A Theorem-Proving-Based Evaluation of Neural Semantic Parsing

Hayate Funakura'??, Hyunsoo Kim?, Koji Mineshima?

'Kyoto University 2Keio University *Kikagaku Inc.
Correspondence: funakura.hayate.28p @st.kyoto-u.ac.jp

Abstract

Graph-matching metrics such as Smatch are
the de facto standard for evaluating neural se-
mantic parsers, yet they capture surface over-
lap rather than logical equivalence. We re-
assess evaluation by pairing graph-matching
with automated theorem proving. We com-
pare two approaches to building parsers: su-
pervised fine-tuning (T5-Small/Base) and few-
shot in-context learning (GPT-40/4.1/5), un-
der normalized and unnormalized targets. We
evaluate outputs using graph-matching, bidi-
rectional entailment between source and tar-
get formulas with a first-order logic theo-
rem prover, and well-formedness. Across set-
tings, we find that models performing well
on graph-matching often fail to produce log-
ically equivalent formulas. Normalization re-
duces incidental target variability, improves
well-formedness, and strengthens logical ad-
equacy. Error analysis shows performance
degrades with increasing formula complexity
and with coordination, prepositional phrases,
and passive voice; the dominant failures in-
volve variable binding and indexing, and pred-
icate naming. These findings highlight limits
of graph-based metrics for reasoning-oriented
applications and motivate logic-sensitive eval-
uation and training objectives together with
simplified, normalized target representations.
All code and data for our experiments are pub-
licly available.

1 Introduction

Semantic parsing is the task of mapping natural
language expressions into structured representa-
tions such as database queries or logical forms.
These outputs have a wide range of applications,
including document classification (Dong et al.,
2015) and question answering (Yih et al., 2014).
Neural network-based approaches have become
prominent in semantic parsing (Konstas et al.,

"https://github.com/hfunakura/text2sem

2017, Bai et al., 2022), with Smatch (Cai and
Knight, 2013) widely used for evaluation. Smatch
compares two Abstract Meaning Representations
(AMRs) (Banarescu et al., 2013) by aligning their
atomic propositions and computing the F-score of
the overlap. We refer to Smatch and its variants as
graph-matching-based evaluation.

The aim of this paper is to reconsider evalua-
tion methods for neural semantic parsing from the
perspective of logical reasoning. One key use of
the logical forms produced by semantic parsing is
to support logically correct inference. For such
inference, the semantic parser must generate for-
mal representations that enable a symbolic solver
(e.g., an automated theorem prover) to derive cor-
rect outcomes such as entailment, contradiction,
or consistency. Ideally, for a sentence S with a
gold semantic representation SR (S), the parser’s
output SR, (S) should be logically equivalent to
SR4(S). However, graph-matching-based evalu-
ation focuses solely on surface overlap between
graph components, and thus may fail to reflect
whether the predicted and gold representations are
truly equivalent in meaning.

In this paper, we test the hypothesis that a model
achieving high performance in graph-matching-
based evaluation does not necessarily perform
well in evaluation aimed at accurate natural lan-
guage inference. We evaluate models that con-
vert English sentences into first-order predicate
logic representations using both evaluation meth-
ods. We consider two model settings: super-
vised fine-tuning (SFT) of a Transformer-based
pre-trained semantic parser, and in-context learn-
ing (ICL) with several pre-trained language mod-
els of different sizes, including the latest GPT-5,
where a few parsing examples are given before
parsing unseen sentences.

Our contributions are threefold:

295

Proceedings of the 8th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP, pages 295-306
November 9, 2025 ©2025 Association for Computational Linguistics

mailto:funakura.hayate.28p@st.kyoto-u.ac.jp
https://github.com/hfunakura/text2sem

Limits of graph-based metrics Pairing graph-
matching with theorem-prover entailment reveals
a gap between surface overlap and logical equiv-
alence: models with high graph-matching scores
often fail to produce logically correct predictions.

Benefit of target normalization Training on
normalized formulas consistently improves per-
formance by reducing incidental variability and
enhancing well-formedness and logical adequacy.

Error patterns and next steps Performance de-
clines with formula complexity and with coordi-
nation, prepositional phrases, and passive voice.
The most frequent errors involve variable bind-
ing and indexing and predicate naming, motivat-
ing stronger handling of linguistic phenomena and
simpler target representations.

2 Background and Related Work

2.1 Semantic Parsing

The task of converting natural language expres-
sions into formal semantic representations has
been extensively studied in the fields of symbolic
logic and formal semantics (Blackburn and Bos,
2005; Lepore and Cumming, 2009). Advances
in this area have been accelerated by the devel-
opment of syntactically expressive grammar for-
malisms such as Combinatory Categorial Gram-
mar (CCG) (Steedman, 2000), the creation of lin-
guistically rich resources like CCGbank (Hocken-
maier and Steedman, 2007), and the emergence
of wide-coverage semantic parsers enabled by
progress in syntactic parsing technologies (Bos
et al., 2004).

More recently, the development of semantically
annotated corpora such as AMR (Banarescu et al.,
2013) and Parallel Meaning Bank (PMB) (Abzian-
idze et al., 2017) has accelerated research into
neural approaches to semantic parsing. In partic-
ular, sequence-to-sequence models have become
widely adopted for learning mappings from natu-
ral language to logical forms. These models have
been successfully applied to a variety of down-
stream tasks, including code generation (Ling
et al., 2016), question answering (Dong and Lap-
ata, 2016), and natural language generation (Kon-
stas et al., 2017).

