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Abstract

In-context Learning (ICL) utilizes structured
demonstration-query inputs to induce few-shot
learning on Language Models (LMs), which
are not originally pre-trained on ICL-style data.
To bridge the gap between ICL and pre-training,
some approaches fine-tune LMs on large ICL-
style datasets by an end-to-end paradigm with
massive computational costs. To reduce such
costs, in this paper, we propose Attention
Behavior Fine-Tuning (ABFT), utilizing the
previous findings on the inner mechanism of
ICL, building training objectives on the atten-
tion scores instead of the final outputs, to force
the attention scores to focus on the correct label
tokens presented in the context and mitigate at-
tention scores from the wrong label tokens. Our
experiments on 9 modern LMs and 8 datasets
empirically find that ABFT outperforms in per-
formance, robustness, unbiasedness, and effi-
ciency, with only around 0.01% data cost com-
pared to the previous methods. Moreover, our
subsequent analysis finds that the end-to-end
training objective contains the ABFT objective,
suggesting the implicit bias of ICL-style data
to the emergence of induction heads. Our work
demonstrates the possibility of controlling spe-
cific module sequences within LMs to improve
their behavior, opening up the future applica-
tion of mechanistic interpretability1.

1 Introduction

In-Context Learning (ICL) (Radford et al., 2019;
Dong et al., 2022) is an emerging few-shot learning
paradigm where only a concatenation of few-shot
demonstrations and a query is needed to conduct
the specified task on the query, requiring only feed-
forward calculation on the pre-trained Language
Models (LMs), as shown in Fig. 1 (A, B). However,
trained on natural language data, LMs may face a
distribution gap with ICL-style inputs, potentially

1Source code of this paper is available at https://github.
com/hc495/ICL_head_tuning.

hindering ICL performance. Therefore, some prior
studies (see §2) try to bridge such a gap by fine-
tuning LMs on the ICL-style data on end-to-end
paradigms, with enormous datasets and calculation
cost, preventing practical application, especially on
the scaling Large LMs (LLMs).

Therefore, in this paper, we try to propose an
efficient fine-tuning approach towards better ICL
performance, utilizing some previous observations
on the inner mechanisms of ICL. In detail, we fo-
cus on the Induction Heads in Transformer-based
LMs, which are a set of critical attention heads to-
wards ICL, where the attention scores of the last
token in the ICL input (where the predictions are
generated) are dominant on the label tokens in the
demonstrations, as shown in Fig. 1 (C), for the clue
that the tendency of attention scores from induc-
tion heads influences the tendency of prediction
synchronously (Reddy, 2024; Cho et al., 2025a)
(e.g., if the attention scores of the induction heads
focus on the label token “negative” in the context,
then the prediction is biased towards “negative”).

Consequently, we can directly control the atten-
tion scores to make the induction heads focus on the
correct label tokens for correct predictions. Given
such an objective, as shown in Fig. 1 (C, D), we
propose Attention Behavior Fine-Tuning (ABFT),
calculating fine-tuning objective (loss function)
only on the attention scores of induction heads,
to mitigate “wrong” attention score focusing on
the wrong label tokens, and promote “correct” at-
tention score focusing on the correct label tokens.
On such an objective, we fine-tune only the WK

and WQ projection matrices of every attention head,
with an ICL-style training set of only a few hundred
samples, and only a few million of the parameters
with gradient activated, which is highly efficient
compared to previous works.

Our experiments on 9 modern (L)LMs and 8
downstream datasets demonstrate that ABFT sig-
nificantly improves ICL performance with satis-
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Figure 1: Diagram of ABFT framework. (A) An example of ICL-style inputs. We build datasets from such
examples to fine-tune models. (B) Feed-forward inference of ICL. We collect the attention scores of every
attention head in every layer to calculate the training objective. and we only enable the gradient of the WQ and WK

matrices. (C) The criterion for induction head. Only attention heads producing attention scores with a significant
focus on the label tokens can be identified as induction heads. (D) Loss calculation of ABFT. Only induction heads
return a non-zero loss, and such loss contains a punishment on “wrong” attention scores to wrong label tokens, and
a reward on “correct” attention scores to correct label tokens.

factory efficiency, robustness, unbiasedness, and
harmlessness, even outperforming previous works
of end-to-end fine-tuning the whole model on mas-
sive datasets that are approximately 7, 000× larger
than ours. Moreover, our analysis shows that the
ABFT objective implicitly biases end-to-end train-
ing on ICL-style data, where causal language mod-
eling may naturally induce induction heads.

Our contribution can be summarized as:
• We propose Attention Behavior Fine-Tuning

(ABFT), which efficiently fine-tunes LMs on
ICL inputs using attention-based objectives with-
out supervision on the final output.

• Subsequent analysis indicates that the training
objective of ABFT is implicitly encompassed by
the end-to-end training objective on ICL-style
data, suggesting that these data may naturally
evoke the induction heads, which enhances the
previous works on the inner mechanism of ICL.

• Also, we prototypically confirm the possibility
of optimizing model performance directly by
controlling the intermediate behavior, without
any error propagation from the output. This
is a hint toward Mechanistic Controllability, a
valuable future of mechanistic interpretability.

2 Background & Related Works

In-context Learning. Given a few-shot demon-
stration set {(xi, yi)}ki=1 and a query xq, typ-
ical ICL creates a concatenation formed like
[x1, y1, x2, y2, . . . , xk, yk, xq], and feeds it into the
forward calculation of a pre-trained LM (Radford
et al., 2019; Dong et al., 2022) for the next token
as the prediction to xq, as shown in Fig. 1 (A).

LM Warm-up for ICL. Since LMs are typically
pre-trained on plain natural language data instead
of ICL-style data, it can be expected that a distri-
bution gap between the pre-training and ICL test-
ing occurs to prevent optimal performance. There-
fore, some works focus on tuning LMs on the ICL
data (Chen et al., 2022; Min et al., 2022; Mishra
et al., 2022; Wang et al., 2022; Wei et al., 2023).
Even effective, these works need gradient-based
whole-model and full-precision training on large
datasets, making it hard to adapt to real-world ap-
plications due to the calculation overhead, and mis-
aligning with the low-resource purpose of ICL.

