The Lookahead Limitation: Why Multi-Operand Addition is Hard for LLMs

Tanja Baeumel^{1,2,3} Josef van Genabith^{1,2} Simon Ostermann^{1,2,3}

¹German Research Center for AI (DFKI)

² Saarland University

³Center for European Research in Trusted AI (CERTAIN)

tanja.baeumel@dfki.de

Abstract

Autoregressive large language models (LLMs) exhibit impressive performance across various tasks but struggle with simple arithmetic, such as additions of two or more operands. We show that this struggle arises from LLMs' use of a simple one-digit lookahead heuristic, which forms an upper bound for LLM performance and works fairly well (but not perfect) for twooperand addition but fails in multi-operand cases, where the carry-over logic is more complex. Our probing experiments and digit-wise accuracy evaluation show that the evaluated LLMs fail precisely where a one-digit lookahead is insufficient to account for cascading carries. We further validate our findings via a targeted circuit intervention, revealing a specialized pathway responsible for direct carry detection from the next digit position. We analyze the impact of tokenization strategies on arithmetic performance and show that all investigated models, regardless of tokenization and size, are inherently limited in the addition of multiple operands due to their reliance on a one-digit lookahead heuristic. Our findings reveal fundamental limitations that prevent LLMs from generalizing to more complex numerical reasoning.

1 Introduction

Large language models (LLMs) demonstrate remarkable performance across a wide range of tasks (Bai et al., 2023; Team et al., 2024; Guo et al., 2025), yet struggle with simple arithmetic tasks, such as the addition of multiple or large numbers - sometimes even after finetuning (McLeish et al., 2024; Shen et al., 2023; Zhou et al., 2023, 2024a).

The difficulty LLMs face in arithmetic tasks stems from the mismatch between the left-to-right nature of autoregressive language modeling and the right-to-left structure of standard arithmetic algorithms. Conventional addition methods process numbers digit by digit from right to left, propagat-

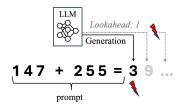


Figure 1: An addition of two three-digit operands. LLMs rely on a one-digit lookahead when performing addition. If a relevant carry emerges at a later stage in prediction, they fail to account for it, leading to errors in earlier generated result digits.

ing carries, while LLMs generate numbers sequentially from left to right without explicit intermediate calculations. This raises the question: What strategy do LLMs use to handle this misalignment in addition?

In this work, we show that pretrained LLMs rely on a simple heuristic that enables high accuracy in two-operand addition (e.g., 147 + 291 = 438) but produces systematic and predictable error patterns error patterns. This heuristic attempts to bridge the gap between the left-to-right generation and the resulting need to 'look ahead' to account for carries from less significant digits. Rather than performing an full lookahead to anticipate cascading carries, LLMs rely on a single-digit lookahead heuristic to estimate carries. We demonstrate that this lookahead depth is limited to one digit across all pretrained models investigated. While this strategy works reasonably well for two-operand addition, it deteriorates substantially with multiple operands where cascading carries are more frequent, due to relevant digit combinatorics (henceforth generalized as multi-operand addition for any number of operands > 2).

Figure 1 illustrates a characteristic failure of this heuristic: because the model can only look one digit ahead, it bases its prediction on the middle digits (e.g., 4+5=9), incorrectly infers that no carry will occur, and consequently predicts the first

result digit as 3, failing to propagate the carry from the units position.

To test whether the heuristic accurately describes the strategy used by LLMs to solve addition from left to right, we present results from four state-of-the-art LLMs with different tokenization strategies (single digit and multiple digit) for numerical outputs. Using carefully curated datasets, digit-wise accuracy metrics, and probing techniques, we show that errors emerge precisely in cases where a one-digit lookahead is insufficient to handle cascading carries.

Finally, we identify a circuit that contributes information about direct carries from the next digit position to the current generation step, and causally verify its role through targeted interventions, confirming the presence of single-digit lookahead.

Our findings show that all investigated LLMs are constrained by a limited lookahead heuristic, independent of tokenization strategy and model size, revealing a fundamental algorithmic limitation in their arithmetic reasoning.

Our contributions are as follows:

- Evaluation of Addition Capabilities: We show that LLMs fail on multi-operand addition (Section 2) and then systematically evaluate the capabilities of LLMs on two-operand addition tasks via probing (Section 3).
- Heuristic Discovery: Inspired by results of the evaluation, we formalize left-to-right addition in LLMs for multi-operand addition with a simple heuristic that uses a lookahead of one for left-to-right addition (H1, Section 4).
- Empirical Validation: We demonstrate that H1 is fragile in multi-operand addition and explain the performance decline as a function of the increasing number of operands in large comprehensive addition experiments. We find that model performance aligns *precisely* with the predicted limitations of H1 (Sections 5 and 6). We find that H1 holds independently of tokenization strategies (Section 7).
- Carry Circuit Discovery and Causal Verification: We identify a circuit that contributes information about direct carries from the next digit position to the current generation step and confirm its causal role through targeted interventions, thereby providing mechanistic evidence for single-digit lookahead.

2 LLMs Struggle with Multi-Operand Addition

We now define the data and models used in this work and demonstrate that LLMs fail on multioperand addition via prediction accuracy.

2.1 Models and Data

Models. We compare Mistral-7B (Jiang et al., 2023), Gemma-2-2B and Gemma-2-9B (Team et al., 2024) and Meta-Llama-3-8B (Grattafiori et al., 2024; AI@Meta, 2024) as they employ different tokenization strategies for numerical outputs: While Mistral and Gemma-2 exclusively employ a single-digit tokenization strategy for their numeric input and generated output (e.g., input = ['1', '4', '7', '+', '2', '5', '5', '='], output = ['4', '0', '2']), Llama-3 employs a multi-digit numeric tokenization strategy (e.g., input = ['147', '+', '255', '='], output = ['402']), typically favoring numeric tokens of length 3.

Data. For all experiments in this paper, we compile a range of datasets containing simple arithmetic task prompts of the form 147 + 255 = ...We create a dataset for each addition task ranging from 2-operand to 11-operand addition, where each operand is a triple-digit number between 100 and 899. Each of the 10 datasets contains 5,000 unique arithmetic problems, both in a zero-shot and one-shot setting. In the zero-shot setting, an example for a 2-operand addition prompt is "147 + 255 = ". An example for a 4-operand addition prompt is "251 + 613 + 392 + 137 =". Our one-shot prompt template follows the scheme q1 r1; q2, e.g. "359 +276 = 635; 147 + 255 = ", where q1 is a sample query from the same dataset and r1 is the correct result of the addition task in q1. q2 is the query containing the addition task to be solved.