Originally, semantic parsing was considered a
promising approach for enabling and improving
a wide range of downstream tasks requiring se-
mantic understanding, including translation, sum-

marization, question answering, and paraphrasing.
Graph-matching-based evaluation methods, such
as Smatch (Cai and Knight, 2013) and subsequent
variants for AMR (Opitz et al., 2020; Opitz, 2023),
as well as adaptations for Discourse Represen-
tation Structure (DRS) (van Noord et al., 2018),
were developed with this broad applicability in
mind and provide flexible means to assess parsing
performance across diverse use cases. However,
with the rise of large pre-trained language mod-
els (Devlin et al., 2019; Brown et al., 2020), the
role of formal semantic representations in these
downstream tasks has lessened, and the relevance
of semantic parsing itself has come under renewed
scrutiny (van Noord et al., 2020).

2.2 Logical Entailment

One core task where formal semantic represen-
tations play a role is recognizing logical entail-
ment in natural language inference, typically for-
mulated as determining whether a premise entails,
contradicts, or is neutral with respect to a hypoth-
esis. Traditional logical formalisms developed
within symbolic logic (Blackburn and Bos, 2005)
were often designed with the goal of enabling
precise logical reasoning—such as entailment and
consistency checking—by combining these rep-
resentations with Automated Theorem Proving
(ATP) techniques (Fitting, 1996; Robinson and
Voronkov, 2001). An early attempt to directly
apply this paradigm to natural language entail-
ment recognition was proposed by Bos and Mark-
ert (2005). Further work has extended this line
of research by leveraging semantic parsing based
on CCG in combination with theorem provers to
handle a wide range of natural language infer-
ences (Abzianidze, 2015; Mineshima et al., 2015;
Haruta et al., 2022). In contrast, the effectiveness
of combining neural semantic parsing with auto-
mated theorem proving for natural language in-
ference remains, to the best of our knowledge, an
open question that has not yet been fully explored.

One of the domains where precise logical rea-
soning is essential is mathematical theorem prov-
ing. The task of converting natural language
proofs into formal representations that can be han-
dled by automated theorem provers or interac-
tive proof assistants such as Coq and Lean has
been extensively studied under the name of aut-
oformalization (Wu et al., 2022). Whether pre-
trained language models alone can support the
kind of rigorous logical reasoning required for

296

complex problem solving remains an open ques-
tion. At present, there is ongoing exploration into
hybrid approaches that integrate structured, logic-
based semantic representations, which guarantee
precision and correctness, with statistical language
models (Kautz, 2022).

2.3 Compositional Generalization

Another domain where neural semantic parsing
has been actively studied is compositional gener-
alization, which examines whether a model can
generalize to novel syntactic and semantic com-
binations when mapping natural language expres-
sions to logical forms. A widely used benchmark
in this area is COGS (Kim and Linzen, 2020), fol-
lowed by numerous extensions, most of which rely
on exact matching of predicted and gold logical
forms as the evaluation metric. However, exact
matching treats logically equivalent expressions as
different—for example, it fails to recognize the
equivalence of conjunctive forms such as p A ¢
and g A p, or of formulas that differ only in vari-
able naming, such as 3z (cat(z1) Arun(x1)) and
El:r7(cat(a:7) AN run(:z7)).

To address these shortcomings, successor
benchmarks such as ReCOGS (Wu et al., 2023)
and SLOG (Li et al., 2023) adopt graph-matching-
based metrics similar to Smatch, which account
for permutations of conjuncts and variable renam-
ing. ReCOGS in particular generates multiple log-
ically equivalent variants of each target logical
form, demonstrating that even minor surface dif-
ferences (e.g., variable names or parentheses) can
substantially affect evaluation. To our knowledge,
however, none of these studies have employed a
theorem prover to verify logical equivalence. A
theorem prover naturally subsumes permutations
of conjuncts and variable renaming as part of log-
ical equivalence, and moreover is capable of han-
dling richer equivalences involving, for example,
negation and nested quantifiers.

Building on this background, the present study
examines the capabilities of current neural seman-
tic parsing models through evaluation with auto-
mated theorem proving. This line of inquiry is in-
tended to lay the groundwork for developing mod-
els that achieve greater precision in natural lan-
guage reasoning.

3 Experimental Setup

This section describes the experimental setups for
both SFT and ICL conducted in this study.

3.1 Dataset

We build our dataset from SICK (Marelli et al.,
2014), a benchmark for natural language in-
ference. SICK consists of about 10,000 sen-
tence pairs, each consisting of a premise (p)
and a hypothesis (h), annotated with graded
semantic relatedness (ranging from 1 to 5)
as well as an entailment label chosen from
{entailment, contradiction,neutral}. It
includes linguistic phenomena such as quantifica-
tion and negation, making it suitable for evaluating
logically complex semantic representations.

We use its original train/test split for training
and evaluation, strictly following the official divi-
sion in all experiments. The training set contains
4,500 sentence pairs (9,000 sentences in total), and
the test set contains 4,927 sentence pairs (9,854
sentences in total).

To obtain semantic representations that faith-
fully reflect sentence meaning, we parse all SICK
sentences using ccg2lambda (Mineshima et al.,
2015; Martinez-G6émez et al., 2016). In this sys-
tem, a CCG parser is first applied to produce
a CCG derivation tree, which is then mapped
into a logical form (semantic representation) via
standard A-calculus—based semantic composition;
in our experiments, we use depccg (Yoshikawa
et al., 2017) as the CCG parser. Given a premise
p and a hypothesis h, the system outputs their
semantic representations SR(p) and SR(h), and
then employs a theorem prover, together with
axioms derived from external knowledge bases
such as WordNet (Fellbaum, 1998) to determine
whether SR(p) entails SR(h), contradicts it, or
neither. The output is thus one of three labels:
entailment, contradiction, or neutral.

For the target representation, we adopt event
semantics (Parsons, 1990), a framework widely
used in semantic parsing (e.g., in COGS (Kim and
Linzen, 2020)), and employ the event-semantics
templates for ccg2lambda developed by Martinez-
Gomez et al. (2017). Table 1 illustrates example
sentences from SICK together with their event-
semantic representation, where (b) shows the raw
representations produced by ccg2lambda.