Induction Heads in ICL Inference. As shown
in Fig. 1 (C), it has been found that some atten-
tion heads (called induction heads) in LMs have a
nontrivial influence on ICL inference (Elhage et al.,
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2021; Olsson et al., 2022; Singh et al., 2024; Reddy,
2024; Cho et al., 2025a), where the attention scores
from the last token of the query (the location for
prediction, e.g., the last “: ” in Fig. 1 (A), as the
attention query) concentrate on the label tokens pre-
sented in the demonstrations (e.g., “positive”s and
“negative”s in Fig. 1 (A), as the attention key). At-
tention connections from induction heads transfer
label information from the demonstration to the out-
put, biasing predictions toward labels with higher
attention scores. Consequently, the accuracy of
ICL prediction critically depends on whether these
attentions are on the correct labels.

3 Attention Behavior Fine-tuning

Given the inspiration from the previous works,
where the ICL predictions are biased towards the
more attention-score-concentrated labels in the in-
duction heads, in this paper, as shown in Fig. 1, we
propose Attention Behavior Fine-Tuning (ABFT),
a novel low-resource fine-tuning method to induce
attention scores to focus on the correct labels.

Method Pipeline. Globally, ABFT utilizes such
a pipeline: (1) Dataset Building: from a selected
downstream dataset, we build a training set com-
posed of ICL-style sequences as shown in Fig. 1
(A). (2) Feed-forward Calculation: For each train-
ing sample, as shown in Fig. 1 (B), we conduct
a standard feed-forward calculation on the pre-
trained LM, and collect the attention matrices of all
the attention heads in all the layers. (3) Loss Calcu-
lation: For each attention matrix, we only focus on
the attention scores of the last token (i.e., the last
row of the attention matrix), where the predictions
of queries are made. As shown in Fig. 1 (D), we
first filter (detailed below) the non-induction head
out, and return a loss of 0 for these heads. Then, for
the remaining induction heads, we calculate a loss
function composed of a punishment of attention
scores on wrong labels and a reward of attention
scores on correct labels (detailed below). (4) Back
Propagation: We back-propagate the calculated
loss only to the WQ and WK matrices of every
attention head, and update the model parameters.

Induction Head Filter. As shown in Fig. 1 (C),
we skip the attention matrices where the attention
scores of the last token do not dominate on the label
tokens. To identify the attention matrices to skip,
in detail, given an attention matrix A ∈ Rnt×nt ,
where the nt is the input token sequence length, as
mentioned before, we focus on the last row α =

Ant . Given the position index of label tokens as
I = {Ii}ki=1, we calculate the attention score sum
on these label tokens as S =

∑
j∈I αj .2 Then, we

set a threshold T = k
k+log(nt)

, if S > T , we assert
the attention head of score A is an induction head,
and vice versa. We will verify the necessity and
benefits of this induction head filter in §5.2.

Loss Function. As shown in Fig. 1 (D), given an
attention matrix A, if judged as a non-induction
head by the aforementioned head filter, the loss
L for A is assigned to 0. Else, we conduct the
following calculation: given the position index of
label tokens consistent with the ground-truth label
of the query as I+, and the others I− = I\I+,3

we calculate the loss from the last row (α) of A as:

L(A) = A
∑

i∈I−
αi +B

∑

i∈I+

1− αi . (1)

That is, as shown in Fig. 1 (D), we punish the
“wrong” attention scores towards the label tokens
different from the query’s ground-truth with mag-
nitude A ⩾ 0, and reward the “correct” attention
scores with magnitude B ⩾ 0. These two terms
in the loss function may seem redundant, but we
will demonstrate in §5.3 that they actually contain
antagonistic implicit biases, therefore, the factors
A and B should be balanced well.

Why not End-to-end LoRA? Intuitively, directly
adding LoRA bypasses (Hu et al., 2022) to the
trained projection matrices and fine-tuning them
on an end-to-end training objective is also a pos-
sible approach. However, in end-to-end LoRA,
gradients are propagated from the output logits of
LMs, which requires that the final layer of the LMs
(i.e., output embeddings, or LM Head) must be in
full precision and with gradients activated, to get
stable gradients into the residual stream. This intro-
duces a non-negligible overhead, an issue avoided
by ABFT as it does not supervise the final out-
put. Moreover, fine-tuning attention projections
without selectivity may cause harmful side effects
toward the ICL out of the fine-tuned domain. We
will compare the performance and efficiency of
ABFT against end-to-end LoRA in the following
experiments (Table 2) to highlight the efficiency
and harmlessness of the ABFT method.

2For the case shown in Fig. 1 (C), I = {4, 8} (0-started),
and S is the sum of the values of the red-highlighted bar and
the blue-highlighted bar.

3For the case shown in Fig. 1 (C), I+ = {4} (the position
of “positive”), I− = {8} (the position of “negative”).
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Table 1: Accuracies (%) of ABFT and baselines on 9 LMs and 8 datasets. The best results are in bold.

Model Param. Method SST2 MR FP SST5 TREC SUBJ TEE TEH Average

GPT2-L 812M

Vanilla 56.35 61.13 42.09 29.69 35.45 49.12 39.06 54.00 45.86
MetaICL 85.94 80.96 37.30 42.09 33.98 50.49 45.41 54.20 53.80
PICL 74.70 73.34 54.49 33.79 32.91 51.37 47.46 53.42 52.68
Calibrate 56.35 60.94 36.91 25.10 34.08 49.32 36.72 53.52 44.12
ABFT 88.181.54 85.400.95 81.301.69 36.843.61 50.242.49 61.994.39 46.513.11 55.200.20 63.21

GPT2-XL 1.61B

Vanilla 67.87 69.53 51.07 30.66 35.25 50.98 42.68 53.03 50.13
PICL 74.80 74.32 51.17 32.71 33.20 51.46 47.95 53.42 52.38
Calibrate 68.16 75.00 36.43 28.52 35.55 50.10 39.26 51.56 48.07
ABFT 87.921.47 86.521.50 87.670.45 37.552.67 51.832.73 75.072.96 60.015.38 55.350.04 67.74

Falcon3 7.46B
Vanilla 91.11 92.77 85.35 46.00 50.00 62.60 60.55 52.05 67.55
Calibrate 90.53 93.07 82.71 44.04 54.30 62.40 54.79 51.76 66.70
ABFT 92.140.21 92.170.04 96.140.36 47.320.16 75.810.19 94.870.82 67.970.25 70.340.22 79.59

Llama3 8.03B
Vanilla 89.35 92.87 75.78 44.24 55.76 62.30 57.91 54.59 66.60
Calibrate 90.04 93.36 43.95 41.60 54.39 65.23 54.79 52.83 62.02
ABFT 93.141.39 92.500.84 94.021.72 52.102.31 73.091.11 92.701.44 72.021.81 72.025.87 80.20

