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Abstract

Feature circuits aim to shed light on LLM
behavior by identifying the features that are
causally responsible for a given LLM output,
and connecting them into a directed graph, or
circuit, that explains how both each feature and
each output arose. However, performing circuit
analysis is challenging: the tools for finding,
visualizing, and verifying feature circuits are
complex and spread across multiple libraries.

To facilitate feature-circuit finding, we in-
troduce circuit-tracer, an open-source li-
brary for efficient identification of feature cir-
cuits. circuit-tracer provides an integrated
pipeline for finding, visualizing, annotating,
and performing interventions on such feature
circuits, tested with various model sizes, up to
14B parameters. We make circuit-tracer
available to both developers and end users, via
integration with tools such as Neuronpedia,
which provides a user-friendly interface.

1 Introduction

Feature circuits are a paradigm in mechanistic inter-
pretability that aims to provide low-level, causal in-
terpretations of LLM behavior in an unsupervised
setting. A feature circuit for a given model, in-
put, and output aims to explain both which human-
interpretable features caused the production of that
output, and what caused each feature to activate.

In practice, feature circuits take the form of a
directed graph from a model’s inputs, through a set
of features, to the model’s outputs; see Figure 1 for
an example. These features are causally-relevant
neurons of auxiliary models such as sparse autoen-
coders (SAEs) or transcoders, which decompose
model activations into a sparse set of features, or
directions in activation space.

Feature circuits have successfully been used
to study a variety of phenomena, ranging from

*Equal contribution. Work completed as part of the An-
thropic Fellows Program.

subject-verb agreement and gender bias (Marks
et al., 2025), parenthesis matching (Huben et al.,
2024), and syntactic structure (Hanna and Mueller,
2025). This is possible because feature circuits
are highly general: given a model, a behavior it
exhibits (expressible as a single next-token predic-
tion), and a set of auxiliary models, one can find
the feature circuit for that behavior.

Unfortunately, the adoption of feature circuits
has been hampered by the technical complexity of
finding them. To find feature circuits, one must
(1) decompose model activations into features us-
ing auxiliary models; (2) determine which features
are causally relevant to the model’s output; (3) vi-
sualize and annotate the circuit and its features;
and (4) perform causal interventions to verify one’s
interpretation of the circuit.

While many libraries exist for training said aux-
iliary models (Marks et al., 2024; Bloom et al.,
2024), fewer exist for finding and visualizing cir-
cuits (Marks et al., 2025); moreover, existing re-
sources are not all easily interoperable. As a result,
while work using the auxiliary models from (1)
abounds, work that assembles these features into
circuits and analyzes them as in (2)-(4) is scarce.

In this paper, we introduce circuit-tracer1, a
library that supports computing, visualizing, and
intervening on circuits. circuit-tracer uses
Ameisen et al.’s (2025) transcoder circuits, rather
than SAE feature circuits, providing more accu-
rate edges; our implementation enables the use
of models up to 14B parameters in size. For cir-
cuit visualization, we integrate Ameisen et al.’s
(2025) recently-released circuit-annotation fron-
tend, allowing users to annotate their newly-found
transcoder circuits. Finally, circuit-tracer sup-
ports steering on transcoder features, both in the
single- and efficient multi-token generation cases.

1https://github.com/safety-research/
circuit-tracer
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Figure 1: Left: A feature circuit explaining the Gemma-2 (2B)’s prediction on the input The keys on the cabinet. . . ;
features are grouped into annotated supernodes. Right: Visualizing an SAE feature. The top and bottom token
predictions indicate which tokens are most up/downweighted by the feature, while the highlighted text indicates
where the feature fired most strongly. This feature appears to fire on the ends of plural noun subjects.

Ease of use and accessibility are core goals for
circuit-tracer: we aim to make circuit tracing
accessible to users regardless of technical experi-
ence or compute availability. For this reason, we in-
tegrate circuit-tracer with Neuronpedia, which
enables circuit tracing via a no-code user-friendly
web interface; we also optimize our library to en-
able running small models on Google Colab, and
aim to support remote execution on public comput-
ing resources soon.

In summary, circuit-tracer:

• Enables users to find, visualize, and intervene
on feature circuits.

• Provides an efficient open-source implemen-
tation of Ameisen et al.’s (2025) transcoder
circuit-tracing algorithm.