To obtain high-quality sentence-formula pairs,
we filter SICK sentence pairs as follows. We

297

Table 1: Example sentences and their event-semantic representations. In the IDs, “p” indicates the premise and

“h” indicates the hypothesis. In the semantic representations, variables of the form x1, xs, . .

6_

while eq, es, ... are used for events. The hyphen

. are used for entities,

denotes logical (boolean) negation. “Complexity” counts

the number of logical constants (negation, quantifier, and conjunction). “exists el x2 x3” is an abbeviation for

“exists el. exists e2. exists e3”.

ID sick_train_88_p Complexity

(a) Sentence There is no biker jumping in the air. —

(b) Raw -exists x5.(_biker(x5) & exists e6.(_jump(e6) & (subj(eb6) 8
= x5) & exists x7.(_air(x7) & _in(e6,x7))))

(c) Prenex -exists el x2 x3.(biker(x2) & jump(el) & (subj(el) = x2) & 8
air(x3) & in(el,x3))

ID sick_train_55_p

(a) Sentence Three boys are jumping in the leaves. —

(b) Raw exists x4.(_boy(x4) & _three(x4) & exists e5.(_jump(e5) & 8
(subj(e5) = x4) & exists x6.(_leaf(x6) & _in(e5,x6))))

(c) Prenex exists el x2 x3.(boy(x2) & three(x2) & jump(el) & (subj(el) 8

= x2) & leaf(x3) & in(el,x3))

retain only those with a gold SICK Iabel in
{entailment, contradiction} for which the
theorem prover’s judgment over the ccg2lambda-
derived representations matches the gold label.
Pairs labeled neutral are excluded, since such
outcomes may occasionally arise from pipeline er-
rors (e.g., parsing failures or misaligned logical
forms), making it difficult to guarantee correct se-
mantic representations. From the retained pairs,
we pair each sentence with its event-semantics for-
mula to construct the training and evaluation in-
stances. The resulting dataset comprises 2,392
training examples and 2,580 test examples.

We use two types of target representations to
enable comparison with simplified formulas. Ta-
ble 1 presents concrete examples of both represen-
tations, shown in (b) and (c), respectively.

1. Raw ccg2lambda outputs: The unmodified
output of ccg2lambda, represented as first-order
predicate logic with event variables. In these for-
mulas, quantifiers (particularly existential quanti-
fiers) may appear in different positions depending
on the sentence structure, and variable names are
assigned arbitrarily.

2. Prenex-normalized formulas (PNF): De-
rived deterministically from the raw ccg2lambda
outputs by (i) moving all quantifiers to the
sentence prefix with systematic variable renam-
ing (while keeping negations at the front of
the sentence), (ii) normalizing predicate symbols
(e.g., removing leading underscores introduced by
ccg2lambda), and (iii) reassigning variable in-

dices starting from 1. This normalization reduces
incidental variation in quantifier placement and su-
perficial symbol noise that could otherwise con-
found sequence models.

We include both variants to assess the effect of
target-side standardization via prenex normaliza-
tion on model performance.

3.2 Annotation

We introduced additional categories to assess
which natural language phenomena present chal-
lenges for neural semantic parsing. Specifically,
using the output of the CCG parser, we annotated
the SICK dataset with three syntactic categories:

* Coordinating Conjunctions (CC): Sen-
tences containing coordinating conjunctions
such as “and” and “or”, which require proper
handling of coordination scope.

* Prepositional Phrases (PP): Sentences with
prepositional phrases that introduce spatial,
temporal, or relational information requiring
compositional analysis.

» Passive Voice (PSS): Sentences exhibiting
passive voice constructions where argument
structure differs from canonical active voice.

The annotation was conducted using automated
extraction from CCG parse trees. We developed
search scripts to identify these phenomena from
syntactic categories and logical formulas patterns.

298

Table 2: Example sentences annotated by category. #Train indicates the number of occurrences in the SICK train
data and #Test indicates the number of occurrences in the SICK test data.

Category #Train #Test Example
Conj 1846 2065 There is no dog wrestling and hugging. (sick_train_13_h)
PP 1500 1679 A little girl is looking at a woman in costume. (sick_train_74_p)

Passive 795 839 Children

covered by
(sick_train_61_p)

leaves are playing with red shirts.

Table 3: DRSs converted from the examples in Ta-
ble 1: sick_train_88_p (left) and sick_train_55_p
(right).

e2 x1 x3
e2 x1 x3 b 3
- oy (x
biker(x1) y(xD)
. three(x1)
jump(e2) .
- . jump(e2)
subj(e2) = x1 .
. subj(e2) = x1
air(x3)
in(e2,x3) leaf (x3)
’ in(e2,x3)

Table 2 shows the distribution of these cate-
gories in our dataset, with CC being the most fre-
quent (2,790 instances), followed by PP (2,458 in-
stances) and PSS (1,519 instances). This anno-
tation enables us to analyze parser performance
across different linguistic phenomena and identify
which categories are particularly challenging for
neural approaches.

3.3 Supervised Fine-tuning

To construct the semantic parser via SFT, we
adopted T5-Small and T5-Base (Raffel et al.,
2020) as pretrained models. Training was con-
ducted for 50 epochs with a batch size of 16, a
learning rate of 1 x 1075, weight decay of 0.01,
and a warm-up of 500 steps. The maximum input
and output sequence lengths were set to 256 to-
kens each. For each model-task combination, we
trained and evaluated with seeds 1-10.

3.4 In-context Learning

We conducted few-shot in-context semantic pars-
ing with large language models. For this exper-
iment, we selected GPT-40, GPT-4.1, and GPT-
5, representing state-of-the-art models of different
sizes that are widely used for reasoning-oriented
tasks. The prompt comprised five text—formula ex-
emplars randomly sampled from the training set,
together with basic conventions for the target for-
malism (e.g., notation for existential quantification
and negation, and predicate-naming conventions

for compound expressions). The full prompt is
provided in Appendix A.