DeepSeek-R1
Dist. Qwen
4-bit, LoRA

14.8B
Vanilla 90.92 91.21 92.18 46.97 62.50 66.60 66.60 63.87 72.61
Calibrate 90.04 91.41 92.68 46.09 61.62 65.43 65.33 62.30 71.86
ABFT 93.511.22 91.850.34 91.174.44 46.091.27 69.142.54 92.923.27 69.820.00 71.193.42 78.21

Qwen2.5
4-bit, LoRA 32.8B

Vanilla 93.85 94.43 86.23 47.17 58.40 87.50 65.14 69.63 75.29
Calibrate 93.75 94.82 74.22 44.82 58.79 84.08 63.96 63.96 72.30
ABFT 94.920.00 94.830.10 94.040.00 48.490.05 69.240.10 96.000.00 69.290.24 70.310.00 79.64

SimpleScaling
s1.1

4-bit, LoRA
32.8B

Vanilla 94.82 94.24 91.11 50.20 69.63 89.65 68.36 72.17 78.77
Calibrate 94.43 93.85 88.96 48.63 68.07 89.26 68.55 72.36 78.02
ABFT 94.920.10 94.290.05 96.000.00 49.950.05 72.460.39 95.710.10 71.730.05 73.100.04 81.02

Llama3
4-bit, LoRA 43.2B

Vanilla 93.26 94.04 73.92 49.41 58.98 71.58 62.60 66.70 71.31
Calibrate 95.02 93.07 54.20 44.53 59.08 72.56 61.03 65.82 68.16
ABFT 95.020.10 93.850.10 94.870.05 48.100.14 64.700.14 90.090.05 69.240.29 70.850.15 78.34

Llama3
4-bit, LoRA 55.6B

Vanilla 93.94 92.19 78.81 51.37 67.19 66.70 56.44 60.94 70.95
Calibrate 92.29 92.77 69.92 50.49 68.75 65.92 58.11 62.70 70.12
ABFT 94.530.10 93.410.14 93.210.44 49.020.78 71.780.58 92.680.48 70.760.64 70.750.34 79.52

4 Main Experiments

In this section, we mainly confirm the effective-
ness of the proposed ABFT, and find that: ABFT
effectively improves the ICL performance to about
10%∼20% relatively, which requires the minimum
parameters less than 0.05% to be full precision and
gradient, with other parameters free to be quan-
tized and gradient-free, and utilize 0.01% data cost
compared to the previous works.

4.1 Experiment Settings

Models and Datasets. We conduct our ex-
periment on 9 modern LLMs: GPT2 (Large,
XL) (Radford et al., 2019), Falcon3 7B (Team,
2024b), Llama3 (8B, 43B, 56B) (AI@Meta, 2024),
DeepSeek-R1 Distill Qwen 14B (DeepSeek-AI,
2025), Qwen2.5 32B (Team, 2024a; Yang et al.,
2024), and SimpleScaling s1.1 32B (Muennighoff
et al., 2025); and 8 datasets: SST2, SST5 (Socher
et al., 2013), MR (Pang and Lee, 2005), Financial
Phrasebank (Malo et al., 2014), TREC (Li and
Roth, 2002; Hovy et al., 2001), Subjective (Wang
and Manning, 2012), Tweet Eval Emotion (Mo-

hammad et al., 2018), Tweet Eval Hate (Basile
et al., 2019) (Refer Appendix A.1 for details).

Hyperparameters. We set: training samples nd =
512, the number of demonstrations per ICL sample
k = 4. A standard Adam optimizer (Kingma and
Ba, 2014) is used with learning rate lr = 2× 10−5

and pseudo-batch-size nb = 32 (i.e., we average
gradients per nb = 32 samples before perform-
ing a single gradient step). We set the initial val-
ues A0 = 0.5, B0 = 1.0, and dynamically bal-
ance them with the PID algorithm (refer to Ap-
pendix A.3), stabilizing the number of attention
heads identified as induction heads (see §5.3). The
models are trained for nstep = 32 steps.

Quantization Settings. Models over 10B are quan-
tized to 4-bit, with full-precision LoRA (Hu et al.,
2022) (inner dimension r = 16) trained on WQ

and WK with learning rate 10−4.

Baselines. We compare with: Contextual Calibra-
tion with 512 training samples (Zhao et al., 2021),
MetaICL end-to-end fine-tuning with 3.55M sam-
ples (Min et al., 2022), and PICL re-pre-training
with 80M samples (Gu et al., 2023).
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Table 2: A comparison between ABFT and End-to-end
Fine-tuning (E2E FT). Param.*: Parameters which are
required in FP16/32 and with gradient on.

Model Method Param.* Time AccID AccOD

Llama3
8.03B

4-bit, LoRA

Vanilla - - 66.02
E2E FT 0.5B 2.2× 78.33 61.74
ABFT 6.8M 1× 72.54 64.34

DeepSeek-R1
14.8B

4-bit, LoRA

Vanilla - - 72.61
E2E FT 0.8B 2.2× 78.26 63.62
ABFT 12M 1× 78.21 67.21

Qwen2.5
32.8B

4-bit, LoRA

Vanilla - - 75.29
E2E FT 0.8B 2.6× 82.09 62.24
ABFT 17M 1× 79.64 64.96

Llama3
55.6B

4-bit, LoRA

Vanilla - - 70.95
E2E FT 1.1B 2.7× 82.80 64.86
ABFT 33M 1× 79.52 67.32

Table 3: Prediction consistency metrics (%) on each
models averaged among 8 datasets.

Model Template Consist. Demonstration Consist.

w/o ABFT w/ ABFT w/o ABFT w/ ABFT

GPT2-XL 81.28 91.74 68.38 82.75
Llama3 8B 86.93 90.32 76.99 92.00

DeepSeek-R1 14B 89.64 92.79 81.30 85.97
Qwen2.5 32B 88.97 92.78 84.52 87.94
Llama3 56B 92.78 93.90 82.10 87.49

Others. We conduct all the experiments on a single
NVIDIA A40 with 48GB VRAM. We repeat each
experiment 4 times (⩽10B) or 2 times (>10B), and
report the averaged results on 1024 fixed test inputs
for each dataset. ICL-style inputs are built with
library STAICC (Cho and Inoue, 2025).

4.2 Main Results

The test results are shown in Table 1, where
ABFT consistently outperforms all the baselines,
even with enormous training sets (to MetaICL,
3.55M/512 ≈ 7000×) and full-model fine-tuning
(remind that ABFT only focuses on the WQ and
WK matrices), suggesting that ABFT is satisfy-
ingly efficient in both time and data cost. Such
results also provide strong empirical evidence for
the effectiveness of induction heads in LLMs.