• Functions both locally and via accessible
third-party compute resources, such as Google
Colab, Neuronpedia’s circuit tracing interface,
and soon, the NDIF remote inference cluster.

The remainder of the paper is organized as fol-
lows. We first describe the circuit-finding process
and existing libraries (Section 2). We then intro-
duce circuit-tracer, detailing its features and
usage (Section 3). We then walk through 2 case-
studies in circuit tracing (Section 4). We conclude
with insights gained via circuit-tracing, and direc-
tions for future work (Section 5).

2 Background

2.1 Sparse Dictionary Learning
Past work has sought to identify the features LLMs
use to compute their outputs. Early work did this

by identifying causally relevant neurons, but these
have been found to be polysemantic: each neuron
fires in response to many concepts (Olah et al.,
2017; Bolukbasi et al., 2021), likely because mod-
els are pressured to represent many more concepts
than they have neurons (Elhage et al., 2022). More-
over, as neurons are often non-zero, it is difficult to
determine when a neuron is actively firing.

Sparse dictionary learning aims to convert dense,
polysemantic representations into sparse, monose-
mantic ones (Olshausen and Field, 1997; Bricken
et al., 2023). Formally, a sparse dictionary takes in
activations h ∈ Rd from a fixed location in a model
and attempts to reconstruct activations h′ ∈ Rd at
a target location. It computes:

z = f (Wench+ benc) (1)

h̃′ = Wdecz+ bdec, (2)

where:

• Wenc ∈ Rn×d,Wdec ∈ Rd×n,benc ∈ Rn,
and bdec ∈ Rd are model parameters;

• f is an activation function enforcing non-
negativity, often ReLU, JumpReLU (Raja-
manoharan et al., 2024), or Top-k (Gao et al.,
2025); and

• z ∈ Rn is the sparse, non-negative representa-
tion. Each dimension of z is called a feature.

Sparse dictionaries are trained to minimize re-
construction error. They are also trained to limit
the number of active features, if their activation
function does not do so naturally (as Top-k does);
typically, this entails minimizing the L1-norm of
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z. This pressures z to faithfully represent the orig-
inal input while remaining sparse, with few ac-
tive features. z’s features are encouraged to be
monosemantic by setting its dimensionality (n)
much larger than that of the input (d)—often 32
times larger, or more.

A sparse dictionary can be used to interpret a
given h by visualizing the active features of the
corresponding z. This entails first computing all
features’ activations over a large text dataset. Then,
one bins each feature’s activations into quantiles,
and visualizes a random subset of the text inputs
that fall into each quantile; typically, the max-
activating texts (in the top quantile) are most in-
formative. It is also common to display the output
tokens that are most highly up- and down-weighted
by the active feature; see Figure 1 for an example.
Given these, one can assign an interpretation to a
feature either via manual inspection or using an
LLM (Bills et al., 2023), though how to best evalu-
ate such interpretations remains an open question
(Paulo et al., 2025; Heap et al., 2025).

Sparse dictionaries often aim to reconstruct the
activations that they took as input; such dictionaries
are called sparse autoencoders (SAEs). However,
other variants exist: per-layer transcoders (PLTs)
predict MLP outputs from their inputs (Dunefsky
et al., 2024). Cross-layer transcoders (CLTs) take
in each layer’s MLP’s inputs and predict a con-
tribution to the output of each downstream MLP;
the reconstruction of a given MLP output is given
by the sum of the contributions of all prior CLTs
(Lindsey et al., 2024). The choice of dictionary
architecture and input / output location affects the
types of features found.

Though sparse dictionaries have successfully
shed light on various model features, it is difficult
to understand the mechanisms driving a model’s
behavior by looking at features from one dictio-
nary: not all active features are causally relevant to
model behavior, and said behavior is often driven
by features at many layers. To resolve this problem,
we use feature circuits.

2.2 Feature Circuits
A feature circuit (Marks et al., 2025; Huben et al.,
2024) is a directed graph describing how a given
LLM solves a given task: it flows from the model’s
inputs, through causally relevant features, to the
model’s logits. Each feature zi has a weight that
quantifies the change in model performance if zi
were set to 0; this is its total effect through all pos-

sible pathways. Each edge’s weight is the direct
effect (DE) that the source node has on the target
activation. Feature circuits thus describe which fea-
tures are causally relevant, and how they combine
to yield the model’s outputs.