In the remainder of the paper, we use s_n (with $n \ge 0$) to denote the result digit generated at digit position 10^n . For example, in "147 + 255 =", with expected output 402, $s_2 = 4$, $s_1 = 0$, and $s_0 = 2$.

2.2 LLM Accuracy on Addition Tasks

Figure 2 illustrates the significant decline in performance of Mistral-7B, Gemma-2-2B, Gemma-2-9B and Llama-3-8B in multi-operand addition as the number of operands increases. This drastic decrease highlights the inability of these models to generalize effectively to addition tasks involving a higher number of operands, despite their strong overall capabilities.

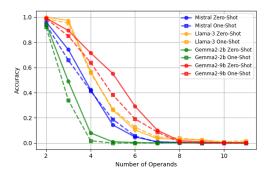


Figure 2: Accuracy of Mistral, Gemma-2 variants and Llama-3 on multi-operand addition of triple-digit numbers, in a zero- and one-shot setting.

3 Probing LLMs on Digits in Two-Operand Addition Tasks

Solving arithmetic tasks presents a fundamental challenge for LLMs, as they generate text from left to right, while addition requires a right-to-left process due to carry propagation from the least significant to the most significant digit. For instance, predicting the first result digit $s_2=4$ in "147 + 255 =" requires the model to anticipate that a carry originating from s_0 cascades through s_1 to s_2 . Robust left-to-right addition thus requires a lookahead spanning all result digits, raising the question: Do LLMs internally represent future result digits when predicting s_2 - and if so, how far can they "look into the future"?

To answer this question, we probe whether models accurately encode future result digits s_1 or s_0 while generating s_2 . Building on Levy and Geva (2024), who show that, irrespective of a model's numeric tokenization strategy, LLMs internally represent numbers digit-by-digit in base 10, we analyze digit-wise probing accuracy on the two-operand addition dataset described in Section 2.1.

3.1 Methodology and Experiments

Data. We split the two-operand addition dataset (see Section 2.1) into train (n=4500) and test (n=500) for the probing experiments. The two-operand addition dataset is designed such that correct results for the addition tasks are triple-digit numbers between 200 and 999. We use the zero-shot prompt setting for the probing experiment.

Probing Setup. Our goal is to determine which result digits are available at the prediction step of s_2 . We thus train probes to predict the result digits s_2 , s_1 , and s_0 from hidden states of the model

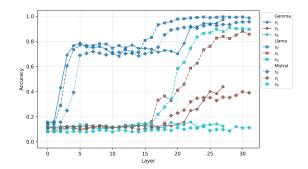


Figure 3: Probing accuracy of individual result digits as predicted by the hidden states of Mistral, Gemma-2-9B and Llama-3. For two-operand, zero-shot addition prompts.

during the prediction step of s_2 .

Specifically, we train one-layer linear probes to predict individual digit values of the results from the hidden state of the last token at each model layer. Probes are trained on the train split of the two-operand addition dataset and evaluated on the test split. We train separate probes to predict individual result digits s_2 , s_1 , and s_0 , for all models at all layers.¹

3.2 Results

The probing accuracy of individual result digits is shown in Figure 3. Gemma-2 and Mistral with their digit-wise tokenization internally represent only s_2 with high accuracy. In contrast, there is a high probing accuracy across *all* result digits in Llama-3. This is due to the fact that Llama-3 tokenizes numbers into 3-digit numeric tokens: It is forced by its tokenization to generate all result digits $(s_2, s_1, and s_0)$ in one step as a single token.

The single-digit tokenization models Mistral and Gemma-2 exhibit a low probing accuracy on s_0 (< 0.24) in all layers. Recall that s_0 is probed from the models' hidden states while they autoregressively generate s_2 . We interpret the lack of internal representation of s_0 as evidence that these models disregard the potential influence of s_0 (including any cascading carry) when generating s_2 .

In line with this, Gemma-2 and Mistral show notably higher probing accuracy on s_1 compared to s_0 , when probing from the models' hidden states as they generate s_2 . We thus conjecture that the single-digit-token models seem to recognize the potential

¹We choose a low temperature of 0.1 during model inference to ensure deterministic and consistent outputs, reducing randomness in token generation and improving the reliability of numerical calculations.

influence of the carry resulting from the sum of the 10^1 operand digits. Simply put, generating the digit at 10^2 might employ a lookahead of one digit to the 10^1 intermediate result. Based on this observation, we formulate a hypothesis for a heuristic used by LLMs:

H1: LLMs employ a look ahead of one digit to generate the current digit of an addition task.

H1 would explain why LLMs cannot effectively represent each necessary digit of the result during generation, making it difficult to anticipate later carry values correctly. We first formalize H1, which explains the patterns observed in Figure 3, in the next Section, and then verify the fit of H1 with empirical addition outcomes generated by the models in Sections 5, 6, and 7.

4 The Carry Heuristic of LLMs

Since LLMs generate numbers from left to right, they must anticipate whether a carry from later digits (with lower bases further on in the result) will impact the current digit they are generating. In this section, we evaluate the maximum accuracy LLMs can achieve in addition tasks, assuming they rely on **H1**, given the limited lookahead of one digit.

4.1 Formalization of Left-to-Right Addition

We first formalize a recursive algorithm for solving addition of k operands – where each operand is a base 10 integer – in a left-to-right manner.

We define:

- k: Number of operands.
- n_1, n_2, \ldots, n_k : Operands, each represented as digit sequences in base 10, with $0 \le i < d$, where d is the number of digits in the operands: $n_j = [n_{j,d-1}, \ldots, n_{j,0}], \quad n_{j,i} \in \{0, \ldots, 9\}$
- S: The result of the addition. $S=[s_d,s_{d-1},\ldots s_0]$, where $s_d=c_d$, i.e., the final carry.

We recursively define the calculation of individual result digits:

• Total Sum at Digit Position i:

$$t_i = \sum_{j=1}^k n_{j,i}$$

$$T_i = t_i + c_i$$

where t_i is the digit sum at the current position, c_i the carry from the previous digit position, and k the number of operands. Base case: $c_0 = 0$, no carry at the least significant digit.

• Result Digit at Position i:

$$s_i = T_i \mod 10$$

• Carry to the Next Digit Position:

$$c_{i+1} = \left| \frac{T_i}{10} \right|$$

A worked example is provided in Appendix A.

4.2 A Naive Heuristic for Solving Addition Left-to-Right

Due to the recursive nature of left-to-right addition, a lookahead of i-1 digits is needed to determine any result digit s_i . There is however a simple, non-recursive heuristic for the estimation of s_i with only a one-digit lookahead, to the digit sum of the next position, i.e. only considering t_{i-1} .