Towards Mechanistic Controllability. To the best
of our knowledge, ABFT is the first approach to
train models without accessing final outputs, en-
abling model controlling via intermediate features
or activations. Through this practice, we prototypi-
cally implement one of the visions of mechanistic
interpretability (Rai et al., 2024): by attributing the
model’s inference to specific modules (circuits), we
enable their local optimization, thereby improving
overall performance effectively and efficiently.
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Prediction Consistency. We evaluate the predic-
tion consistency against variations in (1) prompt
templates and (2) demonstration sampling on
STAICC-DIAG (Cho and Inoue, 2025). For
each query, we repeat predictions across differ-
ent prompt templates and sampling strategies, and
measure consistency as the ratio of the maximum
consistent predictions (e.g., 6 positive vs. 3 nega-
tive yields 6/9 = 2/3), averaged over the dataset;
see Cho and Inoue (2025) and Appendix A.5 for
implementation details. As shown in Table 3,
ABFT significantly improves consistency across
all 8 datasets, stabilizing ICL under diverse con-
texts and enhancing prompt design efficiency.

Prediction Bias against Wrong Labels. More-
over, a known concern in ICL is the bias toward
seen labels when ground-truth labels are absent in
demonstrations (i.e., I+ = ∅) (Zhao et al., 2021;
Cho et al., 2025a), which can lead to incorrect
predictions. Our testing on such scenario with
and without ABFT in Fig. 3 shows that (see Ap-
pendix A.4 for experiment details): ABFT miti-
gates this issue via the punish term A , which pe-
nalizes incorrect labels during training and reduces
the bias effects of induction heads. Notably, ABFT
outperforms the 0-shot setting under unseen-label,
suggesting the existence or emergence of unknown
mechanisms that enable demonstrations in other
categories to enhance ICL4.

4.3 Comparison against End-to-end
Fine-tuning

As mentioned before, end-to-end (E2E) fine-tuning
on the in-domain dataset (not a wide dataset like
MetaICL) with LoRA is also an alternative solu-
tion. However, in this section, we will show that

4Since that: such a phenomenon contrasts with existing
views (Cho et al., 2025a), where the explicit copying by the
induction head is the only channel through which information
is transferred from the demonstrations to the query (in Fig. 10,
we show that the induction heads in ABFT model are almost
fully suppressed in unseen-label scenario), where unseen-label
demonstrations are harmful to ICL.
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compared with E2E fine-tuning, ABFT is more
efficient, and more harmless on tasks out of the
fine-tuning domain.

Time and Memory Cost. Notice that in the E2E
scenario, since the gradient is propagated from the
final output of the model, the LM head, which is the
top of the model, should be in full precision, to en-
sure a sufficient numerical resolution to utilize the
mini-batch for mitigating the gradient noise in the
stochastic gradient descent (Hubara et al., 2016).
This introduces a non-negligible overhead, as mea-
sured in Table 2. E2E fine-tuning slightly outper-
forms ABFT in in-domain accuracy (ACCID), but
incurs substantial training time and memory costs.

Harmlessness. We evaluate out-of-domain (OD)
performance on datasets different from the fine-
tuned one (Table 2, ACCOD). Both ABFT and E2E
fine-tuning degrade OD performance, but ABFT
causes less harm. This supports a conclusion
from Cho et al. (2025a): some induction heads
are intrinsic and task-independent, while others
are task-induced. ABFT on intrinsic heads harms
OD performance, whereas ABFT on task-induced
heads does not. In contrast, E2E fine-tuning on all
heads broadly degrades OD performance.

Data Efficiency. We test the accuracy against the
training set size as a metric of data efficiency, for
both ABFT and E2E fine-tuning, as shown in Fig. 2
(refer to Appendix C.1 for results on other mod-
els). In the results, ABFT and E2E fine-tuning
consistently benefit from more data samples, and
in few-shot scenarios (⩽ 512), ABFT and E2E fine-
tuning act equally, while E2E fine-tuning acts better
when more training data is given. However, given
the low-resource objective of ICL, and also the far
more expensive time and memory cost of E2E fine-
tuning, we can claim that ABFT has an advantage
in the few-shot and low-resource scenario.

Table 4: Ablation analysis of removing some compo-
nents from ABFT. Notice that the PID algorithm is to
stabilize the induction head number by adjusting the
factor A, so when we disable the head filter or fix the A
or B, the PID algorithm naturally loses its function.

Model Method Time Acc.

Falcon3
7.46B

Vanilla - 67.55
ABFT 1× 79.59
w/o PID, A = 0.5, B = 1.0 1.0× 76.86
w/o PID, w/o Head Filter 1.3× 75.57
w/o PID, A = 0, B = 1.0 1.0× 72.13
w/o PID, A = 0.5, B = 0 0.6× 56.47

Llama3
8.03B

Vanilla - 66.60
ABFT 1× 80.20
w/o PID, A = 0.5, B = 1.0 1.1× 80.07
w/o PID, w/o Head Filter 1.2× 70.39
w/o PID, A = 0, B = 1.0 1.2× 63.54
w/o PID, A = 0.5, B = 0 0.6× 58.79

DeepSeek-R1
14.8B

Dist. Qwen
4-bit, LoRA

Vanilla - 72.61
ABFT 1× 78.21
w/o PID, A = 0.5, B = 1.0 1.0× 73.35
w/o PID, w/o Head Filter 2.1× 73.51
w/o PID, A = 0, B = 1.0 0.9× 72.71
w/o PID, A = 0.5, B = 0 0.9× 73.36

5 Analysis

5.1 Attention Visualization after ABFT

As shown in Fig. 4, we average the global (to I)
and correct (to I+) induction attention scores on
the last token among attention heads and input sam-
ples on each transformer layer, on the validation
set. Also, we provide a direct visualization of at-
tention scores in Appendix C.3. Compared to the
pre-trained model, the ABFT model tends to elimi-
nate attention scores towards incorrect label tokens
(I−), and shift the attention scores from the atten-
tion sinks (the first token) (Xiao et al., 2024) and
plain tokens to the correct label token, causing an
enhancement to induction attention scores, contin-
uously on the middle-to-last layers. Such visualiza-
tion indicates that ABFT successfully generalizes
to correct the behavior of attention heads.