Finding a feature circuit requires a set of dic-
tionaries for the model, generally at least one per
layer. Then, one must quantify each edge or fea-
ture’s direct or total effect, pruning those with
low effect. Early work did this by zero-ablating
each active feature, and recording the change in
model performance (Huben et al., 2024); however,
given n active features, this requires O(n) forward
passes, making it expensive even for small models.
Gradient-based methods such as Nanda’s (2023)
activation patching, or Marks et al.’s (2025) ex-
tension thereof, produce faster but lower-quality
estimates of feature and edge importance.

2.3 Transcoder Feature Circuits
Transcoder feature circuits (Ameisen et al., 2025)
are a new type of circuit that can be sparser, and al-
low for precise and efficient calculation of node and
edge weights. Their features generally come from
PLTs or CLTs; the latter provide sparser circuits,
but are more challenging to train.

Ameisen et al. show that by freezing (or, condi-
tioning on) the underlying model’s nonlinearities,
such as its attention patterns and LayerNorm scal-
ing factors, one can exactly compute edge weights,
i.e. the DE of one transcoder feature on another.
Doing so leaves each transcoder feature’s (pre-)
activation (i.e., its activation before f is applied) as
a linear function of the input embeddings and fea-
tures that came before it. As such, one can compute
the exact DE of all prior nodes on a given target
node via one backwards pass from the target fea-
ture’s input, with stop-gradient operations applied
to the nonlinearities and prior MLP outputs.

Repeating this process for each output and fea-
ture node (or a subset thereof) yields an adjacency
matrix containing the direct effect of each node on
each other node. This matrix characterizes the full
feature circuit, or attribution graph. Ameisen et al.
include in their graph not only features, input, and
output nodes, but also error nodes that represent
the difference between the true MLP outputs and
transcoder reconstructions thereof. The adjacency
matrix can then be visualized, or analyzed using
metrics like Ameisen et al.’s replacement score.

This approach yields precise DE values, but also
has limitations: transcoder circuits often fail to cap-
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ture features relevant to attention2, as edge weights
are conditioned on the attention pattern. Transcoder
errors can also hinder interpretation: when a large
proportion of the flow through the graph originates
from uninterpretable error nodes, graphs may fail
to capture important mechanisms.

2.4 Existing Feature Circuit Libraries
Working with feature circuits often involves four
steps: 1) training sparse dictionaries, 2) finding
feature circuits, 3) visualizing and annotating on
said circuits, and 4) intervening on these circuits.
Currently, there exist libraries for individual steps
in this process, but none that support all steps of it.

Many libraries support the training of sparse
dictionaries (1), including dictionary-learning
(Marks et al., 2024), SAE-Lens (Bloom et al.,
2024), and sparsify. In contrast to these, only one
library—feature-circuits (Marks et al., 2025)—
supports finding feature circuits (2), visualizing
found circuits (3), or performing interventions (4).
However, it does not enable interactive circuit an-
notation or feature visualization, though other li-
braries, such as Neuronpedia (Lin, 2023) or SAE-
Vis (McDougall, 2024) support the latter. More-
over, at the time of circuit-tracer’s creation,
there was no publicly available implementation of
Ameisen et al.’s (2025) circuit-finding algorithm,
though contemporaneous work3 has since provided
another open-source implementation.

In light of the abundance of libraries for sparse
dictionary training, and the high computational
expense associated with that process, we design
circuit-tracer to support the latter three steps of
circuit-finding. However, circuit-tracer aims
to support transcoders trained with any library.

Compared to past work, we focus on efficiency
and accessibility. We minimize circuit-tracer’s
memory usage, enabling circuit-finding in models
with 14B parameters—well over 2B, the largest
size in prior open-source work. We also simplify
the circuit-finding process, allowing users to find
a circuit given just a single prompt, where earlier
work required constructing a dataset and attribu-
tion metrics. circuit-tracer facilitates visual-
ization as well, via an interactive interface that
enables users to analyze the circuit and the features
composing it at the same time. Finally, we make
circuit-tracer available via many channels, in-

2Recent work has sought to address this by incorporating
attention or residual stream SAEs (Kamath et al., 2025).

