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Abstract

Merging methods combine the weights of multi-
ple language models (LMs) to leverage their ca-
pacities, such as for domain adaptation. While
existing studies investigate merged models
from a solely behavioral perspective, we offer
the first comprehensive view by assessing and
connecting their behavior and internals. We
present a novel evaluation pipeline that first
merges multiple parent LMs and then evalu-
ates the merged models in comparison to the
initial ones based on their behavior on down-
stream tasks, like MMLU, and the internal en-
coded linguistic competence. We showcase this
pipeline by assessing the merging of instruction
fine-tuned with math- and code-adapted LMs
from the Qwen2.5 family. Our results show
that merging methods impacts behavior and in-
ternals differently. While the performance of
merged models is typically between that of the
two parent models, their encoded information
about linguistic phenomena – particularly in
morphology and syntax – can surpass the par-
ent models. Moreover, we find weak ranking
correlation between this behavior and internal
evaluation. With our pipeline and initial results,
we emphasize the need for more comprehen-
sive evaluations of model merging methods to
gain a faithful understanding of their capabili-
ties and reliability, beyond potential superficial
behavioral advances.

1 Introduction

With the rise of competitive open-weight models
(Dubey et al., 2024; Jiang et al., 2024), adapting
large language models (LLMs) to specific use cases
has become common practice. One approach, fine-
tuning, enables adaptation to particular domains,
such as mathematics or coding (Lewkowycz et al.,
2022). Still, it suffers from high computational
costs and the risk of catastrophic forgetting (Luo
et al., 2023). When a model must handle a variety
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of tasks, fine-tuning becomes more complex (Lu
et al., 2024). Model merging offers methods that
overcome some of these issues. These methods
combine multiple models into a single one, thereby
enhancing performance across the tasks for which
the individual parent models were fine-tuned (Yang
et al., 2024).

Existing work in model merging primarily fo-
cuses on techniques to improve the performance
of merged models. For example, Lu et al. (2024)
explored strategies for merging domain-adapted
parent models, such as those in materials science
and engineering, to efficiently transfer this domain
adaptation to other models. In addition, Dziadzio
et al. (2024) introduces the concept of temporal
model merging, addressing the challenge of inte-
grating knowledge from multiple parent models
trained on various tasks over time. Furthermore,
Goddard et al. (2025) introduces MergeKit, a merg-
ing toolkit supporting various methods.

While this variety of studies highlights the pop-
ularity of model merging, existing work focuses
primarily on assessing these models based on their
behavior. As a result, we lack a comprehensive
evaluation that assesses and connects both model
behavior and internals. This research gap means we
risk relying on potentially unstable merged models
based on their seemingly better outputs. With this
work, we address this shortage in model merging
research and ask the following question:

How does model merging affect the inter-
nal representations of language models?

To answer this, we present an evaluation pipeline
(section 3) with three stages: 1) we merge multiple
parent models with different strategies, 2) we eval-
uate both the behavior and internals of the parent
and resulting merged models, and 3) we connect
the findings from both evaluations. We showcase
this pipeline through experiments on the Qwen2.5
model family (Qwen et al., 2025), which merges
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Figure 1: This flowchart shows a model evaluation pipeline. Input "Instruct" and "Math/Coder" models undergo
a "Merging" process (using techniques like Linear, SLERP, TIES, DARE TIES, Task Arithmetic). The
merged output is then evaluated by "Holmes-Evaluation (Flash-Holmes)" for linguistic competencies (reasoning,
morphology, etc.) and "Evaluation LM-Harness" using benchmarks (Leaderboard). The pipeline concludes with
analyzing the correlation between Harness and Holmes.

instruction fine-tuned and domain-adapted models.
Our results show that while merged models gen-
erally perform between the parent models, their
encoded linguistic competence—particularly for
morphology and syntax—can be stronger than the
parent ones’. At the same time, weak rank corre-
lations between behavior and internals underscore
the need for comprehensive evaluations, as single
perspectives are insufficient to capture the full com-
plexity of language models (Hu and Levy, 2023;
Waldis et al., 2025), for and beyond model merg-
ing.

With this work, we provide the ground for more
comprehensively assessing model merging meth-
ods and resulting models by contributing as fol-
lows:

• We introduce the first pipeline that combines
model merging with a comprehensive evalua-
tion of model behavior and internals.

• We present initial insights into connecting the
behavioral and internal interpretability per-
spectives in the context of domain adaptation
scenarios.