5.2 Ablation Analysis

In this section, we disable some components uti-
lized in the ABFT training protocol to suggest their
necessity. The main results of such ablation experi-
ments are shown in Table 4, where:

ABFT should be Localized. In Table 4, disabling
the head filter ((D) in Fig. 1) harms the accuracy.
Knowing that all attention heads are trained to be
induction heads under unfiltered ABFT loss, we
can infer that: in LLMs, some attention heads with
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Figure 5: Number of attention heads that are judged
as induction heads on 4 settings, against the training
processing (the number of seen data samples). PID
effectively stabilizes the induction head numbers.

w/o PID w/ PID

Figure 6: Accuracies with various settings on hyperpa-
rameter A and B, with and without PID algorithm. PID
weakens the sensitivity to initial parameters.

functions other than the induction head are still
necessary for ICL, aligning with and enhancing
the previous work (Cho et al., 2025a). However,
considering that some implicit antagonistic effects
induced by unfiltered ABFT loss still promote the
formation of other essential heads (i.e., when the
ABFT loss from deeper heads propagates to shal-
lower heads, its function becomes antagonistic with
the ABFT loss directly connected to those shallow
heads), the accuracy degradation with no head fil-
ters is not so significant.

Loss Factor (A and B) should be Balanced. As
mentioned in §4.1, we use the PID algorithm to
adaptively balance the value of A and B in the loss
calculation. In Table 4, we disable such adjustment
and observe an accuracy drop. Especially, when
we set the A or B to 0, the accuracy significantly
degrades. This eliminates the doubt of “whether
the loss factors are redundant” raised in §3, and we
will discuss this in-depth in the next section (§5.3).

5.3 Balance the Loss Factor A and B

Punish and Reward Influence Induction
Heads Antagonisticly. As shown in Table 4, re-
moving either loss term in Eq. 1 degrades perfor-
mance, indicating that both are essential. Inter-
estingly, the two terms introduce antagonistic im-
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Figure 7: Upper: A better accuracy (lower loss) in the
interpolation path suggests the same basin, and vice
versa. Lower: Contour map of accuracies against the
coefficient αE and αA in Eq. 2. E2E fine-tuned and
ABFT models are located in the same low-loss area.

plicit biases: the punish term A disperses atten-
tion across labels, reducing induction heads, while
the reward term B concentrates attention on spe-
cific labels, increasing induction heads through a
stepwise positive feedback loop. We track the num-
ber of induction heads during training on Llama3
8B and SST2 (see Appendix C.2 for more cases),
as shown in Fig. 5, to support this observation.

Automatically Stabilizing Induction Head Num-
ber. Ablation studies reveal that too many induc-
tion heads hinder fine-tuning and overall perfor-
mance, as other functional heads are also needed
for ICL; whereas an insufficient number prevents
the model from handling ICL tasks. To maintain a
stable number, we automatically adjust the antago-
nistic factor A in Eq. 1 using a classical PID con-
troller (Appendix A.3)5. As shown in Fig. 5, PID
stabilizes induction head count, improves ABFT
performance (Table 4), and reduces sensitivity to
hyperparameters A0 and B0, with accuracy remain-
ing stable across settings (Fig. 6).

6 Consistency of Training Objective:
ABFT and End-to-end Fine-tuning

To explore whether the emergence of induction
head is from ICL-style data—a key question in
interpretability (Chan et al., 2022; Reddy, 2024;

5Since A and B are antagonistic, controlling A alone suf-
fices to stabilize induction head numbers.

336



ABFT

E2E

Pre-trained

Figure 8: Attention score visualization of the pre-trained
model, ABFT model, and E2E fine-tuned model, on the
same input as Fig. 16, and the same models as Fig. 7
(Refer to Appendix C.3 for details and more cases).

Singh et al., 2024)—we examine the consistency
between ABFT and E2E objectives.

Principle. Due to the lack of qualitative thresh-
olds, it is hard to utilize statistic-based similarity
measures to determine whether two models exhibit
comparable similarity sufficient to indicate consis-
tent training objectives. Therefore, our experiment
is based on such a principle: if the fine-tuning ter-
minations on both training objectives fall into the
same basin of the loss function, then both fine-
tuning trajectories are similar (Neyshabur et al.,
2020), so that the two training objectives are con-
sistent. For such an end, we investigate the linear-
connectivity (Neyshabur et al., 2020; Ilharco et al.,
2023) among the pre-trained parameters θ0 (as the
start point of the fine-tuning) and fine-tuned param-
eters θE for E2E fine-tuning, and θA for ABFT. In
detail, we mix these three parameters into a new
model parameter set θ in the following form:

θ = θ0 + αE(θE − θ0) + αA(θA − θ0), (2)

and then test the accuracy of θ as an anti-metric
of model loss. As shown in Fig. 7 (upper), if the
accuracy of mixed θ is better (or at least, not sig-
nificantly worse) than the accuracy of θE and θA,
we can infer that the θE and θA are in the same loss
basin, with linear low-loss path observed.

Experiment and Result. We conduct the afore-
mentioned experiment protocol on SST2 and
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Figure 9: Contour map of accuracies against the αE and
αA on GPT2-L, and the θE is set as MetaICL model.

GPT2-XL. The results are shown in Fig. 7 (lower),
showing no high-loss paths between the E2E fine-
tuned model and the ABFT model. It suggests that
they are in the same basin of the loss landscape,
indicating the high similarity between these two
training objectives. Moreover, we visualize the at-
tention scores on ABFT and E2E fine-tuned models
as shown in Fig. 8: compared with the pre-trained
model, attention scores of the fine-tuned models
on both objectives consistently focus on the correct
label tokens, suggesting that E2E objectives imply
a promotion to correct induction head. Moreover,
as shown in Fig. 9, repeating the experiment on
MetaICL shows MetaICL model lies in the same
basin as ABFT, suggesting that full-model tuning
on large datasets is essentially equivalent to ABFT,
which can be seen as essential ICL fine-tuning.

7 Discussion

Conclusion. In this paper, we propose a fine-tuning
objective that strengthens the correctness of the in-
duction head by accessing only the attention matrix,
and demonstrate that it significantly improves the
performance of ICL. Our results reinforce the in-
duction head hypothesis for ICL interpretability
and represent a first step toward controlling model
behavior through mechanistic interpretability.