We define c_{min} and c_{max} to be the minimal and maximal possible value for a carry, where trivially for all cases, $c_{min} = 0$, and

$$c_{max}(k) = \left| \frac{\sum_{j=1}^{k} 9}{10} \right|$$

in base 10 and for k operands. We then define the carry heuristic c_i^h as follows:

$$c_i^h \in \left\{ \left| \frac{t_{i-1} + c_{min}}{10} \right|, \left| \frac{t_{i-1} + c_{max}}{10} \right| \right\}$$

Where c_i^h is chosen uniformly at random. We then accordingly define the predicted total sum at digit position i

$$T_i^h = t_i + c_i^h$$

and the predicted result digit

$$s_i^h = T_i^h \mod 10$$

Examples. We show two examples of two-operand addition, one in which $\mathbf{H1}$ is successful, and one in which it fails. For k=2, i.e., in two-operand addition:

$$c_{max}(2) = \left| \frac{\sum_{j=1}^{2} 9}{10} \right| = 1$$

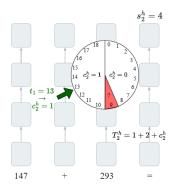


Figure 4: Two-operand addition in which **H1** is successful.

147 + 293. See Figure 4. We need T_2^h and thus c_2^h to generate the first result digit s_2^h .

$$c_2^h \in \left\{ \left\lfloor \frac{4+9+c_{min}}{10} \right\rfloor, \left\lfloor \frac{4+9+c_{max}}{10} \right\rfloor \right\}$$
$$= \left\{ \left\lfloor \frac{13}{10} \right\rfloor, \left\lfloor \frac{14}{10} \right\rfloor \right\} = \{1, 1\}$$

therefore $c_2^h=1$, $T_2^h=4$, and $s_2^h=4$. **H1** succeeds in predicting the first digit s_2 for **147 + 293**.

147 + 255. See Figure 5.

$$c_{2}^{h} \in \left\{ \left\lfloor \frac{4+5+c_{min}}{10} \right\rfloor, \left\lfloor \frac{4+5+c_{max}}{10} \right\rfloor \right\}$$
$$= \left\{ \left\lfloor \frac{9}{10} \right\rfloor, \left\lfloor \frac{10}{10} \right\rfloor \right\} = \{0, 1\}$$

therefore c_2^h is chosen uniformly at random between 0 and 1. The heuristic fails in predicting the first digit s_2 for **147 + 255** with a 50% chance.

5 H1 Predicts Difficulties of LLMs in Two-Operand Addition

In this section we show that single-digit token LLMs struggle exactly in those cases in which the heuristic **H1** is insufficient.

5.1 Predicted Accuracy

For two-operand addition, there are 19 possible values for each t_i (ranging from 0 to 18, because this is the range of sums between two digits). In 18 out of these 19 cases, **H1** reliably determines the correct carry value. Only if $t_i = 9$, **H1** must randomly choose between two possible carry values, thus failing with a 50% chance. This results in an overall predicted accuracy of

$$\frac{18 \times 1.0 + 1 \times 0.5}{19} = 0.974$$

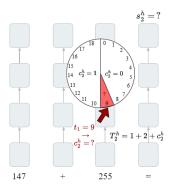


Figure 5: Two-operand addition in which H1 fails.

for the first result digit s_2 in two-operand addition: **H1** achieves 97.4% accuracy in correctly predicting the first result digit s_2 . This corresponds to the high accuracies that Gemma-2 and Mistral reach in generating s_2 during zero-shot and one-shot inference (Gemma-2-2B: 0-shot: 92.20%, 1-shot: 94.60%; Gemma-2-9B: 0-shot: 98.80%, 1-shot: 99.20%; Mistral: 0-shot: 94.00%, 1-shot: 96.20%).

5.2 Finegrained Analysis

We further investigate whether it is true that especially cases with $t_i = 9$ are challenging for LLMs.

Data. To this end, we evaluate prediction accuracy across five distinct newly introduced datasets, each containing 100 queries with distinct carry scenarios. The datasets follow the zero-shot template described in Section 2.1 and are designed to exhaustively capture all cases of carries affecting s_2 in two-operand addition of triple-digit numbers.

- Dataset 1 (DS1): No carry. The addition does not produce any carry (e.g., 231+124=355).².
- Dataset 2 (DS2): Carry in position 10^0 , no cascading. A carry is generated in the 10^0 (s_0) digit but does not cascade to the 10^2 (s_2) digit (e.g., 236 + 125 = 361).
- Dataset 3 (DS3): Cascading carry from 10^0 to 10^2 . A carry originates in the 10^0 (s_0) digit and cascades to the 10^2 (s_2) digit (e.g., 246 + 155 = 401).
- Dataset 4 (DS4): Direct carry in position 10^1 . A carry is generated in the 10^1 (s_1) digit and directly affects the 10^2 (s_2) digit (e.g., 252 + 163 = 415).
- Dataset 5 (DS5): No carry, but position 10¹
 digits sum to 9. There is no carry in any digit,

²We employ the additional constraint that the sum of the 10^1 operand digits $\neq 9$, i.e., $(s_1 \neq 9)$

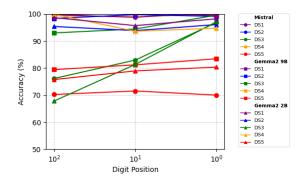


Figure 6: Per-digit generation accuracy of Mistral and Gemma-2 variants on datasets DS1-DS5.

but the sum of the 10^1 operand digits is 9, i.e., $(s_1 = 9)$ (e.g., 256 + 142 = 398).

DS1 to DS5 can be neatly categorized according to whether the heuristic can accurately predict s_2 :

• DS1 and 2:
$$t_1 = \sum_{j=1}^{2} n_{j,1} < 9 \rightarrow c_2^h = 0$$

• DS4:
$$t_1 = \sum_{i=1}^{2} n_{i,i} > 9 \rightarrow c_2^h = 1$$

• DS3 and 5:
$$t_1 = \sum_{j=1}^{2} n_{j,1} = 9 \rightarrow c_2^h = ?$$

Results. Figure 6 shows that LLMs struggle with DS3 and DS5, which are precisely the cases where **H1** predicts issues³. As **H1** suggests, predicting the first result digit s_2 at position 10^2 is particularly error-prone in these scenarios ⁴. The difficult datasets are the ones where a lookahead of one digit position does not suffice to determine the value of the carry needed to generate s_2 . Simply put: Overall, addition results tend do be predicted correctly by LLMs, if and only if a lookahead of one digit is sufficient to determine the value of the carry bit affecting s_2 . Prediction is often incorrect if a lookahead of two or more digits is needed to determine the value of the carry bit affecting s_2 .