For all models, the temperature was set to 0.0.
To account for variability, we ran each configu-
ration with random seeds fixed at 1, 2, and 3.
For GPT-5, we additionally set the API parame-
ters reasoning.effort (a budget indicator for the
reasoning phase) and text.verbosity (the ver-
bosity of the textual response) to minimal.

For cost considerations related to API usage, we
restricted ICL to prenex-normalized data and did
not include raw ccg2lambda outputs, and we eval-
uated each model in a single run.

3.5 Evaluation Metrics

We compare the semantic parsing outputs of each
method using two evaluation metrics: graph-
matching and automated theorem proving.

For the graph-matching evaluation, we use
Counter (van Noord et al., 2018).2 Counter is a
modification of Smatch for graph structures in
which scope-taking phenomena such as negation
and quantification matter. Because Counter sup-
ports DRSs, we convert the parser’s predictions
(i.e., FOL formulas in event semantics) into DRSs
and use Counter to compute the F-score between
the gold DRS and the predicted DRS. We refer to
this F-score, together with its components preci-
sion and recall, as Dmatch. The conversion from
FOL to DRS was performed using the conversion
script provided in ccg2lambda.® For example, the
two formulas in Table 1 are converted into DRSs,
as shown in Table 3.

In addition, we evaluate via automated the-
orem proving. We use Vampire (Kovdcs and
Voronkov, 2013), a state-of-the-art first-order the-
orem prover.’ To examine whether the parser’s

2https: //github.com/RikVN/DRS_parsing

3https: //github.com/mynlp/ccg2lambda

“The indices of the variables for entities and events are
assigned according to the order of their occurrences in the
Raw formula in Table 1.

Shttps://github.com/vprover/vampire

299

https://github.com/RikVN/DRS_parsing
https://github.com/mynlp/ccg2lambda
https://github.com/vprover/vampire

Table 4: SFT results (raw ccg2lambda outputs): mean =+ standard deviation (n=10)

Model Exact Match Prover Acc Dmatch Precision Dmatch Recall Dmatch F1 Non-WFF Ratio

T5-Small 0.101 +0.003 0.189 %+ 0.005 0.611 £0.011 0.504 £0.010 0.544 £0.010 0.240 + 0.012

T5-Base 0.322 +0.002 0.634 & 0.004 0.887 £ 0.004 0.864 +0.004 0.873£0.004 0.031 40.003
Table 5: SFT results (prenex-normalized formulas): mean = standard deviation (n=10)

Model Exact Match Prover Acc Dmatch Precision Dmatch Recall Dmatch F1 Non-WFF Ratio

T5-Small 0.411 +0.003 0.439 + 0.002 0.771 £ 0.002 0.739 £ 0.002 0.752+0.002 0.018 4+ 0.002

T5-Base 0.674 +0.004 0.689 % 0.004 0.889 =+ 0.002 0.874 +£0.002 0.880 £0.002 0.007 & 0.001

prediction is logically equivalent to the gold ref-
erence, we test whether bidirectional entailment
holds between the gold formula and the prediction.

Dmatch provides a similarity score based on
clause overlap in DRSs, but it does not reveal
the precise logical relation between two formulas
(e.g., equivalence, entailment, or contradiction).
For example, consider the following pairs:

g1 = exists e.jump(e)
p1 = exists e.(jump(e) & high(e))

g2 = exists e x.(eat(e) & (subj(e)=x))
po = exists e x.(eat(e) & (obj(e)=x))

Both (g1,p1) and (g2,p2) receive the same
Dmatch score of 0.5, even though the first re-
flects one-way entailment (the prediction p; over-
specifies the gold g;) while the second is a clear
semantic role mismatch with no entailment. Simi-
larly, the pair of logically unrelated formulas P (a)
and Q(a), and the contradictory pair P(a) and
-P(a), both receive a Dmatch score of 0 and
are thus indistinguishable. Since such distinc-
tions are essential for reasoning tasks, we comple-
ment graph-based evaluation with theorem prov-
ing, which explicitly identifies logical relations.

4 Results

We report results for SFT and few-shot ICL
on our semantic parsing task, evaluated using
three criteria: graph-matching (Dmatch), theorem-
prover—based equivalence, and well-formedness.
All metrics are reported to three decimal places
(rounded half-up).

4.1 Supervised Fine-tuning

For SFT, we trained with random seeds 1-10
on two target representations (raw formulas and
prenex formulas) and evaluated on the test split.
Tables 4 and 5 report the results.

Across both representations, T5-Base shows
higher values than T5-Small. The gaps in Prover
Accuracy and Dmatch F1 are present in both set-
tings and are larger on raw ccg2lambda outputs;
the Non-WFF Ratio is lower for T5-Base in both
settings, especially on raw.

Within each model, prenex normalization is as-
sociated with higher Prover Accuracy and Exact
Match and a lower Non-WFF Ratio. This pattern
indicates that suppressing incidental variability in
the target-side quantificational structure is associ-
ated with better parser performance.

The results therefore point to concrete direc-
tions for improving semantic parsers: first, lever-
age natural scaling with model size—performance
increases consistently from T5-Small to T5-
Base across both representations and metrics—
indicating that greater capacity is a straightfor-
ward path to better end-to-end behavior; second,
normalize the target representation via PNF to
suppress incidental variability, reduce the Non-
WEFF ratio, and improve alignment with theorem-
proving-based evaluation.

Looking across both representations and both
models, higher Dmatch F1 does not translate into
commensurately high Prover Accuracy. For raw
ccg2lambda outputs, T5-Small attains Dmatch F1
of 0.544, whereas Prover Accuracy is 0.189; even
T5-Base shows 0.873 and 0.634, respectively.
With prenex normalization the gap narrows but re-
mains (0.752 and 0.439 for T5-Small; 0.880 and
0.689 for T5-Base). This consistent disparity in-
dicates that clause-level graph-matching captures
structural overlap rather than the logical equiva-
lence, underscoring the need for evaluation that
are sensitive to logical structure.