Towards Mechanistic Controllability. In this
paper, we raise the possibility of controlling the
model’s behavior by some specific modules (often
called circuit in the context of mechanistic inter-
pretability), which opens up a new neural network
model behavior-controlling paradigm: controlling
only the modules that make significant contribu-
tions to the output, thereby substantially reducing
the number of parameters that need to be adjusted
and achieving excellent efficiency.
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Limitations

Towards Open-end Tasks. The first limitation lies
in the fact that the induction head-based explana-
tion of ICL (Elhage et al., 2021; Singh et al., 2024;
Cho et al., 2025a), so that our proposed ABFT ap-
proach, applies only to classification tasks with a
finite label set. As mentioned in §4.2 and Fig. 3,
since our training objective consists of two factors,
our approach is not limited to the simple retrieval
setting where the ground-truth label appears in the
demonstrations, while extending these methods to
open-ended tasks remains an open challenge that re-
quires further investigation on the basic mechanism.
Nevertheless, given the current state of research on
ICL interpretability, we have made full use of these
findings and provided a valuable foundation for
advancing model control through the scope of in-
terpretability, i.e., Mechanistic Controllability.

Towards Better Mechanistic Controllability. For
our vision of Mechanistic Controllability, even
though this paper successfully identifies a small set
of modules (i.e., circuits) that require controlling
towards better ICL performance, the control meth-
ods based on gradients and moderate amounts of
data remain coarse. Therefore, future work could
focus on gradient-free and data-free model edit-
ing, which directly edits some parameters utilizing
a deeper understanding of the functional roles of
model parameters.

Towards Better Performance. It can be consid-
ered that some hyperparameters (see §4.1 and Ap-
pendix A.3), and the induction head filter (see §3)
may be not optimal, restricting the performance.
Discussing them in detail, and automatically opti-
mizing them can be helpful for better performance
of ABFT. Also, in Fig. 7, we observe that the ex-
tended line from the pre-trained model towards
the ABFT model leads to better accuracy, sug-
gesting a possibility of utilize model parameter
θ = θ0 + αA(θA − θ0), αA > 1 to further improve
accuracy without any gradient-based cost.

Towards Further Efficiency. As shown in Ap-
pendix B, the WQ and WK projections are signif-
icantly modified after ABFT only in some layers,
that is, it is possible to further restrict the gradient-
on parameters to some Transformer layers for bet-
ter efficiency (notice that currently we activate the
gradients of the attention mappings of all layers).
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A Detailed Experiment Implementation

A.1 Model & Dataset Details

Models. All the models in this paper are
loaded from huggingface. In detail, we list the
huggingface repository name to keep the repeata-
bility of this paper, as shown in Table 6.

Dataset Split. As also described by Cho and Inoue
(2025), we randomly sample 1024 data samples
from the original dataset to build the inputs for
training, and sample 4096+ 512 (especially, 512+
512 for FP dataset, 3192 + 512 for TEH dataset)
data samples for the demonstrations+queries for
the testing, respectively.

Demonstration Sampling. To generate the train-
ing examples of k demonstrations, we randomly
sample (k + 1) data examples from the aforemen-
tioned 1024 data, and concatenate them into the
inputs, with the prompt templates shown in §A.2.
To generate the testing examples, for each query
in the 512 samples, we sample two sequences of
demonstrations from the 4096 data samples, and
concatenate them into testing inputs, 2 for one
query sample, so that 1024 for one dataset.

A.2 Prompt Templates
We utilize the default prompt templates of STAICC,
as shown in Table 5. For the sake of simplicity,
we reduce the label tokens into one token, as also
shown in Table 5.

A.3 Details of PID Algorithm
On each model update step t > 2 (i.e., when the
gradients from all the samples of the t-th pseudo
batch (of nb data samples) are propagated), we
calculated the identified induction head numbers
from the induction head filter described in §3 and
Fig. 1 averaged on the nb data samples as n̄t. Given
the similar averaged induction head number on the
previous time step (t−1) as n̄t−1, we can calculate
the updated At term6 by standard PID algorithm
as:

At = Cp (n̄t − n̄t−1)

+ Ci

(
t∑

i=2

n̄i − n̄i−1

)

+ Cd (n̄t − 2n̄t−1 + n̄t−2)

+At−1,

(3)

6Remind that for the sake of simplicity, we only control A,
given the findings of A and B are antagonistic, as shown in
§5.3.
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Figure 10: Visualization of induction attention scores
on unseen label settings (Llama3 8B, TREC).

where the Cp = 0.03, Ci = 0.005, and Cd =
0.005 are hyperparameters. By such calculation,
we implement a feedback control to stabilize the
number of induction heads among training steps.

A.4 Experiment Protocol of Unseen Label

In Fig. 3, we examine that ABFT model can utilize
the demonstration with wrong label to improve the
ICL performance. Here we introduce the experi-
ment protocol.

First, we train a Llama3 8B on TREC (a 6-
way classification dataset) with the ABFT method.
Then, to test the trained ABFT model on the un-
seen label condition, we build special test inputs:
for each query with label l∗, we choose k = 4
demonstrations with label l ̸= l∗, and utilize the
standard template shown in Table 5 to build the
inputs, then test the accuracy. Notice that during
the training, no special sampling for the inputs is
conducted, i.e., the training is not under the unseen
label setting, so that such an experiment protocol
also confirms the generalization of ABFT methods
on a different distribution. Moreover, we repeat
the induction head visualization shown in Fig. 4 on
the unseen label condition in Fig. 10, where the in-
duction heads in the ABFT model are almost fully
suppressed but with considerable inference accu-
racy, which implies a new inference mechanism.

A.5 Experiment Protocol of Stability against
Prompting

In Table 3, we test whether the prediction of
ICL is stable against various (1) prompt templates
and (2) demonstration sampling, on the STAICC-
DIAG (Cho and Inoue, 2025) benchmark, whose
method is described briefly below.

Method. To test the prediction robustness against
prompt templates / demonstration sampling, we
repeat several predictions for each query on vari-
ous prompt templates / demonstration sampling,
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Table 5: Prompt templates used in this paper.

Dataset Prompt Template (Unit) Label Tokens

SST2 sentence: [input sentence] sentiment: [label token] \n negative, positive
MR review: [input sentence] sentiment: [label token] \n negative, positive
FP sentence: [input sentence] sentiment: [label token] \n negative, neutral, positive

SST5 sentence: [input sentence] sentiment: [label token] \n poor, bad, neutral, good, great
TREC question: [input sentence] target: [label token] \n short, entity, description, person, location, number
SUBJ review: [input sentence] subjectiveness: [label token] \n objective, subjective
TEE tweet: [input sentence] emotion: [label token] \n anger, joy, positive, sad
TEH tweet: [input sentence] hate speech: [label token] \n normal, hate

Table 6: Huggingface repository name for models used
in this paper.