• We make all code, including pipeline and anal-
ysis, online available.1

2 Related works

Model Merging Model merging enables the ef-
ficient combination of specialized models (Yang
et al., 2024). This includes simpler methods like lin-
early averaging multiple parent models (Wortsman
et al., 2022) or spherical interpolation (SLERP)2.
More sophisticated methods try to locate task-
specific regions to better preserve specific skills
of the parent models, popular examples are Task

1https://github.com/yusigrist/LLM-Merging-Piepline
2https://github.com/Digitous/LLM-SLERP-Merge

Arithmetic (Ilharco et al., 2023), Ties (Yadav et al.,
2023), or Dare-Ties (Yu et al., 2024). The general
popularity of such methods is evident in the devel-
opment of toolboxes that easily merge two or more
parent models, such as MergeKit (Goddard et al.,
2024), resulting in thousands of merged models
available on Huggingface.

Model Evaluation A predominant line of re-
search focuses on evaluating language models
based on their behavior. This includes general lan-
guage understanding (GLUE; Wang et al. 2018 or
SuperGLUE; Wang et al. 2019), question answer-
ing (SQuAD; Rajpurkar et al. 2016), or more broad
evaluations, as done in HELM (Liang et al., 2023)
or evaluation harness (Gao et al., 2024). More-
over, research also focused on comprehensively
assessing specific domains, like factuality (Chen
et al., 2023; Muhlgay et al., 2024), medical texts
(Bedi et al., 2025), or legal reasoning (Guha et al.,
2023). While these benchmarks focus on model
behavior, there has been little comprehensive work
addressing model internals. Conneau et al. (2018)
introduce a benchmark with ten tasks to assess
linguistic properties of sentence representations,
Warstadt et al. (2020) presents a collection of min-
imal pairs to examine whether language models
can internally differentiate between linguistic ac-
ceptable and unacceptable sentences, and Waldis
et al. (2024) introduced, with Holmes, a benchmark
that studies the linguistic competence of language
models based on their internals across five linguis-
tic phenomena and more than 160 distinct probing
tasks.

With this work, we extend the evaluation scope
of merging methods to model internals, a previ-
ously understudied aspect in model merging meth-
ods, in favor of a more comprehensive under-
standing of how these approaches combine model
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weights, and offer the base to assess how this
changes information flow within models.

3 The Pipeline

With the presented pipeline (Figure 1), we offer a
flexible workflow to merge parent models, and eval-
uate these parents as well as the resulting merged
models from a behavioral and internal perspective.
Finally, we connected these distinct interpretability
perspectives to gain a more in-depth understanding
of model workings.

3.1 Merging methods

In a first step, this pipeline uses MergeKit (Goddard
et al., 2024) to combine two parent models. Table
1 provides an overview of these methods, which
vary in complexity, and compares them based on
a few essential features. Note that performance
always depends on the configuration and model,
such that Linear can work better than DARE TIES
under certain conditions.

Linear averages corresponding weights of mul-
tiple models, often fine-tuned from a common
base with different hyperparameters. This method
stands out because of its low complexity and very
low difficulty when implemented with Mergekit,
making it highly accessible to practitioners. The
approach maintains low power usage during both
inference and merging processes, while supporting
multi-model combinations effectively. Key Appli-
cation/Strength are simplicity, improved accuracy,
and robustness without an increase in inference
costs for similar models. Despite its simplicity,
performance can vary significantly depending on
configuration and, in some cases, may be limited
compared to more complex methods (Wortsman
et al., 2022).

SLERP interpolates weights between two mod-
els along spherical paths, with the aim of a
smoother blend than Linear. This method oper-
ates with moderate complexity while maintaining
low power consumption during both inference and
merging. However, it is limited to only two mod-
els in practice, making it less suitable for multi-
model scenarios. The implementation difficulty
of Mergekit remains low, making it accessible for
most applications. Key Application/Strength are
effective two-model merging, potentially finding
lower loss barrier paths. Performance typically ex-
ceeds linear methods when properly configured,

offering a balanced approach between simplicity
and effectiveness (Shoemake, 1985; Chris Alexiuk,
2024).

Task Arithmetic computes "task vectors" (fine-
tuned base weights) and adds them to a base model
to combine capabilities. This approach maintains
moderate complexity while effectively supporting
multi-model merging scenarios. The method ben-
efits from low power usage during both inference
and merging phases, with relatively low implemen-
tation difficulty in Mergekit frameworks. Key Ap-
plication/Strength are flexible multitasking com-
bination in model editing. Performance generally
surpasses Linear approaches, providing a prac-
tical solution to combine diverse model capabil-
ities without significant computational overhead
(Ilharco et al., 2023).