4.2 In-context Learning

AIl ICL results are obtained on prenex-normalized
targets and averaged over three runs with random

300

100%

80% \

60% \

40%

Score
o

20%

—e— Prover Accuracy
Dmatch F1
0%
1 2 3 4 5 6
Formula Complexity (6 Bins)

(a) T5-Base, seed=5

100%

s0% .\

60%

. .\
20%
—e— Prover Accuracy

Dmatch F1 .
0%

Score

1 2 3 4 5 6
Formula Complexity (6 Bins)

(b) GPT-5, seed=1

Figure 1: Relationship between target-side formula complexity and model performance. (a) best SFT configuration
(T5-Base, seed 5); (b) best ICL configuration (GPT-5, seed 1).

Table 6: ICL results (prenex-normalized formulas): mean = standard deviation (n=3)

Model Exact Match Prover Acc Dmatch Precision Dmatch Recall Dmatch F1 Non-WFF Ratio
GPT-40 0.328 £0.029 0.493 £ 0.046 0.824 +0.017 0.812+0.026 0.816 £0.022 0.012 4+ 0.006
GPT-4.1 0.278 £0.046 0.474 £0.034 0.734 + 0.027 0.737 £0.033 0.733£0.030 0.083 & 0.025
GPT-5 0.318 = 0.037 0.514 + 0.009 0.806 + 0.013 0.803 £0.010 0.803 £0.011 0.010 4 0.002

seeds 1, 2, and 3 (Table 6). GPT-5 achieves the
best overall scores (Exact Match 0.318; Prover
Accuracy 0.514; Dmatch F1 0.803). GPT-40 fol-
lows (0.328; 0.493; 0.816), and GPT-4.1 shows
lower Dmatch F1 (0.733) and the highest Non-
WFF Ratio (0.083). Both GPT-40 and GPT-5
maintain a very low Non-WFF Ratio (0.012 and
0.010), indicating that the prompt conventions
yield mostly well-formed formulas.

Relative to SFT on prenex targets (Table 5),
even the strongest ICL setting (GPT-5) trails T5-
Base in Prover Accuracy (0.514 compared with
0.689) and Exact Match (0.318 compared with
0.674), while matching well-formedness (Non-
WFF Ratio 0.010 compared with 0.007). Dmatch
F1 is lower than T5-Base (0.803 compared with
0.880) but remains in a similar range; as noted in
the SFT results, graph-matching scores tend to run
higher than prover-based equivalence.

5 Discussion and Future Perspectives

In this section, we focus our analysis on
the strongest configuration within SFT—T5-Base
(seed 5, final checkpoint)—and, for ICL, we use
GPT-5 with seed 1 as a representative setting. All
results are restricted to prenex-normalized targets.
We begin by examining how target-side formula
complexity modulates performance, then analyze

the impact of syntactic and semantic phenomena
(coordinating conjunctions, prepositional phrases,
passive voice), and finally investigate the sources
of mispredictions through a category-wise break-
down centered on the overall best model, T5-Base.

5.1 Impact of Formula Complexity

We grouped test instances by the complexity of
the target-side formula and computed Prover Ac-
curacy and Dmatch for each bin. Formula com-
plexity was measured by counting logical con-
stants, specifically negation, quantifiers, and con-
junctions (see Table 1 for examples). Instances
were sorted by complexity and split into six equal-
sized groups. In our test set (n = 2,580), each
group therefore contains 430 instances. Results
in Figure 1 show a clear performance drop as
complexity increases, with T5-Base consistently
outperforming GPT-5 across all bins. Notably,
even GPT-5, despite its ability to handle very long
outputs (up to 128k tokens), remains sensitive to
structural complexity, suggesting that future work
should focus on improving robustness to long and
compositional formulas.

5.2 Impact of Syntactic Features

We conducted a stratified analysis by linguistic
phenomena, comparing Prover Accuracy between
the presence and absence of coordination, preposi-

301

100%
Present
Absent

80% 78.1%

9
72.4% 70.3%

60% 59.9%
o
49.7%

40%

Prover Accuracy

20.2%
20%

0%
CcC PP PSS
Category

(a) T5-Base, seed=5

100%
Present
Absent

80%

60% 56.8% 57.1%
53.3%
49.8%

40%

Prover Accuracy

31.3%

20%
14.0%

0%
cc PP PSS
Category

(b) GPT-5, seed=1

Figure 2: Prover accuracy stratified by the presence or absence of syntactic features. X-axis labels follow Sec-
tion 3.2. (a) best SFT configuration (T5-Base, seed 5); (b) best ICL configuration (GPT-5, seed 1).

Quantifier count 377 (48.9%)

Predicate symbol 254 (32.9%)
2 Subformula presence 56 (7.3%)

Argument role order 42 (5.4%)
Constant entity 15 (1.9%)

Quantifier scope 15 (1.9%)

Misprediction Categot

Arity signature 9 (1.2%)
Quantifier type | 2 (0.3%)
Negation scope | 1(0.1%)

0 50 100 150 200 250 300 350 400
Count

Figure 3: Error type distribution of 771 prover-failed
predictions by T5-Base.

tional phrases, and passive voice. Figure 2 shows
the results. Table 7 in Appendix B shows er-
ror examples of each category. The results show
that coordination is a major source of difficulty
in both settings: its presence is associated with
a large reduction in Prover Accuracy relative to
its absence. Prepositional phrases also correlate
with decreased accuracy, reflecting the burden of
resolving relational structure and attachment in a
way that remains faithful to subsequent formal in-
ference. By contrast, passive voice exhibits diver-
gent behavior across models: one model appears
less sensitive or even slightly advantaged by pas-
sive constructions, whereas the other shows de-
creased accuracy under passive voice. A plausible
interpretation is that the prompt and large pretrain-
ing may induce templates that better regularize
argument-structure alternations, while fine-tuned
parameters benefit more from canonical (active)
realizations emphasized during training.