Model Repository

GPT2-L openai-community/gpt2-large
GPT2-XL openai-community/gpt2-xl
Falcon3 tiiuae/Falcon3-7B-Base

Llama3 (8B) meta-llama/Meta-Llama-3-8B
DeepSeek-R1 deepseek-ai/DeepSeek-R1-Distill-Qwen-14B

Qwen2.5 Qwen/Qwen2.5-32B
SimpleScaling s1.1 simplescaling/s1.1-32B

Llama3 (43B) chargoddard/llama3-42b-v0
Llama3 (56B) nyunai/nyun-c2-llama3-56B

and calculate the ratio of the maximum consis-
tent group (e.g., we get 6 positive and 3 nega-
tive predictions on one query, then the ratio is
max(6, 3)/(6+3) = 2/3). The robustness metrics
are the average value of the whole dataset. Refer
to Cho and Inoue (2025) for the detailed implemen-
tation. Notice that only the consistency is tested in
these experiments, without observing the accuracy.

Result. The robustness metrics among prompt tem-
plates / demonstration sampling averaged on all
8 datasets before and after ABFT are shown in
Table 3, where both terms of the robustness are
significantly improved after ABFT, suggesting that
ABFT stabilizes ICL for various contexts, provid-
ing higher efficiency on prompt designing. Also,
given the results with mitigating prediction sensi-
tivity and bias against prompt templates / demon-
stration sampling, which is consistent with the ob-
jective of output calibration (Zhao et al., 2021; Fei
et al., 2023; Han et al., 2023; Zhou et al., 2024;
Jiang et al., 2023; Cho et al., 2025b), ABFT can be
regarded as an implicit calibration inside the LLM.

B Parameter Shift after ABFT against
Layers

We utilize the Frobenius norm to visualize the shift-
ing distance of the parameter matrix θ before and
after ABFT (θ′) as ∥θ−θ′∥2. The results are shown
in Fig. 17, 18, 19, where, although each model ex-
hibits its own pattern in terms of distance across
layer numbers, certain layers consistently show sig-

nificantly lower distances within every model.
Moreover, even though the early layers accumu-

late more gradients (since the gradients from each
later layer propagate backward to them), the peak
of the shifting distance typically appears in the mid-
dle to later layers. This observation is consistent
with previous works on Induction Heads (Cho et al.,
2025a).

C Augmentation Results

C.1 Augmentation Results for Data Efficiency
(Fig. 2)

We repeat the data efficiency experiments shown in
Fig. 2 on Qwen2.5 32B, as shown in Fig. 15. The
results are globally consistent with Fig. 2.

C.2 Augmentation Results for Number of
Induction Heads against Training
Processing (Fig. 5)

We repeat the visualization of the number of in-
duction heads against the training processing under
various settings on Llama3 8B and Falcon3 7B as
shown in Fig. 20 and 21. The results are globally
consistent with Fig. 5.

Moreover, we visualize the number of induc-
tion heads on only standard settings, as shown in
Fig. 22-28 for reference.

C.3 Augmentation Results for Attention
Visualization (Fig. 4 and 8)

As shown in Fig. 16, we visualize the attention
score on the last token of the given input example
in the validation set on Llama3 8B, and repeat this
visualization on more input cases for Fig. 16 and
Fig. 8 in Fig. 29. Moreover, we expand the Fig. 16
towards more layers in Fig. 30, and Fig. 8 in Fig. 31.
We observe that ABFT significantly modifies the
attention distribution in the middle layers, while in
the early and late layers, neither ABFT nor E2E
has a substantial impact on attention scores.
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Figure 11: Augmentation results of Fig. 4 on GPT2-L.

0 10 20 30 40
Layer #

0.0

0.1

0.2

0.3

0.4

H
ea

d-
av

er
ag

ed
 A

tt
en

tio
n Pre-trained, All Induction

Pre-trained, Correct Induction
ABFT, All Induction
ABFT, Correct Induction

Figure 12: Augmentation results of Fig. 4 on GPT2-XL.

0 5 10 15 20 25
Layer #

0.0

0.2

0.4

0.6

0.8

H
ea

d-
av

er
ag

ed
 A

tt
en

tio
n Pre-trained, All Induction

Pre-trained, Correct Induction
ABFT, All Induction
ABFT, Correct Induction

Figure 13: Augmentation results of Fig. 4 on Falcon3
7B.
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Figure 14: Augmentation results of Fig. 4 on Llama3
42B.

3264 128 256 512 1024
Training Example #

74

76

78

80

82

84

86

Ac
cu

ra
cy

ABFT
E2E
Vanilla

Figure 15: Accuracy against training set size as a metric
of data efficiency, for Qwen2.5 32B.
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Figure 16: Attention score visualization on the last to-
ken of ICL input of every attention head (vertical axis)
towards each token. Label tokens and their contents are
marked with dotted lines. Refer to Appendix C.3 for
more examples and layers. ABFT successfully focuses
attention scores to correct labels.

Moreover, we repeat the attention score visual-
ization similar to Fig. 4 on more models and SST2,
as shown in Fig. 11, 12, 13, and 14.
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Figure 17: Shifting distance before and after ABFT on the c_attn matrix of GPT2-XL and SST2.
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Figure 18: Shifting distance before and after ABFT on the q_proj and k_proj matrix of Llama3-8B and SST2.
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Figure 19: Shifting distance before and after ABFT on the q_proj and k_proj matrix of Llama3-42B and SST2.
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(a) Llama3-8B SST2 (Fig. 5)
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(b) Llama3-8B MR
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(c) Llama3-8B FP
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(d) Llama3-8B SST5
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(e) Llama3-8B TREC
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(f) Llama3-8B SUBJ
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(g) Llama3-8B TEE

0 200 400 600 800 1000
Seen Training Example #

0

100

200

300

400

500

In
du

ct
io

n 
H

ea
d 

#

A = 0, B = 1.0
A = 0.5, B = 0
w/o PID, A = 0.5, B = 1.0
w/ PID, A0 = 0.5, B0 = 1.0

(h) Llama3-8B TEH

Figure 20: Induction head numbers along training dynamics on Llama3-8B and all 8 datasets.
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(a) Falcon3-7B SST2
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(b) Falcon3-7B MR
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(c) Falcon3-7B FP
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(d) Falcon3-7B SST5
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(e) Falcon3-7B TREC
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(f) Falcon3-7B SUBJ
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(g) Falcon3-7B TEE
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(h) Falcon3-7B TEH

Figure 21: Induction head numbers along training dynamics on Falcon3-7B and all 8 datasets.
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Figure 22: Induction head numbers along training dynamics on GPT2-Large and all 8 datasets.
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Figure 23: Induction head numbers along training dynamics on GPT2-XL and all 8 datasets.
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Figure 24: Induction head numbers along training dynamics on DeepSeek-R1 and all 8 datasets.