3https://github.com/EleutherAI/attribute

cluding three—Google Colab, Neuronpedia, and
soon, NDIF (Fiotto-Kaufman et al., 2025)—that
require no compute resources on the user’s end; see
Section 3.2 and Section 3.3 for details.

2.5 Interpretability Libraries

In releasing circuit-tracer, we contribute to a
line of research that makes interpretability more
accessible by taking existing methods and releasing
open-source implementations, with user-friendly
interfaces. Libraries for explainable AI and in-
put attribution are especially abundant: Inseq pro-
vides attribution tools for text-based models (Sarti
et al., 2023), while Quantus and Zennit (Hedström
et al., 2023; Anders et al., 2023) focus on the image
domain; the Captum library is modality-agnostic
(Kokhlikyan et al., 2020). Our work is more
closely related to libraries such as Auto-Circuit
(Miller et al., 2024) or EAP-IG (Hanna et al., 2024),
which find and visualize component-level LLM cir-
cuits. Foundational to this effort are libraries, such
as TransformerLens (Nanda and Bloom, 2022),
NNSight (Fiotto-Kaufman et al., 2025), Pyvene
(Wu et al., 2024), and Penzai (Johnson, 2024), that
provide ready access to model internals.

3 circuit-tracer

In this section, we answer the following questions
about circuit-tracer: 1) How is it designed, and
what can it do?; 2) With which models is it com-
patible; and 3) How can it be used?

3.1 circuit-tracer Design and Features

3.1.1 ReplacementModel

In circuit-tracer, a model and the transcoders
used to interpret it are grouped together into
a ReplacementModel object. Loading such a
ReplacementModel requires only the name of
the model from HuggingFace Transformers (Wolf
et al., 2020), and the name of a HuggingFace Hub
repository containing the transcoders:

1 from circuit_tracer import
ReplacementModel

2

3 model = ReplacementModel.
from_pretrained(

4 model_name = "google/gemma -2-2b",
5 transcoder_set = "gemma",
6 )

Listing 1: Loading a ReplacementModel based on
Gemma-2 (2B) and GemmaScope transcoders. We use
the alias “gemma” to refer to the latter for convenience.
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The ReplacementModel class is used during at-
tribution and intervention; it also enables recording
the activations of transcoder features on a given in-
put. By default, a ReplacementModel is a subclass
of TransformerLens’ HookedTransformer class;
one can thus perform arbitrary interventions on a
ReplacementModel, just as with TransformerLens.
For more information on model and transcoder
compatibility, see Section 3.2.

Currently, circuit-tracer expects models to
be loaded onto a single GPU; other accelerators
such as MPS are not yet supported. Because a
model’s transcoders are often much larger than the
model itself, we offload transcoders’ decoders to
disk by default, loading them to GPU only when
required; this is possible when model weights are
saved in the fast SafeTensors format.4 The memory
footprint of a ReplacementModel is thus similar to
that of its base counterpart.

3.1.2 Attribution

Once we have loaded a ReplacementModel, attri-
bution in circuit-tracer is simple:

1 from circuit_tracer import attribute
2

3 s = "Fact: Michael Jordan plays the
sport of"

4 graph = attribute(model , s)

Listing 2: Performing attribution with an existing
ReplacementModel

When performing attribution, circuit-tracer
first finds the top-10 most likely next logits, or
those that compose 0.95 of the next-token proba-
bility mass, whichever is smaller. It then returns a
Graph containing the adjacency matrix of direct ef-
fects between input, feature, error, and logit nodes
that contribute to the model’s prediction of those
logits, as described in Section 2.3. This adjacency
matrix can then be directly analyzed or visualized.
circuit-tracer’s attribution allows users to

flexibly change the number of logits attributed
from, and supports attribution from arbitrary func-
tions of the logits, e.g. the difference of two or
more logit tokens as used in prior work (Wang
et al., 2023). It also supports limiting the number
of nodes attributed from; this is important, as the
number of active transcoder features grows linearly
with input length, slowing attribution, and causing
the adjacency matrix to become prohibitively large.