TIES trims insignificant parameter changes, se-
lects a dominant sign for conflicts, and merges only
aligned parameters. This method introduces high
complexity in its implementation, which requires
careful configuration and understanding of the in-
teraction of the parameters. Despite the increased
complexity, it maintains low power usage during
inference and merging, while supporting multi-
model combinations. Key Application/Strength are
the reduction of parameter interference, especially
for sign conflicts, in multi-model merging. Per-
formance typically exceeds SLERP methods when
properly implemented, making the additional com-
plexity worthwhile for demanding applications (Ya-
dav et al., 2023).

DARE TIES uses the DARE (Drop And
REscale) scheme to sparsify task vectors (ran-
domly drops and rescales parameters) before ap-
plying TIES-merging. This advanced method op-
erates with high complexity, building on the TIES
framework with additional parameter sparsifica-
tion techniques that require expertise in both DARE
and TIES methodologies. Power consumption
remains low during both inference and merging,
while supporting comprehensive multi-model inte-
gration. Key Application/Strength are the further
mitigated interference by reducing parameter den-
sity before TIES. Performance generally surpasses
SLERP methods and can exceed TIES in many con-
figurations, representing a state-of-the-art approach
to model merging (Yadav et al., 2023; Yu et al.,
2024).
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Feature Linear SLERP Task Arithmetic TIES DARE TIES

Complexity low moderate moderate moderate high
Power usage
(Inference)

low low low low low

Power usage
(Merging)

low low low low low

Multi-Model yes 2 models yes yes yes
Performance simple >Linear >Linear >SLERP >SLERP
Mergekit
Difficulty

very low low low moderate high

Table 1: Comparison of a set of Features for five different merging methods (Linear, SLERP, Task Arithmetic,
TIES, DARE TIES). The Performance always depends on the configuration and model. So in some cases Linear
can be better than DARE TIES.

3.2 Evaluation

In a second step, our pipeline automatically eval-
uates both the parent models and the resulting
merged ones. This includes a behavioral evalu-
ation using the eval-harness library (Gao et al.,
2024) and the streamlined and efficient version
of Holmes (Waldis et al., 2024), which comprehen-
sively assesses information about linguistic phe-
nomena within model internals.

3.2.1 LM-Harness-Evaluation
The LM-Harness-Evaluation is a comprehensive
evaluation framework to assess language models
(Gao et al., 2024). It includes a variety of tasks in
favor of a standardized and reproducible evaluation
of these models. For our study, we use the fol-
lowing tasks also used in the OpenLLM evaluation
leaderboard (Fourrier et al., 2024):

• BBH: Collection of LLM tasks across domains,
for example, language understanding, mathe-
matical reasoning, common sense, and world
knowledge.

• math hard: High school level competitions
for mathematical problems: complex algebra,
geometry problems, etc.

• MUSR: Reasoning on and understanding of
long texts: language understanding, reasoning
capabilities

• GPQA: PhD-level knowledge multiple choice
questions in science: Chemistry, Biology, and
Physics

• MMLU-PRO: Expert reviewed multiple choice
questions across domains, for example:

medicine and healthcare, law and ethics, engi-
neering, mathematics

3.2.2 Holmes-Evaluation
Using Holmes, we evaluate the internal repre-
sentations using classifier based probing (Be-
linkov, 2022) Specifically, we use Flash-Holmes,
a streamlined and efficient version of the bench-
mark that preserves the effectiveness of the eval-
uation, even substantially reducing the number
of instances. It assesses a range of linguis-
tic phenomena, including morphology, syntax,
semantics, reasoning, and discourse, using
more than 160 unique probing tasks. This involves
training simple linear classifiers on the internal rep-
resentations of the models’ last layer to predict spe-
cific linguistic properties, thereby assessing how
well the model encodes this information (Hewitt
and Liang, 2019; Voita and Titov, 2020; Waldis
et al., 2024).

4 Evaluation Results

We merge Instruct with Coder and Math mod-
els from the 7B Qwen-2.5 family (Qwen et al.,
2025). Leveraging both the LM-Harness and
Holmes frameworks reveals a significant and con-
sistent divergence in how model merging impacts
external behavior versus internal representations.
While downstream tasks, the best merged models
perform between the two parent models, the in-
herent linguistic competence encoded within the
model internals tends to increase, particularly when
merging Instruct and Math.

4.1 Model Behavioral Evaluation
We first summarize behavioral results from the LM-
Harness evaluation in Figure 2.
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Figure 2: This horizontally grouped bar chart illustrates the absolute performance of each model across the main
Harness tasks. The red shaded area highlights the performance gap between the instruct and math/coder models.
Notably, simpler methods generally outperform more complex ones. Overall, all merged models show poorer
performance compared to their parent models.

