-out test set from language B. Figure 6 shows
that this is nearly as effective as steering prediction
on the same language.

This result suggests that models learn similar
representations of types across languages. The in-

363

Qwen 2.5 Coder 7B Steering Performance on Python

Remove type annotations All edits

g
o

Rename types Rename types and remove type annotations

o o
o ®

Accuracy
°
N

0.2 4

Rename types and variables Rename variables

Rename variables and remove type annotations

Accuracy

Ny | /f\/\/v\

TypeScript Steering Vector
—— Python Steering Vector

AR)

Start Layer

v % 6 Ao >

Start Layer

T T S IR T SR

é

\l’ \‘9 N
Start Layer

Py 9 A oy R

Figure 6: For Qwen 2.5 Coder 7B, we plot the performance of TypeScript steering vectors on the Python test set. We
compare with the performance of steering vectors constructed from Python programs and find that the two achieve
comparable accuracy. In the appendix we report similar results for all other models (appendix D).

terchangeable nature of steering vectors suggests
that models store shared concepts (e.g., types) in
similar vector subspaces across languages. This
provides some insight on how models internalize
shared concepts across languages through consis-
tent structures in activation space.

4.4 Steering Outperforms Other Baselines

Random baseline A competing hypothesis to the
one that we advance is the following: adding v*
is just adding noise, and steering is effectively just
resampling from the output distribution. To refute
this, we also steer with with a random vector and
find that the computed steering vectors significantly
outperform the random baseline (Figure 7). This
indicates that the steering vectors we compute per-
form true, localized transformations towards the
correct type prediction task in activation space.
Figure 7 also shows the performance of steering
on the prompts p~ from the steering set. We find
that test-set and steering-set accuracy are approxi-
mately the same. This suggests that steering tensors
can generalize outside the specific types and pro-
grams they were built from. We report results for
this experiment for all our models in Appendix E.

In-context learning The usual way to instruct
an LLM towards the correct task is with in-context
examples (ICL). We perform an experiment where
instead of steering, we prompt the model with
two examples of adversarial type prediction tasks
(p~,t). We find that prompting almost always un-

derperforms steering (Figure 8). This indicates that
directly calculating the steering vector is a more
robust way to enable the model’s type prediction
mechanism on adversarial programs.

4.5 Steering Enables Type Prediction But
Does Not Improve Type Precision

Why doesn’t steering always correct mispredic-
tions? A complication of type prediction is that
there may be several solutions to a type predic-
tion problem that are type-correct, though some
solutions are more precise than others. There-
fore, if a model M fails a task (p~, ¢) and predicts
M(p~) = ', where t' # t, it may be the case
that ¢ is still a type-correct prediction. In Figure
9, we plot the accuracy of every combination of
model and type of edit. On the y-axis we report
steering accuracy and on the x-axis we report the
fraction of programs where p~ with the mispre-
dicted type t’ is still type-correct (i.e., passes the
type-checker). We find a strong negative correla-
tion (r(68) = —0.687,p < 5.16 x 10~ ') between
steering accuracy and type-correctness before steer-
ing. When the model predicts a type that introduces
a type error, steering is able to correct it. However,
when the model merely predicts a unexpected type,
steering is not as effective at directing the model to
the expected answer.

Qualitatively, looking at these results, we find
that most of these unexpected types are imprecise
types, such as any, or dict instead of Config. Over-

364

StarcoderBase 7B TypeScript Steering Performance across Splits

10 Remove type annotations All edits Rename types Rename types and remove type annotations
0.8
306
o
5
o
£ 044
0.2
o t+i v ?!\ A 7 7 ¢ 77 ¢ ¢ ¢ o A i i iii i i i i i i i i i i i i i b i i i e — ———— A——m———————————————
10 Rename types and variables Rename variables Rename variables and remove type annotations
0.8
Steering Vector on Held-out
2061 Test Split)
© Random Steering Vector on
3 Test Split
& 041 Steering Vector on Steering
Split
0.2
ot -/ - - —=V——————

20N D DIDDQDPPDPDDEDHA YD DN DB DON DDA DA
Start Layer Start Layer

»

REERERERRES

Start Layer

Figure 7: Steering accuracy for StarCoderBase 7B on TypeScript prompts on the test set, the steering set itself, and
arandom steering vector. Random performs poorly; the test and steering sets have similar performance.

Comparison of Steering to Prompting with ICL Examples

Python

TypeScript

0.8

4
o

Accuracy

IS
IS

0.24

Al
i

AT

AR
AT TG

SSRNUNNSNNSSNRNNNNNNN
Areeseseeeaees
ASSSSEEE SR RRRRRRNNRNNNN
AnT NN
AN
SSSRSRNCRSNSSSNSSSN
ISSSSRRNNRNNNNS

SSURRORNRURNNNNY
[SSSSSSSSSSSSNN

AN
ANRURNURRNRNRNRN
A
SORRRRRNNRNNN
SCRRRNRNN
SCURRRNRNNNY
SSSN
SSURRNNNN
SSARNRNN
NN
AR
[SSSSSSSRRRNNNNY
Aaassaaeeane
AN

SUUNRNNNRRNNRRRNNNNNN

;

ENRRNRNNNNNN

Remove type
annotations

All edits

Rename types
Rename types and
remove type
annotations
Rename types and
variables

Rename variables
Rename variables and
remove type
annotations

SSRRRRRRNRRNNN
SSSSSNSSNS

ARILALL NN Y
SUUSRNRNRNRNRRNNANRN

AL RN
AN

Annaany

A SN NNSSNNSESY
SSRURNIRRRNNRN

SCURUNRRNNNNNNNY
SURRRRRRRNNNNY
AN

SSONRNNN
SSSRNRNSNNSSSS

SSSSSNNSNN
ENSSSSNN
AN
SSSSRRSNNNSN
ANAAAN
AR
SONNN}

=T RRRRRRRRRRERRRNRRINRNNNNY

S SSSSSSSSSSSSN
©

O O R RN
B U
-3 NNRNNRRNRRNNN

T
3

@

w
[N)
o
%)
a
o
o

C

CodelLlama
Instruct 7B

tarcos

Pel
2
)

oder

=il SSSCRNRRRRNRRNNNNY

i

2
c
=
-
@5
<
®
s
2
c
5

A3
~3
@

RS SO 5SS S SO SSSRNRNN

ELEN

2.

a
o

Coder StarcoderBase StarcoderBase

@
=
@
~

Figure 8: For each model, language and edit, we plot the best performance of steering vectors against in-context

prompting (hatched bars).

all, this experiment shows that we have identified
the mechanism that enables the type prediction task,
but not a mechanism that allows us to control the
degree of type precision. Whether or not it is pos-
sible to identify such a mechanism in LLMs is a
topic for future work.

5 Conclusion

Collectively, our results indicate that steering vec-
tors steer the model toward a mechanism for
type prediction that 1) generalizes across different
source codes; 2) is less sensitive to semantically
irrelevant features; and 3) generalizes across the
languages we study.

Given these observations, we conclude that there
exists a robust mechanism for type prediction in
LLMs which, when activated through activation

steering, is more robust against adversarial pro-
grams. Furthermore, this mechanism is difficult to
activate with prompting. This finding shows that it
is insufficient to make conclusions about model’s
learned capabilities based on outputs alone.

Whether a model is capable of performing robust
and generalizable type prediction is a question of
correctly aligning the model to the task. Activation
steering is capable of performing this alignment
for localized edits. Fine-tuning directly on edits
could improve performance, but this defeats the
purpose of studying behavior on adversarial or un-
seen prompts. In order to effectively use the infor-
mation learned by LLMs, further research into how
this information is organized, stored and retrieved
is necessary.

365

0.8

'T ok
A~
TR .

goa LAY Yy & 8
2 \
5 & $
z o
g R o ‘Ikd/\/R
& o4 & L }é/

oR

0.2
Python CodeLlama Instruct 7B
Python Llama 3.2 Instruct 38
@ Python Qwen 2.5 Coder 7B
Python StarcoderBase 1B
Python StarcoderBase 78

TypeScript CodeLlama Instruct 78
@ TypeScript Llama 3.2 Instruct 38
® TypeScript Qwen 2.5 Coder 7B
® TypeScript StarcoderBase 1B
TypeScript StarcoderBase 78

0.0

0.0 012 04‘4 0‘,6 04‘8 1.0
Percent Typechecks before Steer

Figure 9: For every combination of model and edit-
type, we plot the accuracy of type prediction on steering
vs. the percentage of programs that are type-correct
with the original, mispredicted type. The labels are: V'
for renaming variables; 7' for renaming types; IR for
removing type annotations, and combinations of these.

