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Abstract

Classifiers are an important and defining fea-
ture of the Chinese language, and their cor-
rect prediction is key to numerous educational
applications. Yet, whether the most popu-
lar Large Language Models (LLMs) possess
proper knowledge the Chinese classifiers is an
issue that has largely remain unexplored in the
Natural Language Processing (NLP) literature.

To address such a question, we employ vari-
ous masking strategies to evaluate the LLMs’
intrinsic ability, the contribution of different
sentence elements, and the working of the at-
tention mechanisms during prediction. Besides,
we explore fine-tuning for LLMs to enhance
the classifier performance.

Our findings reveal that LLMs perform worse
than BERT, even with fine-tuning. The predic-
tion, as expected, greatly benefits from the in-
formation about the following noun, which also
explains the advantage of models with a bidi-
rectional attention mechanism such as BERT.

1 Introduction

Chinese classifiers constitute a morphosyntac-
tic category that semantically marks noun
classes (Ahrens and Huang, 2016). They precede a
head noun and combine with numerals or demon-
strative pronouns to convey quantity or frequency
within noun phrases (Li and Thompson, 1989). As
illustrated in Figure 1, such linguistic devices con-
struct a complex system describing different seman-
tic features of head nouns that they precede (Huang
and Shi, 2016). The large classifier inventory in
Chinese often allows different classifiers to com-
bine with the same head noun, conveying distinct
semantic nuances (Shi, 2014; Huang and Chen,
2014). For example, both individual classifiers “个”
and “位” can modify the noun of people, while the
former is a more generic one, the latter is restricted
to highly-regarded professions and conveys a polite
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Figure 1: This figure elaborates on correct syntactic
structures of the Chinese classifier system, the types of
Chinese classifiers, and corresponding examples, where
Num, CL, Dem. Pron., and Approx. stand for numeral,
classifier, demonstrative pronoun, and approximation,
respectively. Notably, several classifier examples on
both sides are accompanied by icons that illustrate the
approximate meanings they convey. A detailed explana-
tion is provided in Appendix C.

tone. Improper collocations can result in semantic
or pragmatic violations (Chan, 2019).

In the natural language processing (NLP) litera-
ture, there has been extensive exploration of Nat-
ural Language Understanding (NLU) using Pre-
trained Language Models (PLMs) (Wang et al.,
2022) and Large Language Models (LLMs) (Chang
et al., 2024; Ma et al., 2025). However, all cur-
rent studies on Chinese classifiers only include be-
haviours of traditional models for classifier predic-
tion or selection with limited interpretability efforts
(Peinelt et al., 2017; Järnfors et al., 2021), while to
the best of our knowledge, there is no evaluation
study with more recent autoregressive LLMs. In
addition to the interest in evaluating LLMs on this
essential component of Chinese grammar, it should
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be kept in mind that learning classifier systems has
been proven to be particularly challenging for learn-
ers of Chinese as L2 (Liang, 2008; Liu, 2018), and
thus NLP technologies with a robust knowledge of
classifiers would be a precious resource to develop
educational tools.

Given the above-mentioned gap in the litera-
ture, we address the following research questions:
How do LLMs perform in this classifier predic-
tion? What are the semantic contributions of the
different elements of a sentence to the process of
selecting a classifier, and can this be observed from
the attention mechanism of the model?

With this goal in mind, we establish a control
task by iteratively inserting various classifiers into
a blank classifier position within sentence and rank-
ing them based on their Language Model (LM) log
probabilities. With the same setups, we randomly
extract sentence samples and mask the token of the
classifier and then fine-tune the models to exam-
ine how well they can perform. Finally, we carry
out additional analysis by modifying the model’s
attention mask, in order to make them ignore the
surrounding words in the sentence and quantify
their information contribution to task performance.

The control task shows that BERT (Devlin et al.,
2019) and LLMs achieve good accuracy in the pre-
diction, yet the former exhibits a distinct advantage
and higher improvement potential with fine-tuning.
Due to the strong semantic link between classifiers
and head nouns, models exhibit a high dependency
on the corresponding head noun during prediction.
Intriguingly, the results also confirm an additional
(albeit weak) contribution from the remaining con-
textual information. The same experiment also
reveals that the bidirectional attention mechanism
plays a critical role, despite the bigger parameters
and training data size of autoregressive LLMs.

2 Related Work

2.1 Chinese Classifiers

Chinese classifiers serve as obligatory syntactic
elements bridging numerals and head nouns, form-
ing grammatically complete noun phrases (Li and
Thompson, 1989) while encoding semantic fea-
tures, including shape and function, and taxonomic
categorization (Lakoff, 1986; Croft, 1994). Current
research on this element centers on the usage pat-
terns across diverse population groups (Zhan and
Levy, 2018; Shi, 2021) and its nuanced idiosyn-
crasies (Liu et al., 2019).