In cases where a lookahead of one digit is enough to accurately determine the value of s_2 (DS1, DS2, DS4), the models succeed. However, when a lookahead of one digit is insufficient to determine the value of s_2 (DS3 and DS5), the model

struggles with predicting s_2 correctly. Table 1 in Appendix B provides the generation accuracy of s_2 for Gemma-2 and Mistral, in addition to the plot.

6 H1 Predicts the Deterioration of Accuracy in Multi-Operand Addition

As shown in the last section, **H1** is a good approximator for LLM behaviour on two-operand addition: In the majority of cases, a lookahead of one digit is sufficient to accurately determine the value of the carry bit affecting s_2 . With a look-ahead of one digit, **H1** predicts a failure of the generation of s_2 , if and only if the value of s_1 does not suffice to determine the value of the carry bit. In two-operand addition in base 10, this is the case if and only if $t_1 = 9$. We now show that **H1** can also account for model performance on *multi*-operand addition.

6.1 Multi-Operand Performance Predicted by H1

The possible value of a carry increases with increasing numbers of operands. For instance in 4-operand addition (k = 4) the maximal value of a carry is 3:

$$c_{max}(4) = \left| \frac{\sum_{j=1}^{4} 9}{10} \right| = 3$$

Therefore the carry heuristic c_i^h is unreliable in 4-operand addition whenever $t_{i-1} = \sum_{j=1}^k n_{j,i-1} \in \{7, 8, 9, 17, 18, 19, 27, 28, 29\}.$

Put simply, because the value of the carry can be larger for more operands, the proportion of values of s_1 for which the heuristic is insufficient (with its lookahead of one) increases with an increasing number of operands.

Consider an example in which the heuristic fails in 4-operand addition for clarification (see Figure 10 in Appendix C):

186 + 261 + 198 + 256.

$$\begin{aligned} t_1 &= 8 + 6 + 9 + 5 = 28 \\ c_2^h &\in \left\{ \left\lfloor \frac{c_{min} + 28}{10} \right\rfloor, \\ \left\lfloor \frac{c_{max} + 28}{10} \right\rfloor \right\} \end{aligned}$$

with $c_{max} = 3$

$$c_2^h \in \left\{ \left| \frac{28}{10} \right|, \left| \frac{31}{10} \right| \right\} = \{2, 3\}$$

therefore c_2^h is chosen uniformly at random between 2 and 3. The heuristic thus fails in solving 186 + 261 + 198 + 256 with a chance of 50%.

³Gemma-2-9B performs better on DS3 than expected, which suggests that the model tends to generate the carry bit when unsure.

 $^{^4}$ Qualitative analysis shows why digits s_1 in DS3, and s_1 and s_0 in DS5, are also often wrong. In DS3 (e.g., 246+155=401), an early s_2 error (e.g., generating 3) leads the model to minimize the numerical difference to the correct result, producing 391 instead of 301. In DS5 (e.g., 256+142=398), an initial error in s_2 (e.g.,generating 4) prompts the model to round the next hundred, giving 400 and causing errors in both s_1 and s_0 .

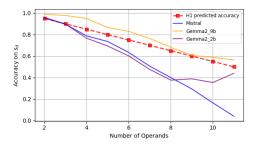


Figure 7: Accuracy of first generated result digit s_d in zero-shot multi-operand addition for Mistral and Gemma-2 variants, compared to the expected accuracy based on **H1**.

For 4-operand addition, there are 37 possible sums for the second digits (ranging from 0 to 36). In 28 out of these 37 cases, the heuristic reliably determines the correct carry bit. However, when $t_1 \in \{7, 8, 9, 17, 18, 19, 27, 28, 29\}$, the heuristic must randomly choose between two possible carry values, leading to a 50% chance of selecting the correct one. This results in an overall accuracy of:

$$\frac{28 \times 1.0 + 9 \times 0.5}{37} = 0.878$$

Thus, the heuristic only achieves 88% accuracy in correctly predicting the first result digit s_2 in 4-operand addition, compared to the 97% accuracy in two-operand addition. In Appendix E, we provide exact values for s_2 accuracy as predicted by **H1**, for addition tasks between 2 and 11 operands.

6.2 Empricial Evidence on Multi-Operand Addition

Intuitively, according to H1, Mistral and Gemma-2 with their one-digit tokenization should fail at multi-operand addition at a certain rate: The amount of instances in which a lookahead of one digit is sufficient to accurately predict s_i gets smaller and smaller because the carry bit value can get larger and larger for multiple operands. We test if H1 holds in predicting the first generated digit s_d in Mistral and Gemma-2 for multiple operands. We evaluate prediction accuracy on the multi-operand datasets described in Section 2.1. H1 should provide an upper bound for the performance of LLMs⁵ for predicting the first result digit s_d . Figure 7 shows that **H1** is indeed a very precise upper bound for the accuracy of the zero-shot⁶ generation of the first result digit s_d by Mistral and

Gemma-2. We take this as further evidence that these LLMs make use of **H1**. Models may exhibit additional difficulties beyond the one-digit lookahead limitation, explaining their underperformance on calculations with many operands (8-10). We suspect this discrepancy may be related to limited training exposure to these many-operand addition tasks, but further investigation is needed to confirm this.

7 Multi-Digit Tokenization Models Employ the Same Heuristic

While Levy and Geva (2024) demonstrate that all LLMs, regardless of the tokenization strategy, internally represent numbers as individual digits, it remained unclear whether models with multi-digit tokenization also rely on a one-digit lookahead when generating addition results. In this section, we show that perhaps surprisingly multi-digit tokenization models, such as Llama-3, also employ a lookahead of one **digit** when predicting carry bits. To show this, we design 3 controlled datasets that force the multi-digit tokenization model Llama-3 to generate results across multiple tokens. To investigate the effect of model size, we also include results on the 70B version of LLama-3.

Experimental Setup. To examine whether Llama-3 employs a one-digit lookahead, we use six-digit numbers in two-operand addition (e.g., "231234 + 124514 = "), where each operand is tokenized into two three-digit tokens by the model's tokenizer, such as: [" 231"," 234", " +", " 124", " 514", " ="] and the result is generated as two triple-digit tokens as well, in this example [" 355", "748"]. The first generated triple-digit token $s_5s_4s_3$ corresponds to digit base positions 10^5 , 10^4 , and 10^3 . If Llama-3 did employ **H1** it would look ahead to digit position 10^2 , but ignore digit positions 10^1 and 10^0 , as they fall outside the lookahead window.