6 Limitations

Our findings shed light on how CodeLLMs display
robust type prediction for TypeScript and Python.
Both these languages are well represented in
CodeLLM training corpora. However, our findings
may not extend to low-resource gradually typed
languages, e.g., Typed Racket (Tobin-Hochstadt
and Felleisen, 2008) or Luau (Lily Brown et al.,
2023) since the performance of base models on
these languages is very poor. Future work will in-
clude implementing semantics-preserving edits for
other languages.

Our investigation focuses on type prediction to
understand whether models learn program seman-
tics along with syntax. The reduced scope allows
us to conduct an in depth evaluation of models
and steering vectors. Future research may focus
on studying learned representations of other code
concepts such as control flow, data races and vul-
nerabilities.

We apply automatically generated edits to
prompts as a scalable way to approximate real code
with arbitrary syntax. To ensure diverse and com-
prehensive test sets, we use hundreds of real pro-
grams for each model, varying the source code,
target types, and programming languages. How-
ever, we note that these automatically generated
edits may not fully capture the complete variance
possible in code.

7 Ethics Statement

The purpose of this work is to understand whether
LLMs perform type prediction using robust mecha-
nisms. It is our view that interpreting LLMs is nec-
essary for understanding whether models approach
programming in a principled way. As LLMs be-
come more integrated into developers’ workflows,
model errors could compromise the security of en-
tire systems. For this reason, we make a first inves-
tigation into understanding the mechanisms behind
model prediction.

We take care to use publicly available code for
our experiments. Our TypeScript dataset is derived
from a subset of The Stack v1.2, which contains
permissively licensed data with personal identify-
ing information (PII) filtered. The ManyTypes4Py
dataset is funded by the European Commission,
which follows data privacy laws under the EU Gen-
eral Data Protection Regulation (GDPR). These
datasets are intended for LLLMs, which this paper
investigates.

Acknowledgments

Portions of this work are implemented with
NNSight and NDIF (Fiotto-Kaufman et al., 2024).
We thank Ming-Ho Yee for help with the Type-
Script dataset that we use in this work (Yee, 2024).
This material is based upon work supported by the
U.S. Department of Energy, Office of Science un-
der Award Number DESC0025613.

We thank Northeastern Research Computing
for support with the Northeastern University Ex-
plorer cluster. This work used the Delta cluster at
the National Center for Supercomputing Applica-
tions (NCSA) through allocation CIS230213 from
the Advanced Cyberinfrastructure Coordination
Ecosystem: Services & Support (ACCESS) pro-
gram, which is supported by U.S. National Science
Foundation grants 2138259, 2138286, 2138307,
2137603, and 2138296.

Disclaimer: This report was prepared as an
account of work sponsored by an agency of the
United States Government. Neither the United
States Government nor any agency thereof, nor
any of their employees, makes any warranty, ex-
press or implied, or assumes any legal liability
or responsibility for the accuracy, completeness,
or usefulness of any information, apparatus, prod-
uct, or process disclosed, or represents that its use
would not infringe privately owned rights. Refer-
ence herein to any specific commercial product,

366

process, or service by trade name, trademark, man-
ufacturer, or otherwise does not necessarily con-
stitute or imply its endorsement, recommendation,
or favoring by the United States Government or
any agency thereof. The views and opinions of
authors expressed herein do not necessarily state
or reflect those of the United States Government or
any agency thereof.

References

Abacus. 2019. How We Completed a (Partial) Type-
Script Migration In Six Months. Section: Developing
In Real Time.

Mohammad Bavarian, Heewoo Jun, Nikolas Tezak,
John Schulman, Christine McLeavey, Jerry Tworek,
and Mark Chen. 2022. Efficient training of lan-
guage models to fill in the middle. arXiv preprint
arXiv:2207.14255.

Gavin Bierman, Martin Abadi, and Mads Torgersen.
2014. Understanding TypeScript. In ECOOP 2014
— Object-Oriented Programming, Lecture Notes in
Computer Science, pages 257-281, Berlin, Heidel-
berg. Springer.

John Peter Campora, Sheng Chen, Martin Erwig, and
Eric Walkingshaw. 2018. Migrating Gradual Types.
Proceedings of the ACM on Programming Languages
(PACMPL), 2(POPL).

Robert Cartwright and Mike Fagan. 1991. Soft typ-
ing. In ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI).

R.A. DeMillo, R.J. Lipton, and F.G. Sayward. 1978.
Hints on Test Data Selection: Help for the Practicing
Programmer. Computer, 11(4):34—41. Conference
Name: Computer.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Felix Rieseberg. 2017. TypeScript at Slack. Section:
Uncategorized.

Jaden Fiotto-Kaufman, Alexander R Loftus, Eric Todd,
Jannik Brinkmann, Caden Juang, Koyena Pal, Can
Rager, Aaron Mueller, Samuel Marks, Arnab Sen
Sharma, Francesca Lucchetti, Michael Ripa, Adam
Belfki, Nikhil Prakash, Sumeet Multani, Carla Brod-
ley, Arjun Guha, Jonathan Bell, Byron Wallace, and
David Bau. 2024. Nnsight and ndif: Democratiz-
ing access to foundation model internals. Preprint,
arXiv:2407.14561.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang,
Eric Wallace, Freda Shi, Ruiqi Zhong, Wen-tau Yih,
Luke Zettlemoyer, and Mike Lewis. 2023. InCoder:

A Generative Model for Code Infilling and Synthesis.
In International Conference on Learning Representa-
tions (ICLR).

Alex Gu, Baptiste Roziere, Hugh James Leather, Ar-
mando Solar-Lezama, Gabriel Synnaeve, and Sida
Wang. 2024. CRUXEval: A benchmark for code
reasoning, understanding and execution. In Proceed-
ings of the 41st International Conference on Machine
Learning, volume 235 of Proceedings of Machine
Learning Research, pages 16568-16621. PMLR.

Robert Harper and John C. Mitchell. 1993. On the
type structure of standard ML. ACM Transactions
on Programming Languages and Systems, 15(2):211-
252.

Vincent J. Hellendoorn, Christian Bird, Earl T. Barr,
and Miltiadis Allamanis. 2018. Deep Learning Type
Inference. In ACM Joint Meeting on European Soft-
ware Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE).

Fritz Henglein and Jakob Rehof. 1995. Safe polymor-
phic type inference for a dynamically typed language:
Translating Scheme to ML. In International Confer-

ence on Functional Programming Languages and
Computer Architecture (FPCA).

Ashish Hooda, Mihai Christodorescu, Miltiadis Allama-
nis, Aaron Wilson, Kassem Fawaz, and Somesh Jha.
2024a. Do large code models understand program-
ming concepts? Counterfactual analysis for code
predicates. In Proceedings of the 41st International
Conference on Machine Learning, volume 235 of
Proceedings of Machine Learning Research, pages
18738-18748. PMLR.

Ashish Hooda, Mihai Christodorescu, Miltos Allama-
nis, Aaron Wilson, Kassem Fawaz, and Somesh
Jha. 2024b. Do large code models understand pro-
gramming concepts? a black-box approach. arXiv
preprint arXiv:2402.05980.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, et al. 2024. Qwen2. 5-coder
technical report. arXiv preprint arXiv:2409.12186.

Jake Zimmerman. 2022. Sorbet: Stripe’s type checker
for Ruby.

Kevin Jesse, Premkumar Devanbu, and Anand Ashok
Sawant. 2022. Learning To Predict User-Defined
Types. IEEE Transactions on Software Engineering,
pages 1-1.

Kevin Jesse, Premkumar T. Devanbu, and Toufique
Ahmed. 2021. Learning type annotation: is big data
enough? In Proceedings of the 29th ACM Joint Meet-
ing on European Software Engineering Conference
and Symposium on the Foundations of Software En-
gineering, pages 1483-1486, Athens Greece. ACM.