However, recent computational studies of the
prediction task remain scarce. Existing studies
most focus on early approaches, covering SVMs
(Guo and Zhong, 2005) and Word2Vec embeddings
(Peinelt et al., 2017), later augmented with mutual
information metrics (Liu et al., 2019).

The Transformers marked a turning point. But
only Järnfors et al. (2021) demonstrated BERT’s
superior performance after fine-tuning, though re-
vealing persistent deficiencies in implication cover-
ing politeness and plural markers. This limitation
motivates investigating whether modern LLMs’ en-
hanced contextual awareness and linguistic knowl-
edge can achieve more robust classifier prediction.

2.2 Attention Mechanism in Lexical
Semantics

BERT’s bidirectional attention provides compre-
hensive contextual awareness by processing both
left and right contexts of target words (Devlin et al.,
2019). This architectural advantage has been ap-
plied to LLMs and empirically validated across
NLP tasks, like syntactic parsing and named entity
recognition (BehnamGhader et al., 2024; Springer
et al., 2025). Building on this foundation, (Feng
et al., 2025) demonstrates that bidirectional archi-
tectures particularly excel in semantic tasks requir-
ing precise context resolution with the framework
constructed by BehnamGhader et al. (2024).

While autoregressive LLMs are inherently con-
strained by unidirectional attention, their substan-
tially expanded pretraining corpora and enhanced
world knowledge (Wei et al., 2022; Brown et al.,
2020) might offer compensatory advantages across
various NLU tasks. However, specifically, for Chi-
nese classifier prediction, the trade-off effect of
this architectural dichotomy on classifiers remains
unexamined. Furthermore, how bidirectional atten-
tion boosts BERT’s accuracy and how head nouns
impact the performance of bidirectional models
both require investigation.

2.3 Masking Strategies for Probing
Masking strategies enable controlled experiments
by selectively processing target regions to assess
performance changes or predicted output (Petroni
et al., 2019; Kassner and Schütze, 2020; Zhong
et al., 2021). One of the typical approaches is
to modify LMs’ attention masks, zeroing selected
token weights to study attention mechanisms’ ef-
fects (Liong et al., 2024). In the computational lin-
guistics domain, this approach helps assess specific
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linguistic components’ contributions. For instance,
Metheniti et al. (2020) showed that masking non-
verbal linguistic elements improves BERT’s align-
ment with human intuitions for role fillers, while
Cho et al. (2021) demonstrated similar benefits for
event location prediction by masking context and
forcing attention on verb phrases.

Following the previous work, we mask the target
classifier to trigger the model’s prediction at this
position and adjust the attention mask to examine
how effectively context-based attention contributes
to the target classifier.

2.4 Classifier Ranking by Log Probability

Log Probability (LogProb) has been proven effec-
tive for various token-level tasks like assessing
grammatical correctness and semantic plausibil-
ity, where its outputs often align with human judg-
ments and outperform direct prompting (Hu and
Levy, 2023; Kauf et al., 2024).

We acknowledge that this metric is not without
limitations. It is known to be sensitive to confound-
ing variables such as word frequency1 and output
length (Salazar et al., 2020; Holtzman et al., 2021).
But they are difficult to isolate due to the uneven
distribution nature of pre-training data. Despite this
sensitivity, LogProb also be recognized as the ro-
bust choice for check the certainty of LMs’ output
because its validity and superiority for semantic
tasks are strongly supported by Kauf et al. (2024).

To specifically mitigate the influence of output
length,we insert classifier candidates into a sen-
tence to compute the average LogProb of each filled
sentence to directly obtain the score without any
redundant generation In this framework, the candi-
date that yields the highest sentence-level LogProb
is considered the best fit.

3 Methodology

This study evaluates the performance of two types
of LMs in Chinese classifier prediction: (1) the
model with bidirectional attention mechanisms,
BERT, with masked language modeling and fine-
tuning; and (2) autoregressive LLMs, including
local deployments (Qwen3-1.7B, 4B, 8B and cor-
responding fine-tuned versions) and full-parameter
APIs (DeepSeek-R1 and GPT-4). Due to the com-
plex mapping between head nouns and classifiers,
we obtain accuracy based on log probability rank-

1The analysis of effect for word frequency on accuracy is
attached in Appendix D

ing for evaluation. The detailed workflow is demon-
strated in Figure 2.