The behavioral compromise of model merging.
These results consistently demonstrate that merged
models can not match the performance of one of
their parent models, but mostly perform between
them. As an exception, in both Instruct + Math
and Instruct + Coder experiments, the merged
models fail to reach at least one parent model’s per-
formance for MATH Hard. These results align with
the general low performance of domain-adapted
models and previous results, which underscore the
importance of instruction-tuning in combination
with domain adaptation (Beeching et al., 2023).

Simple model merging methods excel. Among
the merging methods, a clear hierarchy emerges.
Simpler methods consistently outperform more
complex ones. As shown in Figures 4 and 3, SLERP
stands out as the most effective method, frequently
achieving the highest scores among the merged
models and having the largest number of subtasks
where its performance is "better" than both par-
ents. Linear and Task Arithmetic follow, typi-
cally performing "between" the two parent models.
In stark contrast, the more sophisticated methods,
TIES and DARE TIES, which are designed to mit-
igate parameter interference, consistently got the
poorest results. Their performance is often catego-
rized as "worse" than both parent models, suggest-
ing that their approach to resolving weight conflicts
may be detrimental to the model’s ability to per-
form complex, multi-step tasks.

4.2 Model Internal Evaluation

We show in Figure 5, 7, and 6 the result of evalu-
ating model internals regarding their inherent en-

Figure 3: This stacked bar chart illustrates how each
model’s performance on Leaderboard Subtasks com-
pares to both the Instruct and Coder models. Gener-
ally, most models perform either between or worse than
these two baselines. However, simpler merging methods
show some subtasks where they perform better."

Figure 4: This stacked bar chart illustrates how each
model’s performance on Leaderboard Subtasks com-
pares to both the Instruct and Math models. Gener-
ally, most models perform either between or worse than
these two baselines. However, simpler merging methods
show some subtasks where they perform better."
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Figure 5: This horizontally grouped bar chart illustrates the absolute performance of each model across the linguistic
competencies. The red-shaded area highlights the performance gap between the Instruct and Math/Coder
models. Notably, merged models mostly outperform or perform similarly to the parent models.

coded linguistic competence.

More encoded information with more training.
More generally, we found that both instruction tun-
ing (Instruct) and domain adaptation (Coder and
Math) result in more information about linguis-
tic competence compared to the Base model from
which all originate. This effect is particularly evi-
dent for domain adaptation, where we assume that
the larger amount of data than used for instruction
tuning allows LMs to capture more information
about linguistic phenomena.

Model merging increases encoded information.
Next, we focus on how model merging affects the
model internals and find that the impact of combin-
ing models diverges from behavioral evaluations.
Notably, we found that information about linguistic
phenomena can increase when models are merged.
This effect is most pronounced for morphology
(word structure) and syntax (sentence struc-
ture). This suggests that merging can effectively
combine the complementary structural knowledge
from both models, resulting in internal representa-
tions with more information.

More information when using simpler merging
methods. In the next step, we compare the dif-
ferent merging methods regarding the information
encoded in the resulting models. Similarly, to the
behavioral evaluation, we find that simpler methods
(Liner or SLERP) generally preserve more informa-
tion than more complex methods. This effect is not
as pronounced as when evaluating model behav-
ior. Notably, we find the most difference among
models (parent and merged ones) in more formal
phenomena, like syntax and morphology. How-
ever, there are fewer differences in phenomena that

Figure 6: This stacked bar chart illustrates how each
model’s performance on Holmes tasks compares to both
the Instruct and Math models. Generally, most mod-
els perform either better than or between these two base-
lines.

are intuitively linked to actively using language
(reasoning, semantics, or discourse), which
we often attribute to language models. This im-
provement for formal phenomena also suggests
that merging can effectively transfer the informa-
tion gain from seeing more tokens in further pre-
training steps, as shown in (Waldis et al., 2024).

Adapted domain matters for merging compati-
bility. We compare the influence of the particular
domain with merging into the Instruct model and
find that information gain from model merging is
not uniform. It is more pronounced in Instruct
+ Math than in Instruct + Coder experiments.
In the Instruct + Math experiment (Figure 6),
nearly all merging methods produce models that
outperform both the Instruct and Math models
for these two phenomenon types. In contrast, we
see that the Coder parent models have slightly
richer model internals than the Math one. These
insights suggest that model merging is sensitive to
the specific domain in which it is applied. Specif-
ically, we believe that the language used for Math
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Figure 7: This stacked bar chart illustrates how each
model’s performance on Holmes tasks compares to both
the Instruct and Coder models. Generally, most
models perform either better than or between these two
baselines.

adaptation is more similar to instruction tuning than
that used to further pre-train the Coder models, re-
sulting in better merging compatibility.