Carry Scenarios. We evaluate model behavior in three datasets with six-digit operands (ranging from 100,000 to 899,999) and results between 200,000 and 999,999. We use a zero-shot prompt template. Each dataset consist of 100 samples:

- **DS6:** No carry. The addition does not produce any carry and no digits sum to 9. (e.g., 111, 234 + 111, 514 = 222, 748).
- DS7: Direct carry in position 10^2 . A carry is generated at 10^2 and directly affects 10^3 (e.g., 111,721+111,435=223,156).

⁵Autoregressive LLMs with single-digit tokenization of numbers.

⁶Results for the one-shot setting are in Appendix D.

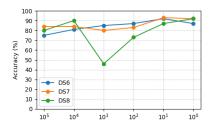


Figure 8: Per-digit generation accuracy of Llama on datasets DS6-DS8.

• DS8: Cascading carry from 10^1 to 10^3 . A carry originates at 10^1 , cascades to 10^2 and then affects 10^3 (e.g., 111,382 + 111,634 = 223,016).

Expected Outcomes. If Llama-3 employs H1, we expect that DS6 should be easy, as no carry propagation is required. DS7 should also be easy, since the carry affecting 10^3 is within the one-digit lookahead window. DS8 in contrast should be challenging, as the carry originates from 10^1 , from beyond the model's lookahead range. We expect a lower accuracy in generating 10^3 , the result digit that is affected by the potentially inaccurate carry.

Results. Figure 8 shows that Llama-3 exhibits the expected pattern predicted by **H1**. The sharp drop in accuracy in dataset DS8 on digit 10^3 provides evidence that Llama-3, regardless of its multi-digit tokenization strategy, relies on the same one-digit lookahead for solving addition left to right. Results for LLama-3-70-B are given in Appendix F and show the exactly same behaviour, which indicates that **H1** is employed irrespective of model size.

8 Direct Carry Circuit

Building on **H1**, which posits that LLMs rely on a single-digit lookahead to anticipate carries, we investigate the mechanistic implementation of this heuristic in Gemma-2-9B. Following Baeumel et al. (2025), who demonstrate that LLMs use modular, digit-specific circuits to generate result digits independently, we find that these models contain a circuit for the *next* digit—the one not yet generated. This circuit acts as a one-digit lookahead, signaling whether a direct carry is required.

Baeumel et al. (2025) identify a clear hundreds (s_2) circuit in Gemma-2-9B responsible for generating the s_2 digit (i.e., the 'hundreds' digit, Figure 9) and also report a less dominant tens (s_1) circuit in intermediate MLP layers. In contrast, no dedicated

units (s_0) circuit exists. We test whether the presence of the s_1 circuit, together with the absence of an s_0 circuit, implements the one-digit lookahead heuristic (H1): the s_1 circuit may signal whether the next digit generates a carry that directly affects the current generation.

8.1 Carry Intervention

We reuse the digit-position-specific neurons released by Baeumel et al. (2025) to test whether the tens (s_1) circuit implements the single-digit lookahead, functioning as a direct carry circuit.

Data and Method. We create 200 intervention data samples to intervene on the tens-digit circuit of a no-carry base prompt (347+231=578) with a source prompt that causes a carry from tens to hundreds (347+482=829). We compare whether after the intervention the model indeed outputs a carry adjusted hundreds digit (i.e., $6=b_{+1}$) instead of the base hundreds digit (i.e., 5=b). We intervene on the tens circuit of Gemma 2 9B (layers 28-31) intervention data. This setup allows us to determine whether carry information is localized within the tens circuit or processed elsewhere in the model.

The results match our expectation⁷: the probability of b decreases by 49.6 percentage points, while the probability of b_{+1} increases by 48.8 percentage points. This demonstrates that the tens circuit indeed transmits carry information to influence the current generation step.

We thus establish that the tens circuit functions mechanistically as a direct carry circuit, implementing the one-digit lookahead.

9 Related Work

Recent work has benchmarked the arithmetic capabilities of LLMs using text-based evaluations and handcrafted tests (Yuan et al., 2023; Lightman et al., 2023; Frieder et al., 2023; Zhuang et al., 2023). Numerous studies consistently show that LLMs struggle with arithmetic tasks (Nogueira et al., 2021; Qian et al., 2022; Dziri et al., 2023; Yu et al., 2024).

Zhou et al. (2023) and Zhou et al. (2024a) examine transformers' ability to learn algorithmic procedures and find challenges in length generalization (Anil et al., 2022). Similarly, Xiao and Liu (2024) propose a theoretical explanation for LLMs' difficulties with length generalization in arithmetic.

 $^{{}^{7}\}mbox{We choose}$ the following optimal thresholds for neuron circuit membership t*=0.5

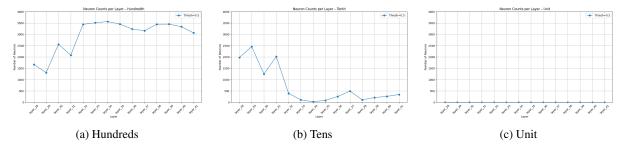


Figure 9: Circuit Size: Number of MLP neurons per layer in digit position circuits (threshold for Fisher Score t*=0.5. Dimensionality of MLP updates in Gemma 2 9B is 3584.

Gambardella et al. (2024) find that LLMs can reliably predict the first digit in multiplication but struggle with subsequent digits.

The focus of research has recently shifted from mere benchmarking of LLMs to trying to understand why LLMs struggle with arithmetic reasoning. Using circuit analysis, Stolfo et al. (2023) and Hanna et al. (2023) explore internal processing in arithmetic tasks, while Nikankin et al. (2024) reveal that LLMs use a variety of heuristics managed by circuits. In contrast, Baeumel et al. (2025), Quirke and Barez (2023) and Deng et al. (2024) show that models process arithmetic with structured and algorithmic approaches rather than simple memorization, through pattern recognition or digit-wise, position-specific streams. Kantamneni and Tegmark (2025) showed that LLMs represent numbers as generalized helixes and perform addition using a "Clock" algorithm (Nanda et al., 2023). Levy and Geva (2024) demonstrate that numbers are represented digit-by-digit, extending Gould et al. (2023), who find that LLMs encode numeric values modulo 10. Zhu et al. (2025) suggest that numbers are encoded linearly, while Marjieh et al. (2025) indicate that number representations blend string-like and numerical forms.