3.1 Dataset Constructions

We employ the Chinese Classifier Dataset (Peinelt
et al., 2017), a comprehensive resource with an-
notated classifier-noun pairs in sentential contexts,
convenient to adapt classifier prediction tasks. This
dataset contains 681,104 sentences, encompassing
172 distinct classifiers that nearly cover the entire
commonly used Mandarin classifiers. Additionally,
the Stanford constituent parser (Levy and Manning,
2003) was applied to annotate the head noun in
each sentence. Although classifiers exhibit diverse
pairings in pragmatic contexts, their syntactic com-
ponent combinations are highly fixed, as supported
by (Li and Thompson, 1989), suggesting that a
relatively small number of examples is sufficient
to effectively evaluate their accurate usage and pre-
diction. Due to this and computational resource
limitations, we initially randomly sampled 11,986
sentences that span all classifiers and preserve their
original distribution. After manual screening to
remove 69 erroneous cases (e.g., annotation errors
or syntactic anomalies), we obtained 11,917 valid
sentences for further processing. These sampled
instances were split into training and test sets at an
85:15 ratio to support fine-tune and evaluation.

3.2 BERT Classifier Prediction

Masked language modeling To evaluate
BERT’s performance in Chinese classifier predic-
tion, we utilize the BERT-base-chinese model
through masked language modeling (MLM).
Our approach computes the conditional prob-
ability of candidate classifiers at the masked
position, accommodating both single-token
classifiers (e.g., “个”) and two-token classifiers
(e.g., “档子”). Given a tagged sentence X =
(x1, . . . ,<CL>,<h>, head noun,</h>, . . . , xn),
where <CL> is the placeholder for the classifier
and <h>, </h> demarcate the head noun, we
replace <CL> with one or two “[MASK]” tokens
based on the classifier’s tokenization. We calculate
the log probability for each candidate classifier
c ∈ C, where C is a set of 172 classifiers, encom-
passing both single-character and two-character
classifiers.

For single-token classifiers, the log probability
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Figure 2: This figure shows the workflow of the project. As denoted by purple arrows, the given sample sentence
is input into LMs for prediction. The sentences in the dataset vary in length (and are not necessarily limited to 7
tokens as in the example shown in the figure), while classifiers may consist of either one or two Chinese characters.

of a classifier c is computed as:

logP (c|X) = log
(

softmax
(
BERT(Xf (c))[I1]

)
c

)

(1)
where Xf (c) is the sentence with <CL> replaced
by classifier c, I1 denotes the position of the single
"[MASK]" token, and softmax(·)c represents the
probability of classifier c.

For two-token classifiers, where c = (c1, c2),
the joint log probability is calculated as:

logP (c|X) =
∑2

m=1 log
(

softmax
(
BERT(Xf (c))[Im]

)
cm

)

(2)
where Im is the position of the m-th [MASK] token
(m = 1, 2), and softmax(·)cm is the probability of
the m-th token of classifier c. The joint log proba-
bility sums the log probabilities of both mask posi-
tions, accurately capturing the combined likelihood
of the two tokens.
Fine-tuning We use the full training set over 3
epochs with the AdamW optimizer (learning rate:
2× 10−5) with early stopping strategy.

3.3 LLM-Based Classifier Prediction
Sentence log probability Unlike BERT, we uti-
lize sentence-level log probabilities for classifier
ranking due to the autoregressive nature of LLMs.
Since they can only access leftward context when
predicting the classifier token, the isolated token

probability fails to incorporate crucial information
about the subsequent noun or other sentence ele-
ments. This lack of right-context access renders
token-level probabilities unreliable for our task.

With locally deployed Qwen3, we replace the
empty classifier position (indicated with an under-
score) in each sentence with each of 172 candi-
date classifiers and use the IncrementalLMScorer
from the minicons2 to extract the log probability
of each filled sentence by averaging the token-level
log probabilities.It can be represented as:

logP (Sc|X) =
1

T

T∑

t=1

log (P (wt|w<t, Xf (c)))

(3)
where Sc is the sentence with classifier c inserted,
Xf (c) is the sentence with <CL> replaced by c, T
is the total number of tokens, wt is the t-th token,
and w<t is the preceding context. This approach
evaluates the overall coherence of the sentence with
the inserted classifier, averaging the log probabili-
ties of all tokens to normalize for sentence length.
Prompting via API For the full-parameter mod-
els DeepSeek-R1 and GPT-4, we designed prompts

2minicons is a Python library for efficient probability scor-
ing of transformer-based language models. Please refer to its’
github link: https://github.com/kanishkamisra/minicons
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to guide them to generate the most probable Chi-
nese classifier for each given sentence with an
empty classifier position. To diminish extraneous
reasoning and maintain diversity of responses, we
configured the temperature to 0, top-p to 0.9, and
maximum token length to 32. To ensure unique-
ness, outputs are further refined using a set-based
deduplication method.