4https://github.com/huggingface/safetensors

3.1.3 Visualization and Annotation
Users can visualize and annotate a given attribution
graph using the interface introduced by Ameisen
et al. (2025). Visualizing first involves pruning
the graph, which is otherwise dense and difficult
to understand. Users can specify the proportion
of node and edge influence they would like to
retain—more influence means more nodes and
edges retained—and circuit-tracer prunes the
graph, using Ameisen et al.’s (2025) algorithm. Af-
ter pruning the graph, users can create the necessary
visualization files and start a visualization server:

1 from circuit_tracer.utils import
create_graph_files

2 from circuit_tracer.frontend.
local_server import serve

3

4 graph_file_dir = ’./ graph_files/’
5

6 create_graph_files(
7 graph_or_path=graph ,
8 slug=’michael -jordan ’,
9 output_path=graph_file_dir ,

10 node_threshold =0.8,
11 edge_threshold =0.95
12 )
13

14 server = serve(data_dir=
graph_file_dir)

Listing 3: Pruning an attribution graph, creating graph
files, and starting a visualization server.

The visualization interface (Figure 2) allows
users to click on any node in the attribution graph,
and view the nodes that most contribute to and re-
ceive contributions from that node. If the node is
a feature (rather than a logit or input embedding),
users can also see the max-activating examples for
the feature, and then annotate the feature with its
meaning on the basis of those examples.
circuit-tracer’s interface also allows users to

pin nodes, saving those that are important and dis-
playing them as a separate pane as a subgraph (or
circuit), complete with weighted edges and node
annotations. Nodes that appear to perform similar
functions can be grouped together into a supernode,
which can also be annotated. Users can thus use
the visualization and annotation interface to trans-
form an attribution graph into an interpretable cir-
cuit. All information about the circuit is contained
within its URL in the circuit-tracer interface,
enabling relevant (super)nodes to be extracted from
the URL and targeted for intervention.

Intervention After constructing a circuit, users
can perform interventions on a given model with
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Figure 2: The circuit visualization interface. Pane A displays the entire attribution graph; nodes in the graph can
be selected by clicking on them. The level of filtering can also be adjusted, further sparsifying the graph. Pane B
displays the nodes that most affect (and are most affected by) the current node. Pane C displays the current feature’s
max-activating examples, the top and bottom upweighted tokens, and other summary statistics; it also allows for
node annotation. Pane D displays the subgraph. Users can pin nodes from the attribution graph, and group them
together for easier analysis; grouped tokens can also be annotated.

respect to its features, causally verifying their inter-
pretation of the circuit. Interventions take the form
of tuples specifying the layer, position, and fea-
ture index of the feature upon which to intervene,
and the new value the feature should take on; inter-
ventions return the new logits and new transcoder
activations post-intervention:

1 s = "Fact: Michael Jordan plays the
sport of"

2 original_logits , original_activations
= model.get_activations(s)

3

4 interventions = [(8, 3, 3829, 5.0)]
5 new_logits , new_activations = model.

feature_intervention(s,
interventions)

Listing 4: Performing an intervention, setting the value
of feature 3829 in layer 8, position 3 to 5.0.

Feature interventions can be performed on on
arbitrary inputs, without first finding a circuit.
circuit-tracer allows for both single-token in-
terventions and efficient, steered, multi-token gen-
erations using KV-caching. circuit-tracer per-
forms Ameisen et al.’s (2025) iterative patching by
default but also implements constrained patching
and direct-effects patching.

3.2 Models and Transcoders Compatible with
circuit-tracer

Finding a circuit with circuit-tracer requires a
compatible model and transcoders for it.

3.2.1 Models Compatible with
circuit-tracer

circuit-tracer’s ReplacementModel supports
two interpretability backends: TransformerLens
(default) and NNSight. Each backend supports dif-
ferent models, but provides the same functionality
(attribution and intervention).

TransformerLens Backend The Transformer-
Lens (Nanda and Bloom, 2022) backend supports
only those models implemented in Transformer-
Lens. While most common open-weights model
architectures (e.g. Llama, Gemma, and Qwen) are
supported, less-common architectures might not
be. However, TransformerLens is open-source, and
new models can be added relatively easily.

NNSight Backend circuit-tracer’s NNSight
(Fiotto-Kaufman et al., 2025) backend supports
all language models on HuggingFace. Initializing
a ReplacementModel with backend="nnsight"
yields a subclass of NNSight’s LanguageModel
class, which retains all its functionality. Though
it supports more models, the NNSight backend is
slower, experimental, and does not support model
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offloading during attribution. In the near future, we
aim to enable the NNSight backend to work with
the associated National Deep Inference Facility
(NDIF) remote inference servers. When this inte-
gration is complete, users will be able to perform
attribution and intervention using NDIF’s compute
resources, rather than rely on their own.