Another line of research explores how tokenization influences arithmetic capabilities. Garreth Lee and Wolf (2024) show that single-digit tokenization outperforms other methods in simple arithmetic tasks. Singh and Strouse (2024) highlight that right-to-left (R2L) tokenization—where tokens are right-aligned—improves arithmetic performance. Zhou et al. (2024b) investigate the influence of the choice of numeral system on arithmetic capabilities. Notably, they finetune LLMs on addition tasks, which differs from our work in that such LLMs are more specialized and not evaluated off-the-shelf.

In a similar spirit, a strand of work investigates arithmetic skils of LLMs after finetuning or adapt-

ing them. The role of embeddings and positional encodings is emphasized by McLeish et al. (2024), who demonstrate that suitable embeddings enable transformers to learn arithmetic, and by Shen et al. (2023), who show that positional encoding improves arithmetic performance. Zhang-Li et al. (2024) show that reversing the order of calculations and forcing an LLM to work right-to-left improves arithmetic performance. Chen et al. (2024) investigate underlying computation mechanisms in multi-operand addition, similar to our work, but train models on arithmetics; and they restrict themselves to two-digit operands.

10 Conclusion

Based on the evaluation of several state-of-the art models from different families, our study indicates that pretrained LLMs, regardless of their numeric tokenization strategy and model size, rely on a simple one-digit lookahead heuristic for anticipating carries when performing addition tasks. While this strategy is fairly effective for two-operand additions, it fails for multi-operand additions due to the increasingly unpredictable value of cascading carry bits. Through probing experiments and targeted evaluations of digit-wise result accuracy, we demonstrate that model accuracy deteriorates precisely at the rate the heuristic predicts. Mechanistic analyses further reveal that this heuristic is implemented via specialized digit-position circuits, with dedicated pathways transmitting carry information to influence subsequent predictions.

Our findings reveal a core limitation in current LLMs: Their difficulty generalizing to complex arithmetic tasks. This work deepens understanding of their reasoning limits and points to increased lookahead as a promising way to improve performance on such tasks.

Limitations

Our work highlights limited lookahead as a key challenge for LLMs when adding multiple numbers. However, it remains unclear whether this limitation extends to other arithmetic operations, such as subtraction. Additionally, we cannot determine whether the limited lookahead is a heuristic explicitly learned for arithmetic tasks, or if it could also affect general language generation tasks as thus hinder performance of other tasks that require longrange dependencies. Future work should explore the depth of lookahead in tasks beyond arithmetic.

While the lookahead heuristic offers a straight-forward explanation for the upper performance limit of LLMs on addition, it does not fully account for why LLMs still somewhat underperform relative to the heuristic in addition tasks with many operands (e.g., adding 8–11 numbers). We suspect this discrepancy may be related to limited training exposure to these many-operand addition tasks, but further investigation is needed to confirm this.

Finally, we do not tackle methods to overcome the shallow lookahead. Future work should investigate whether targeted training on tasks requiring deeper lookahead can encourage models to deepen their lookahead.

Acknowledgements

We thank Patrick Schramowski for his helpful feedback on the paper draft. This work has been supported by the German Ministry of Education and Research (BMBF) as part of the project TRAILS (01IW24005).

References

AI@Meta. 2024. Llama 3 model card.

Cem Anil, Yuhuai Wu, Anders Andreassen, Aitor Lewkowycz, Vedant Misra, Vinay Ramasesh, Ambrose Slone, Guy Gur-Ari, Ethan Dyer, and Behnam Neyshabur. 2022. Exploring length generalization in large language models. *Preprint*, arXiv:2207.04901.

Tanja Baeumel, Daniil Gurgurov, Yusser al Ghussin,Josef van Genabith, and Simon Ostermann. 2025.Modular arithmetic: Language models solve math digit by digit. *Preprint*, arXiv:2508.02513.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei Huang, et al. 2023. Qwen technical report. *arXiv* preprint arXiv:2309.16609.

- Junhao Chen, Shengding Hu, Zhiyuan Liu, and Maosong Sun. 2024. States hidden in hidden states: Llms emerge discrete state representations implicitly. *Preprint*, arXiv:2407.11421.
- Chunyuan Deng, Zhiqi Li, Roy Xie, Ruidi Chang, and Hanjie Chen. 2024. Language models are symbolic learners in arithmetic. *arXiv preprint arXiv:2410.15580*.
- Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Peter West, Chandra Bhagavatula, Ronan Le Bras, Jena D. Hwang, Soumya Sanyal, Sean Welleck, Xiang Ren, Allyson Ettinger, Zaid Harchaoui, and Yejin Choi. 2023. Faith and fate: Limits of transformers on compositionality. *Preprint*, arXiv:2305.18654.
- Simon Frieder, Luca Pinchetti, , Ryan-Rhys Griffiths, Tommaso Salvatori, Thomas Lukasiewicz, Philipp Petersen, and Julius Berner. 2023. Mathematical capabilities of chatgpt. In *Advances in Neural Information Processing Systems*, volume 36, pages 27699–27744. Curran Associates, Inc.
- Andrew Gambardella, Yusuke Iwasawa, and Yutaka Matsuo. 2024. Language models do hard arithmetic tasks easily and hardly do easy arithmetic tasks. *arXiv preprint arXiv:2406.02356*.
- Leandro von Werra Garreth Lee, Guilherme Penedo and Thomas Wolf. 2024. From digits to decisions: How tokenization impacts arithmetic in llms.
- Rhys Gould, Euan Ong, George Ogden, and Arthur Conmy. 2023. Successor heads: Recurring, interpretable attention heads in the wild. *arXiv preprint arXiv:2312.09230*.
- Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, et al. 2024. The llama 3 herd of models. *Preprint*, arXiv:2407.21783.
- Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. *arXiv preprint arXiv:2501.12948*.
- Michael Hanna, Ollie Liu, and Alexandre Variengien. 2023. How does gpt-2 compute greater-than?: Interpreting mathematical abilities in a pre-trained language model. *Preprint*, arXiv:2305.00586.
- Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. 2023. Mistral 7B. arXiv preprint. ArXiv:2310.06825 [cs].
- Subhash Kantamneni and Max Tegmark. 2025. Language models use trigonometry to do addition. *Preprint*, arXiv:2502.00873.