For GPT-4, we set logprobs parameter to be
true in the API call, enabling the model to return
the logarithmic probabilities of each output token.
Thus, we can ensure that predicted classifiers can
be sorted by their log-probability in descending or-
der as Qwen. DeepSeek-R1 API, however, does not
support LogProb extraction. Hence, we perform re-
peated generations with multiple candidate outputs
and select the first result containing three distinct
single-character classifiers as formal selections.
Metrics Predictions were evaluated using two
metrics: Accuracy and R-Rank. Accuracy mea-
sures the proportion of samples where the model’s
top predicted classifier matches the correct classi-
fier. R-Rank, based on previous work (Camacho-
Collados et al., 2018; Peng et al., 2022), evaluates
the model’s nuanced understanding of classifier
selection by considering the rank of the correct
classifier within the top 3 predictions. Specifically,
for each sample i, we define ranki as the rank of
the correct classifier among the top 3 predictions,
or 4 if it is not among them. These metrics are
defined as follows:

Accuracy =
1

n

n∑

i=1

1

(
yi = yli[0]

)
(4)

where n is the total number of samples, yi is the
correct classifier for the i-th sample, yli[0] is the
model’s top predicted classifier for the i-th sam-
ple, and 1

(
yi = yli[0]

)
is an indicator function that

returns 1 if the top prediction matches the correct
classifier, and 0 otherwise.

R-rank =
1

n

n∑

i=1

ranki (5)

where n is the total number of samples, and ranki
is the rank of the correct classifier for the i-th sam-
ple within the model’s top 3 predictions (1, 2, or 3),
or 4 if it is not in the top 3. The choice of a top-3
cutoff for R-rank was deliberate. Given that many
Chinese nouns collocate with multiple classifiers,
evaluating the top-3 candidates provides a suffi-
ciently broad and practical assessment of a model’s

discriminative ability. Extending this range further
would dilute the metric’s practical significance, as
lower-ranked candidates are increasingly unlikely
to be contextually appropriate.

4 Experimental Results and Analyses

4.1 Can LLMs Be Good Classifier Guessers?

Model Accuracy R-rank

BERT MLM 62.31 1.8298
BERT-ft 69.54 1.6676
GPT-4 50.70 2.1408
DeepSeek-R1 59.64 1.9400
Qwen3-1.7B 31.80 2.7821
Qwen3-1.7B-ft 39.03 2.5107
Qwen3-4B 33.46 2.7270
Qwen3-4B-ft 47.69 2.2698
Qwen3-8B 39.03 2.5107
Qwen3-8B-ft 39.94 2.4861

Table 1: Results of accuracy and R-rank of different
LMs for Chinese classifier prediction. “MLM” stands
for “Masked Language Modeling”, and “ft” denotes
“Fine-tuning”.

The results in Table 1 demonstrate BERT’s su-
perior performance, achieving both the highest ac-
curacy and the optimal R-rank scores, suggesting
its effectiveness in Chinese classifier prediction. In
contrast, autoregressive LLMs, including GPT-4
and the Qwen3 variants, generally underperform,
with most models failing to surpass 0.5 accuracy
and exhibiting R-rank values between 2 and 3. No-
tably, Deepseek-R1 is an exception, achieving a
competitive R-rank and higher accuracy than other
LLMs, though it still falls short of BERT’s per-
formance. While scaling model parameters yields
marginal improvements, even the largest models in
this study, Deepseek-R1 and GPT-4, do not close
the gap with BERT. This suggests that architectural
differences (e.g., masked language modeling vs.
autoregressive generation) may play a more critical
role than parameter size in this task.

4.2 Can LLMs with Fine-tuning Close the
Performance Gap to BERT?

Different sizes of Qwen3 models exhibit signifi-
cant improvements in both accuracy and R-rank
after fine-tuning in Table 1. Interestingly, the scal-
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ing effect of model parameters does not align with
the default models’ performance trends, and the
Qwen3-4B-ft achieves optimal performance in both
metrics among the Qwen3 variants.

However, while fine-tuning leads to substantial
performance gains, the enhanced Qwen3-4B model
only reaches accuracy levels comparable to GPT-4,
still falling significantly short of BERT’s perfor-
mance. Furthermore, when applying the same fine-
tuning procedure to BERT, we observe an inverse
relationship between the two metrics. Despite this,
the fine-tuned LLMs fail to match BERT’s perfor-
mance in either metric, suggesting that fine-tuning
alone may be insufficient to overcome LLMs’ in-
herent limitations in classifier prediction tasks.

4.3 Can LLMs Balance Prediction
Performance among Classifier Types?

While LLMs currently trail BERT in overall perfor-
mance, their potential to leverage vast pre-training
data to address BERT’s key limitations, particu-
larly inconsistent performance across task types
and weaker fine-grained semantic discrimination,
warrants further investigation. This motivates our
detailed analysis of classifier performance across
different task types and models.

As illustrated in Figure 3, we evaluate models’
accuracy per classifier type (R-rank with similar
trends). Contrary to expectations, LLMs fail to
perform more balanced or superior semantic preci-
sion and R-rank than BERT despite their broader
pretraining; in many cases, they lag behind.