3.2.2 Transcoders Compatible with
circuit-tracer

Existing Transcoders To use circuit-tracer,
one needs transcoders for each MLP in the model
under study. The pre-trained transcoders currently
available include the following, trained by the au-
thors except where otherwise noted5:
Per-Layer Transcoders (PLTs)

• Gemma-2 (2B; Gemma Team et al., 2024):
JumpReLU PLTs from Lieberum et al. (2024)

• Llama-3.2 (1B; Grattafiori et al., 2024): ReLU
PLTs

• Qwen-3 (0.6B-14B; Yang et al., 2025): ReLU
transcoders for all dense models in the Qwen-
3 family below 32B parameters.

Cross-Layer Transcoders (CLTs)

• Gemma-2 (2B): Two sets of ReLU CLTs with
distinct feature dimension sizes.

• Llama-3 (1B): ReLU CLTs

Adding Transcoders circuit-tracer also sup-
ports user-created transcoders. Given a set of
transcoder weights, one only needs to upload them,
along with a configuration file that specifies where
in the model the transcoder reads from and writes
to, to a HuggingFace repository. Users must also
compute the max-activating examples for each fea-
ture of a transcoder and upload them to the same
repository in Neuronpedia’s publicly-available for-
mat; code for this will soon be released in a com-
panion library. Finally, it may be necessary to write
a function to load the weights into a (CrossLayer-
)Transcoder object.

3.3 Using circuit-tracer

To make circuit-tracer more widely accessible,
we have published it through a variety of channels.

Neuronpedia End users who want to perform
circuit-tracing without running Python code can
use circuit-tracer on Neuronpedia6 (Lin, 2023).

5PLTs available at this link; CLTs available at this link.
6https://www.neuronpedia.org/gemma-2-2b/graph

Neuronpedia provides a GUI for performing on-
demand attribution for Gemma-2 (2B) and Qwen-
3 (4B); it also supports interventions. Unlike lo-
cal circuit-tracer, Neuronpedia provides LLM-
generated interpretations of features (Bills et al.,
2023) and enables saving and sharing graphs.

Google Colab Users who would like to demo
circuit-tracer can do so via Google Colab, in-
cluding Google Colab’s free T4 GPU instances.
Only Gemma-2 (2b) is currently available, owing to
the limited amount of RAM (12.7 GB) and VRAM
(15 GB) available; however, attribution, visualiza-
tion, and intervention are all supported.

Local Installation Most advanced users will
want to use circuit-tracer via local installation
from GitHub, where all features are available. We
recommend a GPU with at least 15 GB VRAM
for circuit tracing with Gemma-2 (2B), and up to
40 GB for larger models; in general more memory
will allow for faster attribution.

4 Case Studies

4.1 States and Capitals
Lindsey et al. (2025) observed that, given the
prompt s =“Fact: The capital of the state con-
taining Dallas is”, the models they studied could
correctly predict the answer, Austin. Moreover,
the resulting circuit clearly contained an intermedi-
ate Texas node, suggesting a reasoning chain of the
form Dallas→Texas→Austin. Causal interventions
suggested that this Texas node determined the state
whose capital was output. With circuit-tracer,
this result is easy to reproduce.

We first load a ReplacementModel for Gemma-
2 (2B), using the 2.5M-feature CLTs we trained
for it. We next perform attribution, creating an
attribution graph for s, and visualizing it.7 We
performed manual analysis of the graph, labeling
features, and found that it also contained a Texas
feature; see Figure 3 (top) for an image of the graph.
We repeated this procedure with s′ =“Fact: The
capital of the state containing Oakland is”, and
similarly found a node corresponding to the state
California.