367

https://blog.abacus.com/how-we-completed-a-partial-typescript-migration-in-six-months/
https://blog.abacus.com/how-we-completed-a-partial-typescript-migration-in-six-months/
https://doi.org/10.1007/978-3-662-44202-9_11
https://doi.org/10.1109/C-M.1978.218136
https://doi.org/10.1109/C-M.1978.218136
https://slack.engineering/typescript-at-slack/
https://arxiv.org/abs/2407.14561
https://arxiv.org/abs/2407.14561
https://proceedings.mlr.press/v235/gu24c.html
https://proceedings.mlr.press/v235/gu24c.html
https://doi.org/10.1145/169701.169696
https://doi.org/10.1145/169701.169696
https://proceedings.mlr.press/v235/hooda24a.html
https://proceedings.mlr.press/v235/hooda24a.html
https://proceedings.mlr.press/v235/hooda24a.html
https://stripe.com/blog/sorbet-stripes-type-checker-for-ruby
https://stripe.com/blog/sorbet-stripes-type-checker-for-ruby
https://doi.org/10.1109/TSE.2022.3178945
https://doi.org/10.1109/TSE.2022.3178945
https://doi.org/10.1145/3468264.3473135
https://doi.org/10.1145/3468264.3473135

René Just, Darioush Jalali, Laura Inozemtseva,
Michael D. Ernst, Reid Holmes, and Gordon Fraser.
2014. Are mutants a valid substitute for real faults in
software testing? In Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations
of Software Engineering, FSE 2014, pages 654—665,
New York, NY, USA. Association for Computing
Machinery.

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li,
Chenghao Mou, Carlos Muiioz Ferrandis, Yacine Jer-
nite, Margaret Mitchell, Sean Hughes, Thomas Wolf,
Dzmitry Bahdanau, Leandro von Werra, and Harm
de Vries. 2023. The Stack: 3 TB of permissively
licensed source code. In Deep Learning for Code
Workshop (DLAC).

Jukka Lehtosalo. 2019. Our journey to type checking 4
million lines of Python.

Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter
Pfister, and Martin Wattenberg. 2024. Inference-
time intervention: Eliciting truthful answers from
a language model. Advances in Neural Information
Processing Systems, 36.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim,
Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo,
Thomas Wang, Olivier Dehaene, Mishig Davaadorj,
Joel Lamy-Poirier, Jodo Monteiro, Oleh Shliazhko,
Nicolas Gontier, Nicholas Meade, Armel Zebaze,
Ming-Ho Yee, Logesh Kumar Umapathi, Jian Zhu,
Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo
Wang, Rudra Murthy, Jason Stillerman, Siva Sankalp
Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey,
Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya,
Wenhao Yu, Swayam Singh, Sasha Luccioni, Paulo
Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel
Romero, Tony Lee, Nadav Timor, Jennifer Ding,
Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri
Dao, Mayank Mishra, Alex Gu, Jennifer Robinson,
Carolyn Jane Anderson, Brendan Dolan-Gavitt, Dan-
ish Contractor, Siva Reddy, Daniel Fried, Dzmitry
Bahdanau, Yacine Jernite, Carlos Muiioz Ferrandis,
Sean Hughes, Thomas Wolf, Arjun Guha, Leandro
von Werra, and Harm de Vries. 2023. StarCoder:
may the source be with you! Transactions of Ma-
chine Learning Research (TMLR).

Lily Brown, Andy Friesen, and Alan Jeffery. 2023.
Goals of the Luau Type System, Two Years On.
ACM.

Luke Autry. How we failed, then succeeded, at migrat-
ing to TypeScript.

Zeina Migeed and Jens Palsberg. 2020. What is Decid-
able about Gradual Types? Proceedings of the ACM
on Programming Languages (PACMPL), 4(POPL).

Mihai Parparita. 2020. The Road to TypeScript at Quip,
Part Two.

Amir M Mir, Evaldas Latoskinas, and Georgios Gousios.
2021. Manytypes4py: A benchmark python dataset
for machine learning-based type inference. In 2021
IEEE/ACM 18th International Conference on Mining
Software Repositories (MSR), pages 585-589. IEEE.

Irene Vlassi Pandi, Earl T. Barr, Andrew D. Gordon, and
Charles Sutton. 2021. Probabilistic Type Inference
by Optimising Logical and Natural Constraints.

Luna Phipps-Costin, Carolyn Jane Anderson, Michael
Greenberg, and Arjun Guha. 2021. Solver-based
Gradual Type Migration. Proceedings of the ACM on
Programming Languages (PACMPL), 5(OOPSLA).

Joe Gibbs Politz, Alejandro Martinez, Mae Milano,
Sumner Warren, Daniel Patterson, Junsong Li,
Anand Chitipothu, and Shriram Krishnamurthi. 2013.
Python: the full monty. In ACM SIGPLAN Confer-
ence on Object Oriented Programmingm, Systems,
Languages and Applications (OOPSLA), pages 217—
232, Indianapolis, IN, USA. ACM.

Aseem Rastogi, Avik Chaudhuri, and Basil Hosmer.
2012. The Ins and Outs of Gradual Type Inference.
In ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages (POPL).

Shauli Ravfogel, Grusha Prasad, Tal Linzen, and Yoav
Goldberg. 2021. Counterfactual interventions re-
veal the causal effect of relative clause representa-
tions on agreement prediction. In Proceedings of
the 25th Conference on Computational Natural Lan-
guage Learning, pages 194-209.

Nina Rimsky, Nick Gabrieli, Julian Schulz, Meg Tong,
Evan Hubinger, and Alexander Turner. 2024. Steer-
ing llama 2 via contrastive activation addition. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 15504—15522, Bangkok, Thai-
land. Association for Computational Linguistics.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Sergii Rudenko. 2020. ts-migrate: A Tool for Migrating
to TypeScript at Scale.

Jeremy G. Siek and Walid Taha. 2006. Gradual Typing
for Functional Languages. In Scheme Workshop.

Jeremy G. Siek and Manish Vachharajani. 2008. Grad-
ual Typing with Unification-based Inference. In ACM
SIGPLAN International Symposium on Dynamic Lan-
guages (DLS).

Sumana Mohan, Joe King, Ryan Burgess, Jem Young,
and Stacy London. 2022. TypeScript migration -
Strict type of cocktails - Front End Happy Hour.

368

https://doi.org/10.1145/2635868.2635929
https://doi.org/10.1145/2635868.2635929
http://arxiv.org/abs/2211.15533
http://arxiv.org/abs/2211.15533
https://dropbox.tech/application/our-journey-to-type-checking-4-million-lines-of-python
https://dropbox.tech/application/our-journey-to-type-checking-4-million-lines-of-python
https://heap.io/blog/migrating-to-typescript
https://heap.io/blog/migrating-to-typescript
https://quip.com/blog/the-road-to-typescript-at-quip-part-two
https://quip.com/blog/the-road-to-typescript-at-quip-part-two
https://arxiv.org/abs/2004.00348v3
https://arxiv.org/abs/2004.00348v3
https://doi.org/10.1145/3485488
https://doi.org/10.1145/3485488
https://doi.org/10.1145/2509136.2509536
https://doi.org/10.18653/v1/2024.acl-long.828
https://doi.org/10.18653/v1/2024.acl-long.828
https://medium.com/airbnb-engineering/ts-migrate-a-tool-for-migrating-to-typescript-at-scale-cd23bfeb5cc
https://medium.com/airbnb-engineering/ts-migrate-a-tool-for-migrating-to-typescript-at-scale-cd23bfeb5cc
https://frontendhappyhour.com/episodes/typescript-migration-strict-type-of-cocktails
https://frontendhappyhour.com/episodes/typescript-migration-strict-type-of-cocktails

Florian Tambon, Arghavan Moradi Dakhel, Amin
Nikanjam, Foutse Khomh, Michel C Desmarais,
and Giuliano Antoniol. 2024. Bugs in large lan-
guage models generated code. arXiv preprint
arXiv:2403.08937.

Sam Tobin-Hochstadt and Matthias Felleisen. 2006. In-
terlanguage Migration: From Scripts to Programs.
In ACM SIGPLAN International Symposium on Dy-
namic Languages (DLS).

Sam Tobin-Hochstadt and Matthias Felleisen. 2008.
The Design and Implementation of Typed Scheme.
In ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages (POPL).

Jiayi Wei, Maruth Goyal, Greg Durrett, and Isil Dil-
lig. 2020. LambdaNet: Probabilistic Type Inference
using Graph Neural Networks. In International Con-
ference on Learning Representations (ICLR).