5.3 Breakdown of Mispredictions

Among the predictions of T5-Base, the best over-
all model, we selected 771 cases that were well-
formed but failed the prover-based evaluation. For
fine-grained error analysis, these cases were pre-
sented individually to an LLM (GPT-40), which
was instructed to assign a label corresponding to
the most critical problem in each prediction. The
set of labels was predefined by the authors, and
the LLM selected one from this set. In total, we
prepared 11 label types, including, for example,
Predicate Symbols (predicate mismatches such as
loud vs. loudly), Subformula Presence (missing
subformulas), and Argument Role Order (incor-
rect variable order in subj and obj functions).

The results are summarized in Figure 3. The
two most frequent error types, quantifier-count
mismatch and predicate-name error, together ac-
count for 81.8% of all mispredictions. The most
frequent category, quantifier-count mismatch, ac-
counts for 48.9% overall. Table 8 in Appendix C
shows two representative examples. These errors
are not superficial notation issues; they reflect fun-
damental misinterpretations of the semantic struc-
ture of the source text. Addressing them requires
strategies that tie natural language understanding
more tightly to the intended semantic framework
(here, event semantics) during prediction.

5.4 Outlook Based on the Behaviors of SFT
and ICL

Based on the respective behaviors of SFT and
ICL, a coherent picture emerges: parameter learn-
ing aligns outputs more tightly with theorem-

302

prover criteria, whereas prompt-only condition-
ing of foundation models yields consistently well-
formed formulas under prenex conventions yet
comparatively weaker semantic alignment. This
suggests a practical division of labor—use ICL
as a high—well-formedness candidate generator,
paired with a component optimized for semantic
adequacy (e.g., a fine-tuned parser or a prover-
guided reranker/repair module). Such a hybrid
pipeline can narrow the remaining gap without
sacrificing the strengths of either approach.

6 Conclusion

We propose evaluation with an automated theorem
prover as a precise test of whether a neural seman-
tic parser faithfully captures a sentence’s semantic
structure. Coupled with graph-matching, it reveals
a persistent gap between surface overlap and log-
ical equivalence across supervised fine-tuning and
in-context learning, with normalization improving
well formedness and logical adequacy. Sentences
with coordination, prepositional phrases, or pas-
sive voice are more error prone, and errors con-
centrate in variable binding and indexing and in
predicate naming. Looking ahead, a hybrid strat-
egy that pairs generation with logic-aware verifi-
cation is a promising direction.

7 Limitations

Although we employ popular approaches such
as SFT with T5 and ICL with OpenAl mod-
els, we have not, for example, fine-tuned billion-
parameter variants or evaluated architectures with
substantially different design principles; accord-
ingly, the applicability of our conclusions is lim-
ited. Additionally, we use OpenAl models via API
access, which limits transparency into the models
and may constrain long-term reproducibility.

Our analysis is conducted on SICK, a natural
language inference benchmark that is widely used
for studying entailment relations involving com-
positional logical structures such as negation and
quantification; we chose this dataset for precisely
these properties, while noting that examining ad-
ditional datasets and domains will help assess gen-
erality.

Another limitation of this study is that we do
not evaluate end-to-end natural language infer-
ence, one of the principal downstream tasks. In-
stead, we focus on bidirectional entailment be-
tween predicted and gold logical forms, since this

directly serves our objective of assessing the for-
mulas themselves.

Acknowledgements

We would like to thank the anonymous reviewers
for their helpful comments and suggestions. This
work is partially supported by JST, CREST Grant
Number JPMJCR2114.

References

Lasha Abzianidze. 2015. A tableau prover for natural
logic and language. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 2492-2502, Lisbon, Portugal.

Lasha Abzianidze, Johannes Bjerva, Kilian Evang,
Hessel Haagsma, Rik van Noord, Pierre Ludmann,
Duc-Duy Nguyen, and Johan Bos. 2017. The Paral-
lel Meaning Bank: Towards a multilingual corpus of
translations annotated with compositional meaning
representations. In Proceedings of the 15th Confer-
ence of the European Chapter of the Association for
Computational Linguistics: Volume 2, Short Papers,
pages 242-247.

Xuefeng Bai, Yulong Chen, and Yue Zhang. 2022.
Graph pre-training for AMR parsing and generation.
arXiv preprint arXiv:2203.07836.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract Meaning Representation
for sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse, pages 178—186.

Patrick Blackburn and Johan Bos. 2005. Representa-
tion and Inference for Natural Language: A First
Course in Computational Semantics. CSLI.

Johan Bos, Stephen Clark, Mark Steedman, James R
Curran, and Julia Hockenmaier. 2004. Wide-
coverage semantic representations from a CCG
parser. In Proceedings of the 20th international con-
ference on Computational Linguistics, pages 1240—
1246.

Johan Bos and Katja Markert. 2005. Recognising tex-
tual entailment with logical inference. In Proceed-
ings of Human Language Technology Conference
and Conference on Empirical Methods in Natural
Language Processing, pages 628—635.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu,
Clemens Winter, and 12 others. 2020. Language

303

http://aclweb.org/anthology/D15-1296
http://aclweb.org/anthology/D15-1296
https://aclanthology.org/E17-2039/
https://aclanthology.org/E17-2039/
https://aclanthology.org/E17-2039/
https://aclanthology.org/E17-2039/
https://aclanthology.org/W13-2322/
https://aclanthology.org/W13-2322/
https://aclanthology.org/H05-1079/
https://aclanthology.org/H05-1079/
https://arxiv.org/abs/2005.14165

models are few-shot learners. In Advances in Neural
Information Processing Systems, volume 33, pages
1877-1901.

Shu Cai and Kevin Knight. 2013. Smatch: an evalua-
tion metric for semantic feature structures. In Pro-
ceedings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 748-752.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Li Dong and Mirella Lapata. 2016. Language to logi-
cal form with neural attention. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
33-43.