For sortal classifiers, the individual classifiers
yield the highest accuracy across models, likely
due to their reliance on explicit head-noun features,
straightforward classification logic, and high fre-
quency in training data. However, event classi-
fiers reveal only a marginal gap between BERT
and LLMs, suggesting comparable challenges in
modeling event semantics for both of them. No-
tably, BERT’s strong performance in kind classi-
fiers, paired with LLMs’ decline, highlights the
latter’s typological understanding deficits.

The performance of LMs’ measure classifiers
reveals an important distinction, while standard
measure classifiers achieve relatively strong results
across all models due to their rigid syntactic pat-
terns, both BERT and LLMs struggle with con-
tainer and approximate classifiers. This perfor-
mance dichotomy suggests that while models can
effectively learn predictable, formulaic relation-
ships, they face fundamental challenges in model-

ing more complex items like the container-contents
relationship and quantifying abstract concepts.

The similar performance patterns between LLMs
and BERT, coupled with LLMs’ overall weaker
results, suggest that neither their expanded pre-
training data scale nor their enhanced capabilities
from larger parameters lead to improved predic-
tion performance. This persistent performance gap
may warrant further investigation into architectural
differences, particularly in attention mechanisms.

4.4 How LMs’ Attention Mechanisms
Contribute to Prediction?

Attention Mask Type Token Visibility Pattern

Standard
[CLS]那里有一
[MASK]猫吗 ? [SEP]

Mask After Head Noun
[CLS]那里有一
[MASK]猫 0 0 [SEP]

Context Mask
[CLS] 0 0 0 0 [MASK]
猫吗 ? [SEP]

Head Noun Mask
[CLS]那里有一
[MASK] 0吗 ? [SEP]

Mask After Classifier
[CLS]那里有一
[MASK] 0 0 0 [SEP]

Table 2: Token visibility patterns under different mask-
ing strategy types. The positions with 0s correspond to
tokens in the input for which the model’s attention is
blocked(instead of 0 in the text sequence).

Given the classifiers’ strong dependence on their
head nouns, the differences in attention mecha-
nisms between BERT and LLMs, and the above
analysis, we further investigate how the architec-
tural distinctions account for the gaps. We select
BERT as our baseline reference and employ 4 dif-
ferent attention masking types distinct from the
standard attention masking for BERT MLM. Ex-
amples and comparisons are shown in Figure 3.

Inspired by Metheniti et al. (2020), we design
four masking strategies by zeroing out tokens in
BERT’s attention mask, shown in Table 2.

The results of adjusting attention masking in
Table 3 show an obvious decline trend in both ac-
curacy and R-rank. The minor decrease in per-
formance for Mask After Head Noun and Con-
text Mask indicates that directional contextual in-
formation (excluding the head noun) contributes
marginally to prediction. Based on the changes
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Figure 3: The fine-grained analysis of the six types of classifiers’ predictions among the proposed LMs. The black
polyline represents the R-rank value (the lower, the better); the bar charts in different colors represent the accuracy
of specific models in this type of classifier (the higher, the better). The “ft” in model names represents that the LMs
have applied a fine-tuning strategy.

in both metrics, the text after the head noun has a
greater influence on R-rank, while the preceding
content affects accuracy more significantly.

Attention Mask Type Accuracy R-rank

Standard 62.31 1.8298
Mask After Head Noun 60.92 1.8929
Context Mask 58.35 1.9272
Head Noun Mask 33.19 2.6670
Mask After Classifier 25.59 2.9443

Table 3: Performance for BERT with various attention
masking strategies.

When the head noun is masked, the perfor-
mance plummets compared to the standard condi-
tion, highlighting the high dependency of classifier
prediction on language models. However, further
masking the preceding context reveals an interest-
ing pattern where accuracy experiences a signifi-
cant drop, R-rank performance shows a slight re-
bound. This scenario mirrors LLM’s unidirectional
attention mechanism. With the scale of 110M pa-
rameters, BERT achieves only around 25% accu-
racy and a ranking score near 3. This result under-
scores the critical role of the bidirectional attention
mechanism, which doubles the accuracy while re-
ducing the ranking score by one.

The strong dependency on the head noun and the
partial dependence on preceding contexts in classi-
fier prediction seem to strictly require bi-directional

attention for efficient modeling. This explains why
increasing the parameter and training data size fail
to compensate for the inherent limitations of the
attentional mechanism.

5 Error Case Analysis

Although current LMs, particularly BERT, exhibit
strong capabilities in Chinese classifier prediction,
their varying performance across different models
and various classifier categories underscores per-
sistent challenges. To better understand these error
patterns, we systematically analyze two primary
types of failures, aiming to empirically investigate
the underlying causes of these specific errors.