350



0 200 400 600 800 1000
Seen Training Example #

0

20

40

60

80

100

In
du

ct
io

n 
H

ea
d 

#

SST2

w/ PID, A0 = 0.5, B0 = 1.0

0 200 400 600 800 1000
Seen Training Example #

0

20

40

60

80

In
du

ct
io

n 
H

ea
d 

#

MR

w/ PID, A0 = 0.5, B0 = 1.0

0 200 400 600 800 1000
Seen Training Example #

0

20

40

60

80

100

120

In
du

ct
io

n 
H

ea
d 

#

FP

w/ PID, A0 = 0.5, B0 = 1.0

0 200 400 600 800 1000
Seen Training Example #

0

20

40

60

80

100

In
du

ct
io

n 
H

ea
d 

#

SST5

w/ PID, A0 = 0.5, B0 = 1.0

0 200 400 600 800 1000
Seen Training Example #

0

20

40

60

80

100

In
du

ct
io

n 
H

ea
d 

#

TREC

w/ PID, A0 = 0.5, B0 = 1.0

0 200 400 600 800 1000
Seen Training Example #

0

20

40

60

80

100

120

In
du

ct
io

n 
H

ea
d 

#

SUBJ

w/ PID, A0 = 0.5, B0 = 1.0

0 200 400 600 800 1000
Seen Training Example #

0

20

40

60

80

In
du

ct
io

n 
H

ea
d 

#

TEE

w/ PID, A0 = 0.5, B0 = 1.0

0 200 400 600 800 1000
Seen Training Example #

0

20

40

60

80

100

120

In
du

ct
io

n 
H

ea
d 

#

TEH

w/ PID, A0 = 0.5, B0 = 1.0

Figure 25: Induction head numbers along training dynamics on Qwen2.5-32B and all 8 datasets.
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Figure 26: Induction head numbers along training dynamics on SimpleScaling s1.1 and all 8 datasets.
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Figure 27: Induction head numbers along training dynamics on Llama3-42B and all 8 datasets.
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Figure 28: Induction head numbers along training dynamics on Llama3-56B and all 8 datasets.

354



te
xt

: (
...

), 
la

be
l: 
ne

ga
tiv

e 
\n

  t
ex

t: 
(..

.),
 la

be
l: 
po

si
tiv

e 
\n

 
te

xt
: (

...
), 

la
be

l: 
ne

ga
tiv

e 
\n

 te
xt

: (
...

), 
la

be
l: 
po

si
tiv

e 
\n

 
te

xt
: (

...
), 

la
be

l:(
ne

ga
tiv

e)

A
B
FT

Va
ni

lla

te
xt

: (
...

), 
la

be
l: 
po

si
tiv

e 
\n

  t
ex

t: 
(..

.),
 la

be
l: 
po

si
tiv

e 
\n

 
te

xt
: (

...
), 

la
be

l: 
po

si
tiv

e 
\n

 te
xt

: (
...

), 
la

be
l: 
ne

ga
tiv

e 
\n

 
te

xt
: (

...
), 

la
be

l:(
po

si
tiv

e)

A
B
FT

Va
ni

lla

te
xt

: (
...

), 
la

be
l: 
po

si
tiv

e 
\n

  t
ex

t: 
(..

.),
 la

be
l: 
ne

ga
tiv

e 
\n

 
te

xt
: (

...
), 

la
be

l: 
po

si
tiv

e 
\n

 te
xt

: (
...

), 
la

be
l: 
po

si
tiv

e 
\n

 
te

xt
: (

...
), 

la
be

l:(
ne

ga
tiv

e)

A
B
FT

Va
ni

lla

te
xt

: (
...

), 
la

be
l: 
po

si
tiv

e 
\n

  t
ex

t: 
(..

.),
 la

be
l: 
ne

ga
tiv

e 
\n

 
te

xt
: (

...
), 

la
be

l: 
po

si
tiv

e 
\n

 te
xt

: (
...

), 
la

be
l: 
po

si
tiv

e 
\n

 
te

xt
: (

...
), 

la
be

l:(
ne

ga
tiv

e)

A
B
FT

Va
ni

lla

Va
ni

lla

A
B
FT

E2
E

Va
ni

lla

A
B
FT

E2
E

Va
ni

lla

A
B
FT

E2
E

Va
ni

lla

A
B
FT

E2
E

Fi
gu

re
29

:A
ug

m
en

ta
tio

n
re

su
lts

(4
ca

se
s)

fo
ra

tte
nt

io
n

vi
su

al
iz

at
io

n.
U

pp
er

:r
es

ul
ts

fo
rF

ig
.1

6,
lo

w
er

:r
es

ul
ts

fo
rF

ig
.8

.

355



A
B
FT

Va
ni

lla

A
B
FT

Va
ni

lla

A
B
FT

Va
ni

lla

A
B
FT

Va
ni

lla

A
B
FT

Va
ni

lla

A
B
FT

Va
ni

lla

A
B
FT

Va
ni

lla

A
B
FT

Va
ni

lla

A
B
FT

Va
ni

lla

A
B
FT

Va
ni

lla

A
B
FT

Va
ni

lla

A
B
FT

Va
ni

lla

Fi
gu

re
30

:A
ug

m
en

ta
tio

n
re

su
lts

(m
or

e
la

ye
rs

)f
or

at
te

nt
io

n
vi

su
al

iz
at

io
n

w
ith

th
e

sa
m

e
se

tti
ng

s
an

d
in

pu
ta

s
th

e
Fi

g.
16

.

356



Va
ni

lla

A
B
FT

E2
E

Va
ni

lla

A
B
FT

E2
E

Va
ni

lla

A
B
FT

E2
E

Va
ni

lla

A
B
FT

E2
E

Va
ni

lla

A
B
FT

E2
E

Va
ni

lla

A
B
FT

E2
E

Va
ni

lla

A
B
FT

E2
E

Va
ni

lla

A
B
FT

E2
E

Va
ni

lla

A
B
FT

E2
E

Va
ni

lla

A
B
FT

E2
E

Va
ni

lla

A
B
FT

E2
E

Va
ni

lla

A
B
FT

E2
E

Fi
gu

re
31

:A
ug

m
en

ta
tio

n
re

su
lts

(m
or

e
la

ye
rs

)f
or

at
te

nt
io

n
vi

su
al

iz
at

io
n

w
ith

th
e

sa
m

e
se

tti
ng

s
an

d
in

pu
ta

s
th

e
Fi

g.
8.

357