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao-
ran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian
Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin
Xu, Jingren Zhou, Jinze Bai, Jinzheng He, Junyang
Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang,
Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng
Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin,
Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu,
Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng,
Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin
Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang
Zhang, Yu Wan, Yunfei Chu, Yugiong Liu, Zeyu
Cui, Zhenru Zhang, and Zhihao Fan. 2024. Qwen2
technical report. arXiv preprint arXiv:2407.10671.

Ming-Ho Yee. 2024. Predicting typeScript type anno-
tations and definitions with machine learning. Ph.D.
thesis.

Ming-Ho Yee and Arjun Guha. 2023. Do Machine
Learning Models Produce TypeScript Types that
Type Check? In European Conference on Object
Oriented Programming (ECOOP).

369

https://repository.library.northeastern.edu/files/neu:4f241c784
https://repository.library.northeastern.edu/files/neu:4f241c784

Steering Performance Python

10 Remove type annotations All edits Rename types Rename types and remove type annotations
0.8 4 1 4

2 0.6 < R I VA4 N o I

§ ya & B PN\ R N N A —L N

< 041 1 /—/ 1 1

Rename variables Rename variables and remove type annotations

o

—— Qwen 2.5 Coder 7B

g 1 1 Codellama Instruct 7B
§ 041]] —— StarcoderBase 1B
RN EEEEREEERERS & FIAELX StarcoderBase 7B
Y I/ iy ARy AR 3B C) =R Il RS O, A —— Llama 3.2 Instruct 3B
0.0 . = . .
0.0 0.5 1.00.0 0.5 1.00.0 0.5 1.0
Relative Start Layer Relative Start Layer Relative Start Layer
Figure 10: Steering performance for all models on Python data, steering 1 adjacent layers.
Steering Performance Python
10 Remove type annotations All edits Rename types Rename types and remove type annotations
0.8 4
T 0.6
g 1) T\ | Feececiccca AT /AN A
2
éf 0.4 4
0.2 q
0.0 : . .

Rename variables Rename variables and remove type annotations

—— Qwen 2.5 Coder 7B
Codellama Instruct 7B

—— StarcoderBase 1B
StarcoderBase 7B

—— Llama 3.2 Instruct 3B

Accuracy

0.0 05 1.00.0 05 1.00.0 05 1.0
Relative Start Layer Relative Start Layer Relative Start Layer

Figure 11: Steering performance for all models on Python data, steering 3 adjacent layers.

A Use of AI Assistants

Some of the code for this paper was written with Al assistants enabled.

B Model Results

370

Steering Performance Python

10 Remove type annotations All edits Rename types Rename types and remove type annotations

0.8 4
T 0.6)
e
E
o
g 04

0.2 1

0.0 T T T T

10 Rename types and variables Rename variables Rename variables and remove type annotations

0.8 4 4

Qwen 2.5 Coder 7B

>
2 %% CodeLlama Instruct 7B
3 oa StarcoderBase 1B
s StarcoderBase 7B

0.2 Llama 3.2 Instruct 3B

0.0 T T T

0.0 0.5 1.00.0 0.5 1.00.0 0.5 1.0
Relative Start Layer Relative Start Layer Relative Start Layer
Figure 12: Steering performance for all models on Python data, steering 5 adjacent layers.
Steering Performance TypeScript

10 Remove type annotations All edits Rename types Rename types and remove type annotations

0.8
2 0.6
o
E
o
£ 044

02 N\ T T T T A TN N

0.0 . : .

10 Rename types and variables Rename variables Rename variables and remove type annotations

0.8 4 4

Qwen 2.5 Coder 7B

>
3 %% 1 CodeLlama Instruct 7B
3 oa StarcoderBase 1B
s StarcoderBase 7B

0.2] Llama 3.2 Instruct 3B

0.0 . . 4 .

0.0 0.5 1.00.0 0.5 1.00.0 0.5 1.0

Relative Start Layer

Relative Start Layer

Figure 13: Steering performance for all models on TypeScript data, steering 1 adjacent layers.

371

Remove type annotations

Steering Performance TypeScript

All edits

Rename types

Rename types and remove type annotations

Accuracy

I
IS

T

Rename variables R

Accuracy

o
N}

0.0

0.6

I
IS

0.0

I
IS

Accuracy

o
o

I
IS

Accuracy

o
N}

o
)

s
Relative Start Layer

1.00.0 0?5
Relative Start Layer

T
1.00.0 0.5 1.0

Relative Start Layer

ame variables and remove type annotations

Qwen 2.5 Coder 7B
CodelLlama Instruct 7B
StarcoderBase 1B
StarcoderBase 7B
Llama 3.2 Instruct 3B

Figure 14: Steering performance for all models on TypeScript data, steering 3 adjacent layers.

Remove type annotations

Steering Performance TypeScript

All edits

Rename types

Rename types and remove type annotations

Rename variables

0.0

05
Relative Start Layer

1.00.0 05
Relative Start Layer

1.00.0 0.5 1.0

Relative Start Layer

name variables and remove type annotations

—— Qwen 2.5 Coder 7B
Codellama Instruct 7B

—— StarcoderBase 1B
StarcoderBase 7B

—— Llama 3.2 Instruct 3B

Figure 15: Steering performance for all models on TypeScript data, steering 5 adjacent layers.

372

Accuracy

Accuracy

Codellama Instruct 7B Performance on Python after Steering at Varying Intervals

Steering 1 Layers

Steering 3 Layers

Steering 5 Layers

o
o

I
IS

0.24

0.0

Figure 16: Steering CodeLlama Instruct 7B across different layer intervals

CodelLlama Instruct 7B Performance on TypeScript after Steering at Varying Intervals

Steering 1 Layers

Steering 3 Layers

Steering 5 Layers

1.0

0.8 4

067 1 /A/\A_//‘ //\/\’\/\/\/\
"""""""" O~ — - V /)

0.4 Vi B f /

e

02 </ Vg
_ 5 L

00— L e S L A s S S e e s e e e e
R I R - R B SR S I BU AR s ST B BRI SRR IPC G S I RS I

Start Layer Start Layer Start Layer

Figure 17: Steering CodeLlama Instruct 7B across different layer intervals

C Interval Ablations Results

Accuracy

Llama 3.2 Instruct 3B Performance on Python after Steering at Varying Intervals

Steering 1 Layers

Steering 3 Layers

Steering 5 Layers

0.8

4
o

o
IS

0.24

0.0

Figure 18: Steering Llama 3.2 Instruct 3B across different layer intervals

373

Ao

RN
Start Layer

oD

Remove type
annotations

All edits

Rename types
Rename types and
remove type
annotations
Rename types and
variables

Rename variables
Rename variables and
remove type
annotations

Remove type
annotations

All edits

Rename types
Rename types and
remove type
annotations
Rename types and
variables

Rename variables
Rename variables and
remove type
annotations

Remove type
annotations

All edits

Rename types
Rename types and
remove type
annotations
Rename types and
variables

Rename variables
Rename variables and

remove type
annotations

Llama 3.2 Instruct 3B Performance on TypeScript after Steering at Varying Intervals

Steering 1 Layers

Steering 3 Layers

Steering 5 Layers

0.8

4
o

Accuracy
o
e

0.24

0.0

O
Start Layer

Figure 19: Steering Llama 3.2 Instruct 3B across different layer intervals

Qwen 2.5 Coder 7B Performance on Python after Steering at Varying Intervals

Steering 1 Layers

Steering 3 Layers

9 A9

RN
Start

Layer

Steering 5 Layers

oD

1.0
0.8 4
To6{ T — N
©
5
3
é(’ 0.4 4 .
0.2 / 1 /
s o
e
R T B . I S T T S B I N T S T S G B P
Start Layer Start Layer Start Layer
Figure 20: Steering Qwen 2.5 Coder 7B across different layer intervals
Qwen 2.5 Coder 7B Performance on TypeScript after Steering at Varying Intervals
10 Steering 1 Layers Steering 3 Layers Steering 5 Layers
0.8 4 9
3 0.64 R
goey
N s N (5% /
3
Q044 p /_J /\/
L
0.24 q /
= e ///\,\/
S T S0 S A e P T S S A S e
Start Layer Start Layer Start Layer
Figure 21: Steering Qwen 2.5 Coder 7B across different layer intervals
StarcoderBase 1B Performance on Python after Steering at Varying Intervals
10 Steering 1 Layers Steering 3 Layers Steering 5 Layers
0.8 e e
,,,,,,,,,,,,,,,,,,, - - A /\
> T < 3
0 0.6 4
©
5
S 04 i
Lo
/a Z //
0.2 I,_z 1 =
y 4
oo“//<///
\’b‘o’\@,\\,\’b,\‘o,\’\,\@,ﬁﬁ\,”7‘9’\%,\\,\”5\‘?,\4,\9’9\, ‘oﬂ‘b,\\\;b,\f:,g\,g
Start Layer Start Layer Start Layer