Li Dong, Furu Wei, Shujie Liu, Ming Zhou, and
Ke Xu. 2015. A statistical parsing framework for
sentiment classification. Computational Linguistics,
41(2):293-336.

Christiane Fellbaum. 1998. WordNet: An electronic
lexical database. MIT press.

Melvin Fitting. 1996. First-Order Logic and Auto-
mated Theorem Proving. Springer.

Izumi Haruta, Koji Mineshima, and Daisuke Bekki.
2022. Implementing natural language inference
for comparatives. Journal of Language Modelling,
10(1):139-191.

Julia Hockenmaier and Mark Steedman. 2007. CCG-
bank: a corpus of CCG derivations and dependency
structures extracted from the Penn Treebank. Com-
putational Linguistics, 33(3):355-396.

Henry A Kautz. 2022. The third Al summer: AAAI
Robert S. Engelmore Memorial Lecture. Al Maga-
zine, 43(1).

Najoung Kim and Tal Linzen. 2020. COGS: A com-
positional generalization challenge based on seman-
tic interpretation. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 9087-9105, Online.
Association for Computational Linguistics.

Ioannis Konstas, Srinivasan Iyer, Mark Yatskar, Yejin
Choi, and Luke Zettlemoyer. 2017. Neural AMR:
Sequence-to-sequence models for parsing and gen-
eration. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 146—157.

Laura Kovacs and Andrei Voronkov. 2013. First-order
theorem proving and vampire. In International Con-
ference on Computer Aided Verification, pages 1-35.
Springer.

Ernest Lepore and Sam Cumming. 2009. Meaning and
Argument: An Introduction to Logic Through Lan-
guage. Wiley-Blackwell.

Bingzhi Li, Lucia Donatelli, Alexander Koller, Tal
Linzen, Yuekun Yao, and Najoung Kim. 2023.
SLOG: A structural generalization benchmark for
semantic parsing. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, pages 3213-3232, Singapore. Associa-
tion for Computational Linguistics.

Wang Ling, Phil Blunsom, Edward Grefenstette,
Karl Moritz Hermann, Tomas Kodcisky, Fumin
Wang, and Andrew Senior. 2016. Latent predictor
networks for code generation. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
599-609.

Marco Marelli, Stefano Menini, Marco Baroni, Luisa
Bentivogli, Raffaella Bernardi, and Roberto Zam-
parelli. 2014. A sick cure for the evaluation of
compositional distributional semantic models. In
Proceedings of the Ninth International Conference
on Language Resources and Evaluation (LREC’14),
pages 216-223.

Pascual Martinez-Gémez, Koji Mineshima, Yusuke
Miyao, and Daisuke Bekki. 2016. ccg2lambda: A
compositional semantics system. In Proceedings of
ACL-2016 System Demonstrations, pages 85-90.

Pascual Martinez-Gémez, Koji Mineshima, Yusuke
Miyao, and Daisuke Bekki. 2017. On-demand injec-
tion of lexical knowledge for recognising textual en-
tailment. In Proceedings of the 15th Conference of
the European Chapter of the Association for Compu-
tational Linguistics: Volume 1, Long Papers, pages
710-720, Valencia, Spain. Association for Compu-
tational Linguistics.

Koji Mineshima, Pascual Martinez-Gémez, Yusuke
Miyao, and Daisuke Bekki. 2015. Higher-order log-
ical inference with compositional semantics. In Pro-
ceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pages 2055—
2061.

Juri Opitz. 2023. SMATCH++: Standardized and ex-
tended evaluation of semantic graphs. In Findings
of the Association for Computational Linguistics:
EACL 2023, pages 1595-1607, Dubrovnik, Croatia.
Association for Computational Linguistics.

Juri Opitz, Letitia Parcalabescu, and Anette Frank.
2020. AMR similarity metrics from principles.
Transactions of the Association for Computational
Linguistics, 8:522-538.

304

https://arxiv.org/abs/2005.14165
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P16-1004
https://doi.org/10.18653/v1/P16-1004
https://doi.org/10.15398/jlm.v10i1.294
https://doi.org/10.15398/jlm.v10i1.294
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/P17-1014
https://doi.org/10.18653/v1/P17-1014
https://doi.org/10.18653/v1/P17-1014
https://doi.org/10.18653/v1/2023.emnlp-main.194
https://doi.org/10.18653/v1/2023.emnlp-main.194
https://doi.org/10.18653/v1/P16-1057
https://doi.org/10.18653/v1/P16-1057
https://aclanthology.org/E17-1067/
https://aclanthology.org/E17-1067/
https://aclanthology.org/E17-1067/
https://doi.org/10.18653/v1/D15-1244
https://doi.org/10.18653/v1/D15-1244
https://doi.org/10.18653/v1/2023.findings-eacl.118
https://doi.org/10.18653/v1/2023.findings-eacl.118
https://doi.org/10.1162/tacl_a_00329

Terence Parsons. 1990. Events in the Semantics of En-
glish. MIT Press, Cambridge, MA.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-

former. Journal of Machine Learning Research,
21(140):1-67.

Alan Robinson and Andrei Voronkov. 2001. Handbook
of Automated Reasoning, volume 1. Elsevier.

Mark J. Steedman. 2000. The Syntactic Process. MIT
Press, Cambridge.

Rik van Noord, Lasha Abzianidze, Hessel Haagsma,
and Johan Bos. 2018. Evaluating scoped meaning
representations. In Proceedings of the Eleventh In-
ternational Conference on Language Resources and
Evaluation (LREC 2018). European Language Re-
sources Association (ELRA).

Rik van Noord, Antonio Toral, and Johan Bos. 2020.
Character-level representations improve DRS-based
semantic parsing even in the age of BERT. In Pro-
ceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP),
pages 4587-4603.