5.1 Unable to Capture Fine-grained
Pragmatic Preferences

Current language models demonstrate systematic
shortcomings in aligning with pragmatic prefer-
ences when selecting classifiers, consistently favor-
ing statistically frequent but stylistically inappropri-
ate options. As illustrated in Table 4, the models’
universal top prediction of “件” (piece) in a col-
loquial negative-affect context, followed by other
generic or semantically mismatched classifiers like
“种” (kind) and “回” (occasion), reveals their inabil-
ity to integrate register, affective tone, and habitual
semantics into classifier choice. While all models
recognize grammatical validity, they diverge in sub-
sequent errors. Qwen3 persists with generic classi-
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Model Predictions Carrier Sentence

BERT 件,种,回 早起这件事是要多痛
苦有多痛苦。

Qwen3 件,个,桩 早起这件事是要多痛
苦有多痛苦。

GPT-4 件,桩,回 早起这件事是要多痛
苦有多痛苦。

Ds-r1 件,桩,种 早起这件事是要多痛
苦有多痛苦。

Table 4: The models’ responses demonstrate the failure
to capture fine-grained pragmatic preferences. The most
appropriate candidate is “档子”. BERT and Qwen3 re-
sults are selected from the top three results of the base
and fine-tuning models with the best performance. Ds-
r1 denotes Deepseek-R1. The English translation of the
carrier sentence is “Getting up early, this thing is as
painful as it get”.

fiers, full-parameter LLMs incorrectly shift toward
event classifiers, and BERT shows partial aware-
ness of categorical distinctions, yet all share the
critical failure to prioritize the pragmatically opti-
mal “档子”, which uniquely satisfies colloquialism,
negative affect, and abstract habitual semantics.

This consistent neglect of stylistic and affective
dimensions underscores that LMs treat classifier
selection as a frequency-driven grammatical task
rather than a pragmatic negotiation between lin-
guistic constraints and communicative intent. The
hierarchy of error from grammatical correctness to
semantic coherence to pragmatic appropriateness
exposes their inability to progress beyond coarse
statistical patterns toward fine-grained sociolinguis-
tic competence.

5.2 Hardly Further Check Whole Context

Current language models demonstrate a concerning
tendency to make classifier predictions based on lo-
cal noun-classifier associations rather than holistic
context evaluation. This limitation becomes evi-
dent when examining BERT’s performance in the
raffle scenario, where its top prediction “笔” (pen)
reveals a fundamental misunderstanding. While
“一笔笔” could theoretically form a plural classi-
fier for money, this interpretation completely dis-
regards the actual context of awarding pens as a
prize. Its subsequent predictions, though grammat-
ically correct for describing individual pens, still
fail to account for the pragmatic implausibility of
awarding just one pen in a raffle setting, a scenario

Model Predictions Carrier Sentence

BERT 笔,支,把 后来抽奖,又抽到一笔笔,
虽不算好,总比什么都没
有的人强。

Qwen3 支,把,枝 后 来 抽 奖,又 抽 到
一支笔,虽 不 算 好,总
比什么都没有的人强。

GPT-4 支,件,份 后来抽奖,又抽到一支笔,
虽不算好,总比什么都没
有的人强。

Ds-r1 支,管,杆 后来抽奖,又抽到一支笔,
虽不算好,总比什么都没
有的人强。

Table 5: With similar descriptions and settings as
Table 4. This table demonstrates the LMs may
not check all the context for classifier selection.
The English translation of the carrier sentence
is “Later in the raffle, I drew one pen, not
great, but better than nothing”. The proper
classifier is “盒”(box). The classifiers’ meanings
are“支”(stick),“把”(grasp),“枝”(branch),“件”(piece),“
份”(portion),“管”(pipe), and “杆”(rod).

that typically involves more prizes unless explicitly
stated otherwise.

The comparative performance of Deepseek-R1,
which generated BERTs’ subsequent similar can-
didates. While these properly match the semantic
requirements for slender objects, they also over-
look the unlikelihood of the single-pen raffle sce-
nario. More alarmingly, Qwen and GPT exhibit
even more severe limitations, producing completely
unacceptable classifier-noun combinations in their
secondary predictions. This degradation in perfor-
mance highlights how advanced LLMs frequently
fail to progress beyond basic noun-classifier match-
ing to consider broader context.