Figure 22: Steering StarcoderBase 1B across different layer intervals

374

Remove type
annotations

All edits

Rename types
Rename types and
remove type
annotations
Rename types and
variables

Rename variables
Rename variables and
remove type
annotations

Remove type
annotations

All edits

Rename types
Rename types and
remove type
annotations
Rename types and
variables

Rename variables

Rename variables and
remove type
annotations

Remove type
annotations

All edits

Rename types
Rename types and
remove type
annotations
Rename types and
variables

Rename variables
Rename variables and
remove type
annotations

Remove type
annotations

All edits

Rename types
Rename types and
remove type
annotations
Rename types and
variables

Rename variables
Rename variables and
remove type
annotations

StarcoderBase 1B Performance on TypeScript after Steering at Varying Intervals

Steering 1 Layers Steering 3 Layers Steering 5 Layers

1.0
0.84 q q
306 L e e o e Frzzzzz:= /_/\ """" —
©c - - - - -, — f-\/—__’
5 N7
§ 0.4 /\A 1 // 1 s
L
02 /\/_/ j / 7
—
_ = i
LN S A A S s A G S A S A S
Start Layer Start Layer Start Layer
Figure 23: Steering StarcoderBase 1B across different layer intervals
StarcoderBase 7B Performance on Python after Steering at Varying Intervals
10 Steering 1 Layers Steering 3 Layers Steering 5 Layers
0.8 q q
§o.s 1
2
044
0.2
0.0
Figure 24: Steering StarcoderBase 7B across different layer intervals
StarcoderBase 7B Performance on TypeScript after Steering at Varying Intervals
10 Steering 1 Layers Steering 3 Layers Steering 5 Layers
0.84 1 q
3 0.6
o
3
£ 044
0.24
0.0

Figure 25: Steering StarcoderBase 7B across different layer intervals

375

Remove type
annotations

All edits

Rename types
Rename types and
remove type
annotations
Rename types and
variables

Rename variables
Rename variables and

remove type
annotations

Remove type
annotations

All edits

Rename types
Rename types and
remove type
annotations
Rename types and
variables

Rename variables
Rename variables and
remove type
annotations

Remove type
annotations

All edits

Rename types
Rename types and
remove type
annotations
Rename types and
variables

Rename variables
Rename variables and
remove type
annotations

Codellama Instruct 7B Steering Performance on TypeScript

Remove type annotations All edits Rename types Rename types and remove type annotations

Accuracy

Rename types and variables Rename variables Rename variables and remove type annotations

Python Steering Vector
—— TypeScript Steering Vector

Accuracy
: °
>

=3 o
N IS

e
o

By
v
s
>
o
2
2 1
254

= 9
24
BN
EN|
2
<
o
v
s
>
o
2

&2

JLEE|
24
>

PHD YN0 LSS0 DD P
rt r

%)
A
1Y

Figure 26: Steering performance for CodeLlama Instruct 7B on TypeScript test set using TypeScript and Python
steering vectors. We steer 5 adjacent layers.

D Language Transfer Results

376

Codellama Instruct 7B Steering Performance on Python

Remove type annotations All edits

Rename types

Rename types and remove type annotations

Accuracy
°c o o o &
N = & ® o

4
o

Rename types and variables Rename variables R

o

n

ame variables and remove type annotat

Accuracy
°© o o =
= o o o

o
N

o
o

ions

TypeScript Steering Vector
—— Python Steering Vector

Figure 27: Steering performance for CodeLlama Instruct 7B on Python test set using Python and TypeScript steering

vectors. We steer 5 adjacent layers.

Llama 3.2 Instruct 3B Steering Performance on TypeScript

Remove type annotations All edits

Rename types

Rename types and remove type annotations

Accuracy
o o o
= o

o
N

o
o

Rename variables R

o

Rename types and variables n

=
o

ame variables and remove type annotat

Accuracy
o o o
= o »

o
N

o
o

i

Start Laye!

>

Start Laye

2

P

2

> v
r r

>

Start Layer

R I

ions

Python Steering Vector
—— TypeScript Steering Vector

Figure 28: Steering performance for Llama 3.2 Instruct 3B on TypeScript test set using TypeScript and Python

steering vectors. We steer 5 adjacent layers.

377

Llama 3.2 Instruct 3B Steering Performance on Python

Remove type annotations All edits

Rename types

Rename types and remove type annotations

4 ol =
EY o o

I
IS

}

Accuracy

o
B

Rename types and variables Rename variables

Re

n

ame variables and remove type annotat

o =
EY =)

Accuracy
°
S

|

o
N

o
o

AR

Start Layer

Q

P

Start Laye

RE I v
r

ions

TypeScript Steering Vector
—— Python Steering Vector

Figure 29: Steering performance for Llama 3.2 Instruct 3B on Python test set using Python and TypeScript steering

vectors. We steer 5 adjacent layers.

Qwen 2.5 Coder 7B Steering Performance on TypeScript

Remove type annotations All edits

Rename types

Rename types and remove type annotations

Accuracy
o o o
= o

o
N

o
o

Rename types and variables Rename variables

=
o

R

o

n

ame variables and remove type annotat

Accuracy
o o o
= o »

o
N

o
o

i

Start Laye!

>

Start Laye

2

P

2

> v
r r

>

Start Layer

R I

ions

Python Steering Vector
—— TypeScript Steering Vector

Figure 30: Steering performance for Qwen 2.5 Coder 7B on TypeScript test set using TypeScript and Python steering

vectors. We steer 5 adjacent layers.

378

Qwen 2.5 Coder 7B Steering Performance on Python

Remove type annotations All edits

Rename types

Rename types and remove type annotations

Accuracy
°c o o o =
N = & ® o

o
B

Rename types and variables Rename variables

Ren

ame variables and remove type annotations

Accuracy
°© o o &
= o o o

o
N

o
o

AR

Start Layer

Q

>

Start Laye

00D D RIR
r

2o

>

TypeScript Steering Vector
—— Python Steering Vector

Figure 31: Steering performance for Qwen 2.5 Coder 7B on Python test set using Python and TypeScript steering

vectors. We steer 5 adjacent layers.

StarcoderBase 1B Steering Performance on TypeScript

Remove type annotations All edits

Rename types

Rename types and remove type annotations

Accuracy
o o o
= o

o
N

o
o

Rename types and variables Rename variables

=
o

R

o

n

ame variables and remove type annotations

Accuracy
o o o
= o »

o
N

o
o

<o

Start Layer Start Layer

%

2
%o

Start Layer

Python Steering Vector
—— TypeScript Steering Vector

Figure 32: Steering performance for StarcoderBase 1B on TypeScript test set using TypeScript and Python steering

vectors. We steer 5 adjacent layers.

379

StarcoderBase 1B Steering Performance on Python

Remove type annotations All edits

Rename types

Rename types and remove type annotations

ol =
o o

4
EY

Accuracy

|

o
N

o
B

Rename types and variables Rename variables

Ren

ame variables and remove type annotations

o =
EY =)

Accuracy
°
S

5

I
IS

o
o

2
Lo

Start Layer Start Layer

Start Layer

TypeScript Steering Vector
—— Python Steering Vector

Figure 33: Steering performance for StarcoderBase 1B on Python test set using Python and TypeScript steering

vectors. We steer 5 adjacent layers.

StarcoderBase 7B Steering Performance on TypeScript

Remove type annotations All edits

Rename types

Rename types and remove type annotations

Accuracy
o o o
= o

o
N

o
o

Rename types and variables Rename variables

=
o

Ren

ame variables and remove type annotations

Accuracy
o o o
= o »

o
N

o
o

oA 9N

K
Start Layer

DD DR AN DDA

Python Steering Vector
—— TypeScript Steering Vector

Figure 34: Steering performance for StarcoderBase 7B on TypeScript test set using TypeScript and Python steering

vectors. We steer 5 adjacent layers.