Yuhuai Wu, Albert Qiaochu Jiang, Wenda Li, Markus
Rabe, Charles Staats, Mateja Jamnik, and Christian
Szegedy. 2022. Autoformalization with large lan-
guage models. Advances in Neural Information Pro-
cessing Systems, 35:32353-32368.

Zhengxuan Wu, Christopher D. Manning, and Christo-
pher Potts. 2023. ReCOGS: How incidental details
of a logical form overshadow an evaluation of se-
mantic interpretation. Transactions of the Associa-
tion for Computational Linguistics, 11:1719-1733.

Wen-tau Yih, Xiaodong He, and Christopher Meek.
2014. Semantic parsing for single-relation ques-
tion answering. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 643—-648.

Masashi Yoshikawa, Hiroshi Noji, and Yuji Mat-
sumoto. 2017. A* CCG parsing with a supertag and
dependency factored model. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
277-287, Vancouver, Canada. Association for Com-
putational Linguistics.

A Prompt Template for In-context
Learning

Below is the exact prompt template used for
semantic parsing with ICL (described in Sec-
tion 3.4). Placeholders are enclosed in braces.

System message:

You are a precise semantic parser that maps
natural language to a logical formula.
Respond with only the formula, no
explanations.

User message:
Examples:

text: <exemplar_1_text>
formula: <exemplar_1_formula>

text: <exemplar_2_text>
formula: <exemplar_2_formula>

text: <exemplar_3_text>
formula: <exemplar_3_formula>

text: <exemplar_4_text>
formula: <exemplar_4_formula>

text: <exemplar_5_text>
formula: <exemplar_5_formula>

Guidelines for this task:
Output only the logical formula, no explanations

Use plain predicate and role names (no leading
underscores) exactly as in the examples:

dog(x1), run(el), in(el,x3), (subj(el) = x1), (
obj(el) = x2).

Quantification: exists e x.(...). Conjunction:
&. Equality: =.

Negation: use the hyphen '-'.

Multiword predicates are single tokens joined
with underscores: in_front_of(e,x).

Variables: entities x1,x2,...; events el,e2,....
Keep parentheses balanced and whitespace
minimal.

Now parse the following text to its logical
formula.

text: {<SOURCE_TEXT>}
formula:

B Error Examples by Syntactic Features

Table 7 shows error examples from the T5-Base
model for each syntactic feature.

C Examples of Quantifier Count Errors

Table 8 presents examples of Quantifier Count er-
rors.

In sick_test_230@_h, two distinct event vari-
ables should be bound, but only one is introduced;
the playing and waiting events are collapsed into a
single event, and the variable x3 is bound without

appearing in the body.
In sick_test_2872_p, the predicate
mechanical should take the same variable

as bull, but it incorrectly takes a different
variable, leading to a mismatch in argument
linkage.

305

http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://aclanthology.org/L18-1267/
https://aclanthology.org/L18-1267/
https://doi.org/10.18653/v1/2020.emnlp-main.371
https://doi.org/10.18653/v1/2020.emnlp-main.371
https://doi.org/10.1162/tacl_a_00623
https://doi.org/10.1162/tacl_a_00623
https://doi.org/10.1162/tacl_a_00623
https://doi.org/10.18653/v1/P17-1026
https://doi.org/10.18653/v1/P17-1026

Table 7: Examples of typical errors in neural semantic parsing categorized by syntactic features.

Error Type

Example (Gold vs. Predicted)

Coordinating Conjunctions (CC)

Sentence: A man [con; and] a woman are sitting comfortably on
the bench. (sick_test_706_p)

Gold: exists el e2 x3 x4 x5 x6.(man(x3) & sit(el)
& (subj(el) = x3) & comfortably(el) & bench(x4) &
on(el,x4) & woman(x5) & sit(e2) & (subj(e2) = x5) &
comfortably(e2) & bench(x6) & on(e2,x6))

Predicted: exists el e2 x3 x4 x5 x6.(man(x3) & sit(el)
& (subj(el) = x3) & comfortably(el) & bench(x4) &
on(el,x4) & woman(x5) & sit(e2) & (subj(e2) = x5) &
comfortably(e2))

Prepositional Phrases (PP)

Sentence: There is no dog excitedly playing with water [pp in the
grass.]. (sick_test_782_h)

Gold: -exists el x2 x3 x4.(dog(x2) & play(el) &
(subj(el) = x2) & water(x3) & with(el1,x3) & grass(x4)
& in(el,x4) & excitedly(el))

Predicted: -exists el x2 x3 x4.(dog(x2) & play(el) &
(subj(el) = x2) & water(x3) & with(el1,x3) & grass(x4)
& in(el,x4))

Passive Voice (PSS)

Sentence: A rock is being [pss climbed] by a person with a rope,
which is pink. (sick_test_642_h)

Gold: exists el e2 x3 x4 x5.(rock(x3) & climb(el) &
(obj(el) = x3) & person(x4) & rope(x5) & pink(x5) &
with(e2,x5) & (subj(e2) = x4) & (subj(el) = x4))
Predicted: exists el x2 x3 x4.(rock(x2) & climb(el) &
(obj(el) = x2) & person(x3) & rope(x4) & pink(x4) &
with(el,x4))

Table 8: Examples of Quantifier Count errors in predictions.

ID

Content

sick_test_230_h

Sentence: There are no children playing and waiting.

Gold: -exists el e2 x3.(child(x3) & play(el) & (subj(el) = x3) &
wait(e2) & (subj(e2) = x3))

Predicted: -exists el x2 x3.(child(x2) & play(el) & (subj(el) =
x2) & wait(el))

sick_test_2872_p

Sentence: A man is riding a mechanical bull.

Gold: exists el x2 x3.(man(x2) & bull(x3) & mechanical(x3) &
ride(el) & (subj(el) = x2) & (obj(el) = x3))

Predicted: exists el x2 x3 x4.(man(x2) & bull(x3) & mechanical(x4)
& ride(el) & (subj(el) = x2) & (obj(el) = x3))

306