While all models demonstrate basic grammatical
competence in noun-classifier pairing, their abil-
ity to incorporate pragmatic considerations varies
significantly. The most sophisticated models (like
Deepseek-R1) at least maintain grammatical accu-
racy, whereas others (particularly Qwen and GPT)
degrade to producing outright errors when forced
beyond their primary predictions. This indicates
current LMs lack robust mechanisms for contex-
tual integration, instead relying on progressively
weaker fallback strategies when their initial predic-
tions prove contextually inadequate. The models’
consistent failure to question the plausibility of the
single-pen raffle scenario particularly illustrates
their limited capacity for real-world reasoning.
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6 Conclusions

Our study compares the performance of BERT and
LLMs in Chinese classifier prediction, revealing
that LLMs still underperform compared to BERT,
and highlighting the critical role of attention mech-
anisms. While advanced LLMs possess strengths
such as rich world knowledge and fine-grained se-
mantic sensitivity, our results prove that BERT,
with or without fine-tuning, achieves better per-
formance in the task. Strikingly, when preceding
attention is masked, BERT’s performance declines
sharply, even falling below that of Qwen3-1.4B.

This explains why LLMs with extensive knowl-
edge bases still demonstrate a significant perfor-
mance gap even when using enhanced prompts or
fine-tuning. The inherent limitation lies in their
unidirectional attention mechanism, which funda-
mentally constrains their effectiveness for this task.
These findings highlight the critical role of bidi-
rectional attention and suggest that future research
should focus on new strategies to enhable bidirec-
tional attention in LLMs, in order to combine the
strengths of both architectures and advance Chi-
nese classifier prediction performance.

Ethics Statement

We do not foresee any ethical risks related to our
research.

Limitations

Though this research provides insights on the com-
parative performance of BERT and LLMs for Chi-
nese classifier prediction, there are also limitations
that should be acknowledged.

First, the evaluation methodology of BERT and
LLMs has to be different due to architectural for-
mula differences. Specifically, BERT, as an En-
coder, allows single-token log probability retrieval
for tokens that have been masked, but Decoder
model like DeepSeek cannot produce log probabil-
ity for a single token and only provide sentence-
level average log probability instead. Furthermore,
there are LLM APIs that do not even provide token-
level log probabilities, thereby inevitably adding
dissimilarities in the model being assessed’s perfor-
mance, across architectures.

Second, the log probability measurements uti-
lized in our model forms have been shown to be a
function of sentence length and word frequencies.
Sentence lengths in this piece were not held fixed,

and thus confounding factors may have been intro-
duced as a consequence. Accordingly, differences
seen across sentences and models cannot be sepa-
rated fully from variations in sentence format, with
the possible consequence of reducing the objectiv-
ity and interpretability of the findings.

Third, the evaluation dataset includes annota-
tion ambiguities, especially in identifying the head
noun. Imperfect or inconsistent annotation may
corrupt the training as well as the evaluation per-
formance, introducing noise and potential bias into
the reported results.

Finally, this study does not explore the full spec-
trum of fine-grained semantic distinctions present
within the Chinese classifier system. Subtle nu-
ances between classifier usage. For example, those
dependent on pragmatic or context-specific cues
remain under-investigated and could represent im-
portant directions for further analysis.

Future work may address these limitations by
standardizing evaluation metrics, curating high-
quality annotated data, and performing a more in-
depth analysis of classifier subtype distinctions.
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A Experiment Settings

A.1 Hardware
All experiments were conducted using a single
NVIDIA A100 GPU with 40GB of dedicated mem-
ory and a single NVIDIA H20 GPU with 96GB
of memory, hosted on a system equipped with an
AMD EPYC 9K84 96core processor (16 vCPUs)
and 150 GB of system RAM. Each experimental
run was configured to have a duration exceeding
three hours.

A.2 Experiement Setup
This study involves Transformers packages with
version 4.55.2 (Hugging Face) and platform of Py-
Torch with version 2.8.0.

A.3 Prompts Usage
We utilized the the prompt shown in table 6 to
make our model inference and fine tune. Due to
the task is Chinese classifier prediction, we directly
apply Chinese as the target language for prompt,
the English version is also attached to the table for
reference.

B Instruction and Statistics of Classifier
Annotation

For the sake of systematic investigation of Chinese
measure words in the experiment, the quantifiers
are sorted into six classes: individual classifier,
event classifier, kind classifier, container classifier,
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Prompt Type Prompt Text

English

As a professional native speaker of Chinese, please complete the task of filling
in the missing measure words. A Chinese sentence lacking a measure word
will be input. Please identify and select only one single-character measure
word that best fits the position indicated by the underscore“_” in the
sentence, according to the rules of Chinese measure word usage. Each sentence
contains only one underscore. Please note that the final output should only
include the measure word you selected, without any additional information.
Sentence lacking a measure word:
Output measure word:

Chinese

你作为一个专业的中文母语者，现请你完成补全量词的任务。现在会输入一个

缺乏量词的中文句子，请根据中文量词搭配规范，在输入的缺乏量词的句子

中，在短下划线“_”的位置，找出且仅找出一个最合适这个位置的单字量
词，每一个句子只存在一个下划线，请注意最后的结果只输出你选择的量词，

而没有其他的任何信息。

缺乏量词的句子：

输出的量词：

Table 6: The demonstration of prompts used in both the inference and fine-tuning stages is provided below. The
English version is a direct, literal translation of the primarily used Chinese version.

standard measure word, and approximate measure
word. It was hand-annotated by 3 native Chinese
speakers with research background in Chinese lin-
guistics.