5 Discussion

Next, we discuss the connection results of the ini-
tial evaluation of model merging methods from a
behavioral and internal perspective.

The efficacy of simple merging methods. In
contrast to our expectations, we found that simple
merging methods (SLERP and Linear) outperform
more complex ones, such as TIES and DARE TIES,
in both behavioral and internal evaluations. We hy-
pothesize this is due to the preservation of weight
space geometry. This is particularly evident for
SLERP. We believe that finding the shortest path on
the hypersphere of normalized weights respects the
geometric relationships between parameters more
faithfully. This geometric integrity appears to be
essential for maintaining the functional coherence
of the parent models. Moreover, this supremacy
underlines the need for having more holistic eval-
uations to assess the advantages and limitations
of merging methods comprehensivly. We see this
work, with the presented pipeline and initial results,
offering the first step in this direction.

Divergence between behavioral and internal
evaluation of merging methods. The presented
results indicate that behavioral and internal evalu-
ations diverge substantially. While the behavioral
performance of merged models decreases and is
between that of the parents, the amount of encoded
information within these models can increase be-
yond that of the parent models. This divergence
highlights how internal and behavioral evaluation
offer different perspectives and underscores the

Figure 8: This plot shows a heatmap of the correlation
between the linguistic competencies from Holmes and
grouped eval-harness subtasks. It shows that syntax
and morphology have the highest correlation with be-
havior.

need for a better understanding of how these dis-
tinct interpretability perspectives interact. Thus,
comprehensive methods and evaluations, as pre-
sented in this work, are not only indispensable for
a better understanding of various model merging
methods but also essential for a more general un-
derstanding of language models, beyond those that
are merged.

Weak correlations of behavior and internals.
Finally, empirically discuss results from model
behavior and internals. We correlate the behav-
ioral and internal results per model for tasks (eval-
harness) and phenomena type (Holmes) in Figure
8. The correlations between linguistic competen-
cies and downstream task performance are weak
to medium. While we found the strongest correla-
tion for morphology and syntax with eval-harness
tasks, with Pearson Correlation values ranging
from 0.14 to 0.33. These results underline, again,
that evaluating a model from a single perspective
is insufficient. A model that offers superior perfor-
mance on a single leaderboard is not necessarily as
internally rich as we might intuitively assume.

6 Conclusion

In this work, we introduce a novel evaluation
pipeline that integrates model merging with model
behavior and internal evaluations. With this
novel methodology, we comprehensively assess
the dynamics of different model merging methods.
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Specifically, we focused on combining instruction
fine-tuned models with math and coding adapted
models. These initial results suggest clear diver-
gence between model behavioral and internal eval-
uations. While merged models tend to perform
between the two parent models, they can encode
more linguistic information than these two models,
particularly for morphology and syntax. More-
over, these results also suggest that simpler merg-
ing methods often outperform more complex ones,
which underlines the necessity of comprehensive
evaluation to better understand whether methods
offer general superiority.

With these insights, we can directly answer our
initially raised research questions: model merg-
ing affects internal representations, increasing the
amount of information encoded in these represen-
tations beyond that of the parent, in a manner that
differs from what behavioral evaluations suggest.
With this divergence, we recognize that more fine-
grained experiments are necessary to further study
and strengthen the findings presented in this work,
which are essential for gaining a deeper understand-
ing and improving model merging methods.

Limitations

Model Layers In this study, we focus solely on
the last layer of language models to investigate
what information is encoded. While these would
have expanded the scope of this work, studying
how information flows through all model layers
during model merging can further enhance our un-
derstanding of model merging methods, as well as
of language models in general.

Language Models This study aims to present,
through the pipeline, the methodological ground-
work to assess model merging methods more com-
prehensively. In this context, we present initial re-
sults to showcase the effectiveness of this pipeline
and derive first insights that guide investigations of
model merging. For this purpose, we only experi-
mented with models of one model family (QWEN-
2.5). However, evaluating our results alongside
those of other families could strengthen our find-
ings and also uncover further differences among
models.

English Language Given the widespread avail-
ability of evaluation resources, we limited this
study to the English language. Thereby, the pre-
sented pipeline is not directly applicable to multi-

lingual merging methods (Tao et al., 2024).
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