380

StarcoderBase 7B Steering Performance on Python

Remove type annotations All edits Rename types Rename types and remove type annotations

0.44 — — —

Accuracy

00— T T T T L s L N S e S S S S S L e e L A A A A A N A A . e e s e e e

Rename types and variables Rename variables R

o

name variables and remove type annotations

TypeScript Steering Vector
—— Python Steering Vector

o
o

Accuracy
°
s

o
N

YOOIV ONID PPN PDDHAN Y2 ON 0PI OQAIDPPPNRDEDHA Y2 ON OO QNODP PPN DD P A
Start Layer Start Layer Start Layer

ol
o

Figure 35: Steering performance for StarcoderBase 7B on Python test set using Python and TypeScript steering
vectors. We steer 5 adjacent layers.

381

CodeLlama Instruct 7B Python Steering Performance across Splits

10 Remove type annotations All edits Rename types Rename types and remove type annotations
0.8 1 — — —
306 p p p
o
5
o
£ 044 q q q
0.2 q q q
SN —— A \/\/\—/w\ /\\/_/\/—/\/\/\/\,\/
0.0 HF——F—"F""——""—————
10 Rename types and variables Rename variables Rename variables and remove type annotations
0.8 q q
Steering Vector on Held-out
2061 | | Test Split)
© Random Steering Vector on
3 Test Split
& 041 1 Steering Vector on Steering
Split
" ’ NN /\M
NP OO SDIONIPDPEDNPH NP ON OB IONPP PPN R Y IO O LI ONPIDON DA
Start Layer Start Layer Start Layer

Figure 36: Python steering performance for CodeLlama Instruct 7B on test and steering datasets, compared against
arandom steering vector baseline. We steer 1 adjacent layers.

E Comparing Steering Against Baselines

382

CodelLlama Instruct 7B Python Steering Performance across Splits

10 Remove type annotations All edits Rename types Rename types and remove type annotations
0.8 q q q
3 0.64 p p p
o
=1
S
2044 q q q
0.2 q q q
0.0 "
10 Rename types and variables Rename variables Rename variables and remove type annotations
0.8 1 1
Steering Vector on Held-out
3 0.6 j) Test Split ,
© Random Steering Vector on
4 Test Split
& 041 1 1 Steering Vector on Steering
Split
N /_/__/\/_/\’\’_\/\ 7 7
0.0

Figure 37: Python steering performance for CodeLlama Instruct 7B on test and steering datasets, compared against
a random steering vector baseline. We steer 3 adjacent layers.

CodelLlama Instruct 7B Python Steering Performance across Splits

10 Remove type annotations All edits Rename types Rename types and remove type annotations
0.8 q q q
306 — — —
o
=1
S
£ 044 q q q
° /J\/\/J]]]
0.0 -——7F—F7F—"—F———————
10 Rename types and variables Rename variables Rename variables and remove type annotations
0.8 q q
Steering Vector on Held-out
3 0.6 j) Test Split .
® Random Steering Vector on
4 Test Split
& 041 1 1 Steering Vector on Steering
Split
0.2 q 1
0.0 - ¢ T

Figure 38: Python steering performance for CodeLlama Instruct 7B on test and steering datasets, compared against
a random steering vector baseline. We steer 5 adjacent layers.

383

Accuracy

Accuracy

Codellama Instruct 7B TypeScript Steering Performance across Splits

Remove type annotations

All edits

Rename types

Rename types and remove type annotations

4
o

I
IS

I
N}

0.0

Rename types and variables

Rename variables

R¢

o

name variables and remove type annotations

4
o

o
IS

o
N

4
o

Steering Vector on Held-out
Test Split

Random Steering Vector on
Test Split

Steering Vector on Steering
Split

Figure 39: TypeScript steering performance for CodeLlama Instruct 7B on test and steering datasets, compared
against a random steering vector baseline. We steer 1 adjacent layers.

Accuracy

Accuracy

Codellama Instruct 7B TypeScript Steering Performance across Splits

Remove type annotations

All edits

Rename types

Rename types and remove type annotations

Rename types and variables

Rename variables

Rename variables and remove type annotations

4
o

o
'S

o
N

4
o

Steering Vector on Held-out
Test Split

Random Steering Vector on
Test Split

Steering Vector on Steering
Split

Figure 40: TypeScript steering performance for CodeLlama Instruct 7B on test and steering datasets, compared
against a random steering vector baseline. We steer 3 adjacent layers.

384

Codellama Instruct 7B TypeScript Steering Performance across Splits

10 Remove type annotations All edits Rename types Rename types and remove type annotations
0.8 q q q
3 0.64 p p p
e
=1
S
2044 q q q
021 1 1 f/»\/\ 1
0.0 -——7F—F—T—F
10 Rename types and variables Rename variables Rename variables and remove type annotations
0.8 1 1
Steering Vector on Held-out
3 0.6 j) Test Split ,
© Random Steering Vector on
4 Test Split
& 041 1 1 Steering Vector on Steering
Split
0.2]] ’/\A/J\’\
0.0

Figure 41: TypeScript steering performance for CodeLlama Instruct 7B on test and steering datasets, compared
against a random steering vector baseline. We steer 5 adjacent layers.

Llama 3.2 Instruct 3B Python Steering Performance across Splits

10 Remove type annotations All edits Rename types Rename types and remove type annotations
0.8 q q q
306 p i
I3
=1
S
£ 044 1]
0.2 % : q q
0.0 7 —f—————
10 Rename types and variables Rename variables Rename variables and remove type annotations
0.8 q q
Steering Vector on Held-out
3 0.6 j) T Test Split .
® Random Steering Vector on
4 Test Split
& 041 1 1 Steering Vector on Steering
— Split
0.2 q A ~ Q f E q
0.0 T T T

Figure 42: Python steering performance for Llama 3.2 Instruct 3B on test and steering datasets, compared against a
random steering vector baseline. We steer 1 adjacent layers.

385

Llama 3.2 Instruct 3B Python Steering Performance across Splits
Remove type annotations All edits Rename types Rename types and remove type annotations

4
o

Accuracy

o o
N} IS

. N A

10 Rename types and variables Rename variables Rename variables and remove type annotations
0.8 1 1
Steering Vector on Held-out
> 064]] T Test Split ,
© Random Steering Vector on
g Test Split
< 049 1 1 Steering Vector on Steering
— Split
0.2 1 b
00— ———— ¢ ———— 75—
M2OANDIDDORRDPPP YN OB OQ PP DD YN DD OND DD
Start Layer Start Layer Start Layer

Figure 43: Python steering performance for Llama 3.2 Instruct 3B on test and steering datasets, compared against a
random steering vector baseline. We steer 3 adjacent layers.

Llama 3.2 Instruct 3B Python Steering Performance across Splits

10 Remove type annotations All edits Rename types Rename types and remove type annotations

0.8 q q q
3 0.6 — — —
I3
=1
S
<4 //\’W 7 7

0.2 1 q q 1

oo -V

10 Rename types and variables Rename variables Rename variables and remove type annotations

0.8 q q

Steering Vector on Held-out
3 0.6 j) T Test Split .
® Random Steering Vector on
4 Test Split
& 041 T 1 Steering Vector on Steering
— Split
0.2 q q
0.0 t——T—T—————— ———— ———
R T T T T SR TN T SN T s T TR TR S SR R N i i i T T T W TP SN B S S R)
Start Layer Start Layer Start Layer

Figure 44: Python steering performance for Llama 3.2 Instruct 3B on test and steering datasets, compared against a
random steering vector baseline. We steer 5 adjacent layers.

386

Llama 3.2 Instruct 3B TypeScript Steering Performance across Splits

10 Remove type annotations All edits Rename types Rename types and remove type annotations
0.8 q q q
3 0.64 p p p
e
=1
S
2044 q q q
0.2 q q q
10 Rename types and variables Rename variables Rename variables and remove type annotations
0.8 1 1
Steering Vector on Held-out
3 0.6 j) Test Split ,
© Random Steering Vector on
4 Test Split
& 041 1 Steering Vector on Steering
— Split
0.2 q q
0.0

Figure 45: TypeScript steering performance for Llama 3.2 Instruct 3B on test and steering datasets, compared

against a random steering vector baseline. We steer 1 adjacent layers.

Llama 3.2 Instruct 3B TypeScript Steering Performance across Splits

Remove type annotations All edits Rename types

Rename types and remove type annotations

Accuracy
o o o o
o = S ©

Rename types and variables Rename variables Rename variables and remove type annotations

Accuracy
o o o
o = >

4
o

Steering Vector on Held-out
Test Split

Random Steering Vector on
Test Split

Steering Vector on Steering
— Split

Figure 46: TypeScript steering performance for Llama 3.2 Instruct 3B on test and steering datasets, compared

against a random steering vector baseline. We steer 3 adjacent layers.