- Amit Arnold Levy and Mor Geva. 2024. Language models encode numbers using digit representations in base 10. *arXiv preprint arXiv:2410.11781*.
- Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. 2023. Let's verify step by step. *arXiv preprint arXiv:2305.20050*.
- Raja Marjieh, Veniamin Veselovsky, Thomas L Griffiths, and Ilia Sucholutsky. 2025. What is a number, that a large language model may know it? *arXiv preprint arXiv:2502.01540*.
- Sean Michael McLeish, Arpit Bansal, Alex Stein, Neel Jain, John Kirchenbauer, Brian R. Bartoldson, Bhavya Kailkhura, Abhinav Bhatele, Jonas Geiping, Avi Schwarzschild, and Tom Goldstein. 2024. Transformers can do arithmetic with the right embeddings. In *ICML 2024 Workshop on LLMs and Cognition*.
- Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. 2023. Progress measures for grokking via mechanistic interpretability. *arXiv preprint*. ArXiv:2301.05217 [cs].
- Yaniv Nikankin, Anja Reusch, Aaron Mueller, and Yonatan Belinkov. 2024. Arithmetic without algorithms: Language models solve math with a bag of heuristics. arXiv preprint arXiv:2410.21272.
- Rodrigo Nogueira, Zhiying Jiang, and Jimmy Lin. 2021. Investigating the limitations of transformers with simple arithmetic tasks. *Preprint*, arXiv:2102.13019.
- Jing Qian, Hong Wang, Zekun Li, Shiyang Li, and Xifeng Yan. 2022. Limitations of language models in arithmetic and symbolic induction. *Preprint*, arXiv:2208.05051.
- Philip Quirke and Fazl Barez. 2023. Understanding addition in transformers. *arXiv preprint arXiv:2310.13121*.
- Ruoqi Shen, Sébastien Bubeck, Ronen Eldan, Yin Tat Lee, Yuanzhi Li, and Yi Zhang. 2023. Positional description matters for transformers arithmetic. *Preprint*, arXiv:2311.14737.
- Aaditya K Singh and DJ Strouse. 2024. Tokenization counts: the impact of tokenization on arithmetic in frontier llms. *arXiv preprint arXiv:2402.14903*.
- Alessandro Stolfo, Yonatan Belinkov, and Mrinmaya Sachan. 2023. A Mechanistic Interpretation of Arithmetic Reasoning in Language Models using Causal Mediation Analysis. *arXiv preprint*. ArXiv:2305.15054 [cs].
- Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, Pouya Tafti, Léonard Hussenot, Pier Giuseppe Sessa, Aakanksha Chowdhery, Adam

- Roberts, Aditya Barua, Alex Botev, Alex Castro-Ros, Ambrose Slone, Amélie Héliou, Andrea Tacchetti, Anna Bulanova, Antonia Paterson, Beth Tsai, Bobak Shahriari, Charline Le Lan, Christopher A. Choquette-Choo, Clément Crepy, Daniel Cer, Daphne Ippolito, David Reid, Elena Buchatskaya, Eric Ni, Eric Noland, Geng Yan, George Tucker, George-Christian Muraru, Grigory Rozhdestvenskiy, Henryk Michalewski, Ian Tenney, Ivan Grishchenko, Jacob Austin, James Keeling, Jane Labanowski, Jean-Baptiste Lespiau, Jeff Stanway, Jenny Brennan, Jeremy Chen, Johan Ferret, Justin Chiu, Justin Mao-Jones, Katherine Lee, Kathy Yu, Katie Millican, Lars Lowe Sjoesund, Lisa Lee, Lucas Dixon, Machel Reid, Maciej Mikuła, Mateo Wirth, Michael Sharman, Nikolai Chinaev, Nithum Thain, Olivier Bachem, Oscar Chang, Oscar Wahltinez, Paige Bailey, Paul Michel, Petko Yotov, Rahma Chaabouni, Ramona Comanescu, Reena Jana, Rohan Anil, Ross McIlroy, Ruibo Liu, Ryan Mullins, Samuel L Smith, Sebastian Borgeaud, Sertan Girgin, Sholto Douglas, Shree Pandya, Siamak Shakeri, Soham De, Ted Klimenko, Tom Hennigan, Vlad Feinberg, Wojciech Stokowiec, Yu hui Chen, Zafarali Ahmed, Zhitao Gong, Tris Warkentin, Ludovic Peran, Minh Giang, Clément Farabet, Oriol Vinyals, Jeff Dean, Koray Kavukcuoglu, Demis Hassabis, Zoubin Ghahramani, Douglas Eck, Joelle Barral, Fernando Pereira, Eli Collins, Armand Joulin, Noah Fiedel, Evan Senter, Alek Andreev, and Kathleen Kenealy. 2024. Gemma: Open models based on gemini research and technology. *Preprint*, arXiv:2403.08295.
- Changnan Xiao and Bing Liu. 2024. A theory for length generalization in learning to reason. *Preprint*, arXiv:2404.00560.
- Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T. Kwok, Zhenguo Li, Adrian Weller, and Weiyang Liu. 2024. Metamath: Bootstrap your own mathematical questions for large language models. *Preprint*, arXiv:2309.12284.
- Zheng Yuan, Hongyi Yuan, Chuanqi Tan, Wei Wang, and Songfang Huang. 2023. How well do large language models perform in arithmetic tasks? *arXiv* preprint arXiv:2304.02015.
- Daniel Zhang-Li, Nianyi Lin, Jifan Yu, Zheyuan Zhang, Zijun Yao, Xiaokang Zhang, Lei Hou, Jing Zhang, and Juanzi Li. 2024. Reverse That Number! Decoding Order Matters in Arithmetic Learning. *arXiv* preprint. ArXiv:2403.05845 [cs].
- Hattie Zhou, Arwen Bradley, Etai Littwin, Noam Razin, Omid Saremi, Josh Susskind, Samy Bengio, and Preetum Nakkiran. 2023. What algorithms can transformers learn? a study in length generalization. *Preprint*, arXiv:2310.16028.
- Yongchao Zhou, Uri Alon, Xinyun Chen, Xuezhi Wang, Rishabh Agarwal, and Denny Zhou. 2024a. Transformers can achieve length generalization but not robustly. *Preprint*, arXiv:2402.09371.

Zhejian Zhou, JIayu Wang, Dahua Lin, and Kai Chen. 2024b. Scaling behavior for large language models regarding numeral systems: An example using pythia. In *Findings of the Association for Computational Linguistics: EMNLP 2024*, pages 3806–3820, Miami, Florida, USA. Association for Computational Linguistics.

Fangwei Zhu, Damai Dai, and Zhifang Sui. 2025. Language models encode the value of numbers linearly. In *Proceedings of the 31st International Conference on Computational Linguistics*, pages 693–709, Abu Dhabi, UAE. Association for Computational Linguistics.

Yan Zhuang, Qi Liu, Yuting Ning, Weizhe Huang, Rui Lv, Zhenya Huang, Guanhao Zhao, Zheng Zhang, Qingyang Mao, Shijin Wang, et al. 2023. Efficiently measuring the cognitive ability of Ilms: An adaptive testing perspective. *arXiv preprint arXiv:2306.10512*.