Having identified two relevant supernodes, we
can then verify the role of each supernode by per-
forming interventions. We first record the model’s
most likely outputs on s. Then, we perform a con-
strained intervention on the input s, downweighting

7View the graph on Neuronpedia.
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Figure 3: Top: Feature circuit for s=Fact: The capital
of the state containing Dallas is, demonstrating the
existence of intermediate Texas nodes. Bottom: The
next-token distributions for s pre-intervention, and post-
intervention, with Texas nodes ablated and California
features upweighted. The most likely output shifts form
Austin to Sacramento.

all of the features that correspond to Texas at the
Dallas position (multiplying their activations by -
4), and upweighting the California features (setting
their activations to 10 times their original value).
We constrain our intervention to layers 16-21; we
choose this range because it is late enough in our
model for all intervened features to have an effect.
We find (Figure 3, bottom) that the model’s top out-
puts change drastically from the expected output of
s, Austin, to that of s′, Sacramento. This suggests
that Gemma-2 (2B) generates “state” representa-
tions for the intermediate hop of this task.

4.2 Changing Languages

Lindsey et al. (2025) also observed that, given non-
English prompts like s =“Hecho: Michael Jordan
juega al” (baloncesto), models had distinct features
and pathways for the underlying concept produced
(basketball) and the output language (Spanish).

To reproduce this, we load a ReplacementModel
for Gemma-2 (2B), using Lieberum et al.’s (2024)

Hecho: Michael Jordan juega al
Normal output:

. . . baloncesto en la NBA. Intervened out-

put:
. . . basket for the Boston Celtics.

Figure 4: Top: Feature circuit for s = Hecho: Michael
Jordan juega al, showing distinct basketball / sports
and Spanish features and pathways. Bottom: Sampled
continuations to s during normal generation, and with
Spanish features ablated. Ablating the Spanish features
causes the model to output English text.

PLTs; note that the previous CLTs could also be
used. We again perform attribution, creating an at-
tribution graph for s, and visualizing it (Figure 4)8.
Once more, we identified the expected nodes (rep-
resenting basketball and Spanish).

In this case, instead of verifying the validity of
the Spanish features by replacing them, we sim-
ply turn them off. Moreover, rather than looking
only at the next token prediction, we continually
turn the Spanish feature off, while sampling new
models from the token. Concretely, we perform an
open-ended intervention, setting the Spanish fea-
tures to -2 times their original value at all non-BOS
positions in the sentence, while sampling a contin-
uation; we compare this to the generation in the
no-intervention case. We see in Figure 4 (bottom)
that the model normally continues the sentence in
Spanish, the intervention causes the model to con-
tinue it with English-language text.

5 Discussion and Future Work

In this paper, we introduced circuit-tracer, and
provided a brief overview of its design and func-
tionality. We have also outlined two brief case

8Graph available on Neuronpedia
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studies demonstrating circuit-tracer’s ability
to reproduce existing results; more such demos can
be found in the circuit-tracer library.
circuit-tracer aims to not only reproduce

past work, but also support the research commu-
nity as it explores open research questions. Be-
cause circuit tracing is a highly general technique,
practitioners should be able to easily apply circuit
tracing to their problem of choice. For example,
while prior research has provided case studies in
diverse safety-relevant phenomena such as chain
of thought unfaithfulness, refusal, and jailbreaks
(Lindsey et al., 2025), no systematic study of these
using circuits has been performed. Moreover, many
other domains, such as social biases, cognitive ca-
pabilities, and reasoning remain underexplored.

Methodological questions also abound. While
circuit-tracer computes circuits for individual
inputs, how to synthesize multiple circuits into a
coherent task mechanism is still unknown. Answer-
ing this question could also require finding ways
to scale feature annotation and supernode creation,
which are currently highly manual processes.

circuit-tracer can additionally serve as a
testbed for innovations in transcoders and other
sparse decomposition techniques, as have been pro-
posed in recent work (Costa et al., 2025; Hindupur
et al., 2025; Fel et al., 2025; Oldfield et al.,
2025). Adding these new sparse dictionaries to
circuit-tracer, in order to assess the quality of
the circuits made with them, is relatively simple.
This opens up new research directions regarding
the similarity of feature circuits found using differ-
ent sparse decompositions of the same model.

Finally, we note that there are many features that
still remain to be added to circuit-tracer. These
range from frontend changes to improve visualiza-
tion, to algorithmic additions such as attributing to
thresholded MLP neurons, or from attention pat-
terns (Kamath et al., 2025). While we are excited
to add such new features, we encourage users to
contribute to circuit-tracer as well, as some
already have. circuit-tracer is an open source
library, and we hope that a healthy community of
contributors will help keep it up-to-date, even in
the fast-moving field of feature circuits.
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