387

Llama 3.2 Instruct 3B TypeScript Steering Performance across Splits

10 Remove type annotations All edits Rename types Rename types and remove type annotations

0.8 q q
3 0.64 J)
e
=1
g
< 041 1 j

0.2 1 q

oo -G G -

10 Rename types and variables Rename variables Rename variables and remove type annotations

0.8 1 1

Steering Vector on Held-out
3 0.6 j) Test Split ,
© Random Steering Vector on
4 Test Split
& 041 1 1 Steering Vector on Steering
— Split
0.2 q q
0.0 t——T—T———————— —— ——
R I T T T S N N S T T T S T T . - T T W TP S T T S R)
Start Layer Start Layer Start Layer

Figure 47: TypeScript steering performance for Llama 3.2 Instruct 3B on test and steering datasets, compared
against a random steering vector baseline. We steer 5 adjacent layers.

Qwen 2.5 Coder 7B Python Steering Performance across Splits

10 Remove type annotations All edits Rename types Rename types and remove type annotations

0.8 q q
306 f i
I3
=1
g
£ 044 q q

0.2 q q

o HF—/V—"F7—7F—"——F—————

10 Rename types and variables Rename variables Rename variables and remove type annotations

0.8 q q

Steering Vector on Held-out
0.6]] T Test Split .
© Random Steering Vector on
4 Test Split
& 041 1 1 Steering Vector on Steering
~ Split
0.2 q q
0.0 FVF—————————
M2 ORI ONDDPPDPAN YOOI Q(DPPHADN YN DO ON QDD DA
Start Layer Start Layer Start Layer

Figure 48: Python steering performance for Qwen 2.5 Coder 7B on test and steering datasets, compared against a
random steering vector baseline. We steer 1 adjacent layers.

388

Qwen 2.5 Coder 7B Python Steering Performance across Splits

10 Remove type annotations All edits Rename types Rename types and remove type annotations
0.8 q q q
T 0.6 < < <
e
=1
g
2044 q q q
0.2 q q q
L= .
10 Rename types and variables Rename variables Rename variables and remove type annotations
0.8 1 1
Steering Vector on Held-out
3 0.6 j) Test Split ,
© Random Steering Vector on
4 Test Split
& 041 1 1 Steering Vector on Steering
— Split
0.2 q q
00 F+—F—F—F—F—F—FT——— —— —
YEONOIDDRRRDPPPR YN DORODP PP Y0NS OL D P D P
Start Layer Start Layer Start Layer

Figure 49: Python steering performance for Qwen 2.5 Coder 7B on test and steering datasets, compared against a
random steering vector baseline. We steer 3 adjacent layers.

Qwen 2.5 Coder 7B Python Steering Performance across Splits

10 Remove type annotations All edits Rename types Rename types and remove type annotations
0.8 q q q
306 < < <
I3
=1
g
£ 044 q q q
0.2 q q q
0.0 ¥—4tr—7—"—"—"—"—"—— T
10 Rename types and variables Rename variables Rename variables and remove type annotations
0.8 q q
Steering Vector on Held-out
3 0.6 j) T Test Split .
© Random Steering Vector on
4 Test Split
& 041 1 1 Steering Vector on Steering
~ Split
0.2 q q
0.0 . v v

I TR TP SR TR RN RS
Start Layer

nﬁ’)'\/")‘)’\‘%,\”\,.\;’),\‘,o,o,\,‘bq}w’b'&”)‘)’\‘l,\”\,\:’)@é,\?w\,‘?}

Start Layer

Start Layer

Figure 50: Python steering performance for Qwen 2.5 Coder 7B on test and steering datasets, compared against a
random steering vector baseline. We steer 5 adjacent layers.

389

Qwen 2.5 Coder 7B TypeScript Steering Performance across Splits

10 Remove type annotations All edits Rename types Rename types and remove type annotations

0.8 q q q
T 0.6 p p p
e
=1
g
2044 q q q

N /\/\/yvsﬁ 4 4 4

o +

10 Rename types and variables Rename variables Rename variables and remove type annotations

0.8 1 1

Steering Vector on Held-out
3 0.6 j) Test Split ,
© Random Steering Vector on
4 Test Split
& 041 1 1 Steering Vector on Steering
— Split
0.2 q ;\ S q q
Lo T T —
AR IR RN R R R R M NS R RS R R R R AR SN NG 2 SRR
Start Layer Start Layer Start Layer

Figure 51: TypeScript steering performance for Qwen 2.5 Coder 7B on test and steering datasets, compared against
a random steering vector baseline. We steer 1 adjacent layers.

Qwen 2.5 Coder 7B TypeScript Steering Performance across Splits

10 Remove type annotations All edits Rename types Rename types and remove type annotations
0.8 q q q
306 < < <
I3
=1
g
£ 044 q q q
0.2 q q q
LoV -
10 Rename types and variables Rename variables Rename variables and remove type annotations
0.8 q q
Steering Vector on Held-out
3 0.6 j) T Test Split .
© Random Steering Vector on
4 Test Split
& 041 1 1 Steering Vector on Steering
~ Split
0.2 q q
0.0 v v v

R

Figure 52: TypeScript steering performance for Qwen 2.5 Coder 7B on test and steering datasets, compared against
a random steering vector baseline. We steer 3 adjacent layers.

390

Qwen 2.5 Coder 7B TypeScript Steering Performance across Splits

10 Remove type annotations All edits Rename types Rename types and remove type annotations
0.8 q q
3 0.64 J)
e
=1
S
2044 q q
0.2 q q
.o HV—F—F ——F—
10 Rename types and variables Rename variables Rename variables and remove type annotations
0.8 1
Steering Vector on Held-out
3 0.6) Test Split ,
© Random Steering Vector on
4 Test Split
& 041 1 Steering Vector on Steering
— Split
0.2 q
0.0

I T S TGN IR SN WX I
rt Layer

P

Ny 9 Ao

Layer

R N
rt

NI
rt Layer

Figure 53: TypeScript steering performance for Qwen 2.5 Coder 7B on test and steering datasets, compared against
a random steering vector baseline. We steer 5 adjacent layers.

StarcoderBase 1B Python Steering Performance across Splits

10 Remove type annotations All edits Rename types Rename types and remove type annotations
0.8 — /_ —
306 i i
I3
5 ~
g
£ 044]]
2] f =<7 1 A 1
//_/ NF <7
o — . — —_— N
10 Rename types and variables Rename variables Rename variables and remove type annotations
0.8 q
Steering Vector on Held-out
3 0.6) " Test Split .
© Random Steering Vector on
4 Test Split
& 041 1 Steering Vector on Steering
Split
21 p AN] P
o= el e TS
="
Lo HF——"""— ————— —
R T T T T SR TN T SN T s T TR TR S SR R N i i i T T T W TP SN B S S R)
Start Layer Start Layer Start Layer

Figure 54: Python steering performance for StarcoderBase 1B on test and steering datasets, compared against a
random steering vector baseline. We steer 1 adjacent layers.

391

StarcoderBase 1B Python Steering Performance across Splits

10 Remove type annotations All edits Rename types Rename types and remove type annotations
—_—— |

0.8 q q
3 0.64 J)
o
g /M
o
< 041] 1 s 1

0.2 q q

= //

- -8 — ¥

10 Rename types and variables Rename variables Rename variables and remove type annotations

0.8 1 1

Steering Vector on Held-out
3 0.6 j) Test Split
© Random Steering Vector on
4 Test Split
& 041 / 1 » 1 Steering Vector on Steering
/ - \/\ Split
0.2 _/] A~ 1 2 U ~
2 K /
0.0 . . —_—

2

AR BRI S R R
Start Layer

SN % 9 Ao

N
Start Layer

R

i

Start Layer

Figure 55: Python steering performance for StarcoderBase 1B on test and steering datasets, compared against a
random steering vector baseline. We steer 3 adjacent layers.