A Example Addition According to Formalization

We show a concrete example for two-operand addition according to the formalization defined in Section 4. For 147 + 255, we have:

$$k = 2, d = 3, n1 = [1, 4, 7], n2 = [2, 5, 5].$$
 We then compute:

$$T_2 = c_2 + 1 + 2$$

$$T_1 = c_1 + 4 + 5$$

$$T_0 = c_0 + 7 + 5 = 0 + 7 + 5 = 12$$

$$s_0 = 12 \mod 10 = 2, \quad c_1 = \left\lfloor \frac{12}{10} \right\rfloor = 1$$

$$T_1 = 1 + 4 + 5 = 10$$

$$s_1 = 10 \mod 10 = 0, \quad c_2 = \left\lfloor \frac{10}{10} \right\rfloor = 1$$

$$T_2 = 1 + 1 + 2 = 4$$

$$s_2 = 4 \mod 10 = 4, \quad c_3 = \left\lfloor \frac{4}{10} \right\rfloor = 0$$

$$S = [0, 4, 0, 2]$$

The result of the addition is 402.

B Generation Accuracies for 2-Operand, 3-Digit Addition

We show the generation accuracy of the full result S and the digit-wise accuracy of s_2 , compared across the different carry bit datasets, as referenced in Section 4. Table 1 shows that Gemma-2 and Mistral struggle with the generation of the correct result digit s_2 , exactly in the datasets that **H1** predicts to

be difficult. DS3 and DS5 contain addition tasks in which a lookahead of one digit is insufficient of determine the value of s_2 .

		DS1	DS2	DS3	DS4	DS5
	$c_2^h = \dots$	0	0	?	1	?
\mathbf{S}	Mistral	0.99	1.00	0.77	1.00	0.71
	Gemma-2-9B	1.00	0.99	0.94	1.00	0.80
	Gemma-2-2B	0.96	0.93	0.68	0.92	0.74
	Llama-3	0.99	1.00	1.00	1.00	1.00
$\mathbf{s_2}$	Mistral	1.00	1.00	0.77	1.00	0.71
	Gemma-2-9B	1.00	0.99	0.94	1.00	0.80
	Gemma-2-2B	0.98	0.96	0.68	0.99	0.75
	Llama-3	0.99	1.00	1.00	1.00	1.00

Table 1: Generation accuracy of the full result S and the digit-wise accuracy of s_2 , compared across the different carry bit datasets.

C Example: H1 Failure on 4-Operand Addition

Below is an example in which the heuristic **H1** fails in 4-operand addition, visualized in Figure 10:

$$186 + 261 + 198 + 256$$
.

$$t_{1} = 8 + 6 + 9 + 5 = 28$$

$$c_{2}^{h} \in \left\{ \left\lfloor \frac{c_{min} + 28}{10} \right\rfloor, \left\lfloor \frac{c_{max} + 28}{10} \right\rfloor \right\}$$

with $c_{max} = 3$

$$c_2^h \in \left\{ \left| \frac{28}{10} \right|, \left| \frac{31}{10} \right| \right\} = \{2, 3\}$$

therefore c_2^h is chosen uniformly at random between 2 and 3. The heuristic thus fails in solving 186 + 261 + 198 + 256 with a chance of 50%.

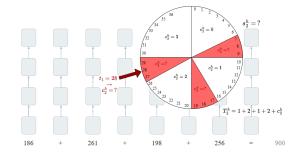


Figure 10: 4-operand addition in which H1 fails.

Nr. Operands k	$c_{max}(k)$	Values of t_i in which H1 fails	Expected acc. on s_d	
2	1	1 fail:= 9	$\frac{18 \times 1.0 + 1 \times 0.5}{19} = 0.974$	
3	2	4 fails:= 8, 9, 18, 19	$\frac{24 \times 1.0 + 4 \times 0.5}{28} = 0.928$	
4	3	9 fails:= 7, 8, 9, 17, 18, 19, 27, 28, 29	$\frac{28 \times 1.0 + 9 \times 0.5}{37} = 0.878$	
5	4	16 fails:= 6, 7, 8, 9, 16,, 39	$\frac{30 \times 1.0 + 16 \times 0.5}{46} = 0.826$	
6	5	25 fails:= 5, 6, 7, 8, 9, 15,, 49	$\frac{30 \times 1.0 + 25 \times 0.5}{55} = 0.773$	
7	6	36 fails:= 4, 5, 6,, 59	$\frac{28 \times 1.0 + 36 \times 0.5}{64} = 0.719$	
8	7	49 fails:= 3, 4, 5,, 69	$\frac{24 \times 1.0 + 49 \times 0.5}{73} = 0.664$	
9	8	64 fails:= 2, 3, 4,, 79	$\frac{18 \times 1.0 + 64 \times 0.5}{82} = 0.610$	
10	9	81 fails:= 1, 2, 3,, 89	$\frac{10 \times 1.0 + 81 \times 0.5}{91} = 0.555$	
11	9	89 fails:= 1, 2, 3,, 99	$\frac{10 \times 1.0 + 90 \times 0.5}{100} = 0.540$	

Table 2: Predicted accuracy on the first result digit s_d in the addition of multiple numbers according to **H1**.

D Zero-shot Generation Accuracy

We test if **H1** holds up in predicting the generation accuracy on s_d of Mistral and Gemma for multiple operands. Figure 11 shows that **H1** provides an upper bound for the generation accuracy of s_d in a one-shot setting for Mistral and Gemma-2 on s_d .

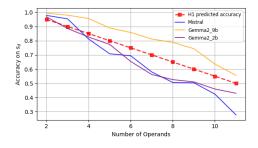


Figure 11: Accuracy of first generated result digit s_d in one-shot multi-operand addition tasks for Mistral and Gemma-2 variants, compared to the expected accuracy on s_d based on **H1**.

E Accuracy Prediction of Heuristic

Table 2 contains, for addition tasks with different numbers of operands k, the maximum value of the carry $c_{max}(k)$. Based on c_max it list those values of t_i in which **H1** is insufficient to accurately predict s_2 .

F Results on DS6-8 for larger models

Table 3 shows that Llama-3-70B also employs H1.

Data Set	10^{5}	10^{4}	10^{3}	10^{2}	10^{1}	10^{0}
DS6	0.70	0.77	0.79	0.76	0.77	0.79
DS7	0.66	0.73	0.67	0.72	0.78	0.76
DS8	0.65	0.72	0.48	0.63	0.69	0.74

Table 3: Results for LLama-3-70B on Data Sets 6-8. The expected lowest accuracy of the model for 10^3 on DS8 is **bold printed**.