To assess the reliability and the objectivity of
this annotation, we calculated the Inter-Annotator
Agreement (IAA) through the application of Co-
hen’s kappa to a randomly selected sample of
500 classifier tokens. We thereby reached the IAA
score of 82.68%, the existence of which indicates
high annotator agreement and the robustness of our
scheme of classifier categorization. For example,
Event Classifier had been used in the counting of
action or event occurrences. It does classify events
and not physical objects. Therefore, the diction ex-
ample like "场", "次", "趟" can be categorized into
Event Classifier. Finally, we got the statistics about
the the Count and Frequency for each classifier
type, which can be seen in Table 7. It presents the
frequencies of the six classifier types on the test set
in numbers. The extreme imbalance of frequency
often (e.g., Individual classifiers as the majority,
Approximate/Standard classifiers as the minority)
offers invaluable background in understanding the
fine-grained model performance investigation by
classifier type. It indicates the degree of difficulty
and availability of data for each of the classifier
types during the evaluation process.

Classifier Type Count Frequency (%)

Individual classifier 1173 62.79
Kind Classifier 247 13.22
Event Classifier 180 9.64
Container Measure 134 7.17
Standard 57 3.05
Approximate Measure 77 4.12

Table 7: The count and frequency of 6 different types of
classifiers in test set

C Chinese Classifier Categories and
Explanation

In Chinese, classifiers are a crucial grammatical
category used in noun phrases to mark noun classes
or quantify nouns. They can be broadly divided
into two main types: sortal classifiers and measure
words.

Sortal classifiers primarily serve to highlight in-
herent characteristics of the head noun, categoriz-
ing it based on shape, function, or other salient
properties. They are further classified into three
subtypes:

Individual classifiers classify concrete or abstract
objects based on their natural units, such as只 for
animals (e.g.,一只猫 "a cat") or张 for flat objects
(e.g.,一张纸 "a piece of paper").

328



Event classifiers enumerate occurrences of
events, like 次 for instances of actions (e.g., 一
次会议 "one meeting") or 场 for performances
(e.g.,一场比赛 "a match").

Kind classifiers categorize nouns by type rather
than individual instances, such as种 for kinds (e.g.,
三种动物 "three types of animals").

On the other hand, measure words focus on quan-
tifying the noun rather than classifying its inherent
features. They include:

Container measure words, which denote quantity
based on containers (e.g.,碗 "bowl" in一碗饭 "a
bowl of rice").

Standard measure words, which use fixed units
of measurement (e.g.,米 "meter" in三米长 "three
meters long").

Approximation measure words, which indicate
vague quantities (e.g.,些 "some" in 一些问题
"some problems").

D Relationship of classifier frequency and
accuracy

Group NoC Count Proportion (%)

Group 1 1 677 34.95
Group 2 1 113 5.83
Group 3 1 102 5.27
Group 4 4 120 6.20
Group 5 10 116 5.99
Group 6 15 120 6.20
Group 7 15 120 6.20
Group 8 15 120 6.20
Group 9 15 120 6.20
Group 10 21 118 6.09
Group 11 40 120 6.20
Group 12 34 91 4.70

Table 8: This table demonstrates the rank based on the
frequency of classifiers from the highest frequency of
group 1 to lowest frequency group 12 and distribution of
the classifiers. The NoC(number of categories) demon-
strate how many categories of classifiers in this group.

To explore the relationship between classifiers’
frequency and accuracy, we sorted and grouped
the classifiers that appeared in Chinese Classifier
Dataset (Peinelt et al., 2017) based on their fre-
quency of occurrence. With the grouping results
summarized in Table 8, we first assign the classifier
exhibiting the highest frequency to Group 1. The
classifiers with the second and third highest fre-
quencies are then placed into Group 2 and Group 3,
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Figure 4: Line chart of accuracy for used models in
groups divided by classifier frequency from high to low.
The dashed line represents the fine-tuned model, and
the solid line represents the original model.

respectively. To achieve a more balanced distribu-
tion across categories, and considering that Groups
2 and 3 are of appropriate scale to accommodate
additional classifiers, we establish a count thresh-
old of 120 for group assignment. Any remaining
classifiers that meet this threshold are sequentially
allocated to subsequent groups in the processing
order. We then separately aggregated the results
of all applied models on the test set according to
these groupings, as shown in Figure 4. It can be
observed that, overall, the accuracy of language
models in predicting quantifiers decreases as the
frequency of quantifiers in the dataset declines, in-
dicating the prediction of classifier (or LogProb
ranking) are influenced by the word frequency.
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