StarcoderBase 1B Python Steering Performance across Splits

10 Remove type annotations All edits Rename types Rename types and remove type annotations
051 1] =
—~——|

306 f i
o
3 /\/
S
& 044 M 1 / 4

0.2 q

0.0 —+F—F—"F—F——— —rt ——— T ——— T —————————

10 Rename types and variables Rename variables Rename variables and remove type annotations

0.8 q q

Steering Vector on Held-out
3 0.6 j) Test Split
e //\f\ Random Steering Vector on
3 / Test Split
& 041 1 1 Steering Vector on Steering
/\/\ Split
w = -
0.2 1 \ Ve ~ /
S
0.0 H—r—F——— — ———————— ——
T - T W TN N T TN SN I] A TN N BN N TN T T - T L BN SN N TN SN)

Start Layer

Start Layer

Start Layer

Figure 56: Python steering performance for StarcoderBase 1B on test and steering datasets, compared against a
random steering vector baseline. We steer 5 adjacent layers.

392

StarcoderBase 1B TypeScript Steering Performance across Splits

10 Remove type annotations All edits Rename types Rename types and remove type annotations

0.8 1 1 ~——]]
306 p p p
I P—
£ -
S
g 04 1 /W 1)

0.2 q q ,/\' q

/_/J] s [R
= AV=" T

o= = A s =

10 Rename types and variables Rename variables Rename variables and remove type annotations

0.8 1 1

Steering Vector on Held-out
3 0.6 j) Test Split ,
© Random Steering Vector on
4 Test Split
& 041 1 1 Steering Vector on Steering
Split
0.2 — /\’\ 1
Vol /\/_,.\/
Ve F s
oo //—/ L A— N I
'x'a‘a'\q\,«,,@,;o,é@wxqja'»":ca'\q\,«,\;b,;o,\,«,gw'»@w%@«%\;,@\‘;\,«,@i\,i’;
Start Layer Start Layer Start Layer

Figure 57: TypeScript steering performance for StarcoderBase 1B on test and steering datasets, compared against a
random steering vector baseline. We steer 1 adjacent layers.

StarcoderBase 1B TypeScript Steering Performance across Splits

10 Remove type annotations All edits Rename types Rename types and remove type annotations

0.8 1 B /x 1
3 0.6 — /_/—/ — / —
o SN
=1
S
< /‘/\ | J\/ 7 7

02{ _F=>A j /\ i /4 1 L

7 7

0.0 """ —————— — —————

10 Rename types and variables Rename variables Rename variables and remove type annotations

0.8 q q

Steering Vector on Held-out
3 0.6 P) Test Split .
® Random Steering Vector on
4 Test Split
<L() 0.4 1 P s 1 Stegring Vector on Steering
—7 D Split
A\ _——
021] /] /
ool S e
R T T T T T T T T T T T W T O T . e O I T TP N T R I g
Start Layer Start Layer Start Layer

Figure 58: TypeScript steering performance for StarcoderBase 1B on test and steering datasets, compared against a
random steering vector baseline. We steer 3 adjacent layers.

393

StarcoderBase 1B TypeScript Steering Performance across Splits

10 Remove type annotations All edits Rename types Rename types and remove type annotations
0.8 q
3 0.64)
g ~———
o
Y044 4 4
< / \/\
0.2 1 1
\,/
0.0 "t ————————— ———— ——
10 Rename types and variables Rename variables Rename variables and remove type annotations
0.8 1 1
Steering Vector on Held-out
3 0.6 j) Test Split ,
I V Random Steering Vector on
4 Test Split
& 041 1 L~ 1 Steering Vector on Steering
™\ = AN //\ Ve el
0.2 _/ N q NNt
0.0 ——— —— ——

[SERNERNERS

Start Layer

Y

NJ

[SERCERNERY
Start Layer

Y

RGN

R
Start Layer

Figure 59: TypeScript steering performance for StarcoderBase 1B on test and steering datasets, compared against a
random steering vector baseline. We steer 5 adjacent layers.

Remove type annotations

StarcoderBase 7B Python Steering Performance across Splits

All edits

Rename types

Rename types and remove type annotations

Accuracy

Rename types and variables

Rename variables R

o

n

Accuracy
o o
& o

o
N

4
o

<
S
e
o

DN N

>4
o]
2]
<
2
by
%]
o
3]
¥
3]
>
Ey
o
N
¥
%
>
%
k4

AP DDA D

ame variables and remove type annotations

Steering Vector on Held-out
Test Split

Random Steering Vector on
Test Split

Steering Vector on Steering
Split

Figure 60: Python steering performance for StarcoderBase 7B on test and steering datasets, compared against a
random steering vector baseline. We steer 1 adjacent layers.

394

StarcoderBase 7B Python Steering Performance across Splits

10 Remove type annotations All edits Rename types Rename types and remove type annotations
0.8 q q
3 0.64 J)
o
=1
S
2044 q q
0.2 1 1
0.0 -
10 Rename types and variables Rename variables Rename variables and remove type annotations
0.8 1
Steering Vector on Held-out
3 0.6) Test Split ,
© Random Steering Vector on
4 Test Split
& 041 1 Steering Vector on Steering
Split
0.2 q
0.0 ————

N 9N O BIDNDIPAAD PN DA

Start Layer

N2 9N O OINDPAAON DA\

tart Layer

Figure 61: Python steering performance for StarcoderBase 7B on test and steering datasets, compared against a
random steering vector baseline. We steer 3 adjacent layers.

StarcoderBase 7B Python Steering Performance across Splits

10 Remove type annotations All edits Rename types Rename types and remove type annotations
0.8 q q
306 i i
o
=1
S
£ 044]]
0.2 q q
0.0 T
10 Rename types and variables Rename variables Rename variables and remove type annotations
0.8 q
Steering Vector on Held-out
3 0.6) Test Split .
o Random Steering Vector on
4 Test Split
& 041 1 1 Steering Vector on Steering
Split
0.2 q q
0.0 —— —— T ——

> 2 ON O IDOQNDPPPPN DD DDA
L

N2 0N OB OQ(IPPAPDN DDA

Start Layer

Figure 62: Python steering performance for StarcoderBase 7B on test and steering datasets, compared against a
random steering vector baseline. We steer 5 adjacent layers.

395

StarcoderBase 7B TypeScript Steering Performance across Splits

10 Remove type annotations All edits Rename types Rename types and remove type annotations
0.8 q q
3 0.64 J)
o
=1
S
2044 q q
0.2 q q
0.0
10 Rename types and variables Rename variables Rename variables and remove type annotations
0.8 1
Steering Vector on Held-out
3 0.6) Test Split ,
© Random Steering Vector on
é Test Split
< 049 1 Steering Vector on Steering
Split
0.2 q
0.0 T
> 9N O XODQAIDDADPNDADDNDE > > 0N DI DIONDPDAOPDDDDPANDEY ™D DN O DDNOPAAPANDA DDA D

Start Layer

Start Layer

Start Layer

Figure 63: TypeScript steering performance for StarcoderBase 7B on test and steering datasets, compared against a
random steering vector baseline. We steer 1 adjacent layers.

StarcoderBase 7B TypeScript Steering Performance across Splits

10 Remove type annotations All edits Rename types Rename types and remove type annotations
0.8 q q
306 i i
o
=1
S
£ 044]]
0.2 1 q
0.0 t——""—————————————
10 Rename types and variables Rename variables Rename variables and remove type annotations
0.8 q
Steering Vector on Held-out
3 0.6) Test Split .
o Random Steering Vector on
4 Test Split
& 041 1 Steering Vector on Steering
Split
0.2 1
0.0 T T ———— T ———

N2 ON D IDOQNDIPDPPNDPDPRND > D N O ZODONIPADAPN DDA

Start Layer

Vo

’\/
Start Layer

o
5]
s
>4
o]

2]
%

%
]

]

3]
5]

3

3

3]

%]

PN

Figure 64: TypeScript steering performance for StarcoderBase 7B on test and steering datasets, compared against a
random steering vector baseline. We steer 3 adjacent layers.

396

StarcoderBase 7B TypeScript Steering Performance across Splits

10 Remove type annotations All edits Rename types Rename types and remove type annotations
0.8 1 — — —
306 p p p
o
5
S
£ 044 q q q
0.2 — — —
0.0 -———"F"———————————
10 Rename types and variables Rename variables Rename variables and remove type annotations
0.8 q q
Steering Vector on Held-out
2061 | | Test Split)
© Random Steering Vector on
3 Test Split
& 041 1 1 Steering Vector on Steering
Split
0.2 1 q
0.0

Figure 65: TypeScript steering performance for StarcoderBase 7B on test and steering datasets, compared against a
random steering vector baseline. We steer 5 adjacent layers.

397

