PrivacyScalpel: Enhancing LLM Privacy via Interpretable Feature
Intervention with Sparse Autoencoders

Ahmed Frikha*
Krishna Kanth Nakka

Muhammad Reza Ar Razi*
Ricardo Mendes

Xue Jiang Xuebing Zhou

Huawei Munich Research Center
krishna.kanth.nakka@huawei.com

Abstract

Large Language Models (LLMs) have demon-
strated remarkable capabilities in natural lan-
guage processing but also pose significant pri-
vacy risks by memorizing and leaking Per-
sonally Identifiable Information (PII). Exist-
ing mitigation strategies, such as differential
privacy and neuron-level interventions, often
degrade model utility or fail to effectively
prevent leakage. To address this challenge,
we introduce PrivacyScalpel, a novel privacy-
preserving framework that leverages LLM in-
terpretability techniques to identify and mit-
igate PII leakage while maintaining perfor-
mance. PrivacyScalpel comprises three key
steps: (1) Feature Probing, which identifies
layers in the model that encode PII-rich rep-
resentations, (2) Sparse Autoencoding, where
a k-Sparse Autoencoder (k-SAE) disentangles
and isolates privacy-sensitive features, and (3)
Feature-Level Interventions, which employ tar-
geted ablation and vector steering to suppress
PII leakage.

Our empirical evaluation on Gemma2-2b and
Llama2-7b, fine-tuned on the Enron dataset,
shows that PrivacyScalpel significantly reduces
email leakage from 5.15% to as low as 0.0%,
while maintaining over 99.4% of the original
model’s utility. Notably, our method outper-
forms neuron-level interventions in privacy-
utility trade-offs, demonstrating that acting on
sparse, monosemantic features is more effec-
tive than manipulating polysemantic neurons.
Beyond improving LLM privacy, our approach
offers insights into the mechanisms underlying
PII memorization, contributing to the broader
field of model interpretability and secure Al
deployment.

1 Introduction

Large Language Models (LLMs) have achieved
significant milestones in natural language process-
ing (NLP), excelling in tasks such as text gener-

“Equal contribution

ation, question answering, and language transla-
tion (Brown, 2020). Despite their transformative
capabilities, the training of LLMs on large-scale
datasets introduces critical privacy concerns. Stud-
ies have shown that LLMs can memorize and out-
put sensitive Personally Identifiable Information
(PI), such as email addresses and phone numbers,
when queried with adversarial prompts (Carlini
et al., 2021b; Lukas et al., 2023; Nakka et al.,
2024b,a). This PII leakage poses serious risks,
particularly in applications like customer service
chatbots, where user privacy is paramount. (Das
et al., 2024)

Existing approaches to mitigating privacy leak-
age often rely on scrubbing the training data or
leverage differential privacy techniques (Yu et al.,
2021; Lukas et al., 2023). However, these methods
come at the cost of model utility, limiting their ap-
plicability in performance-critical settings. More-
over, the underlying mechanisms through which
LLMs memorize and leak sensitive information
remain poorly understood, hindering the develop-
ment of effective defenses. Concurrent works ex-
ploring neuron-level interventions to mitigate pri-
vacy leakage risks (Chen et al., 2024a) have demon-
strated potential but also suffer from significant
performance degradation, further highlighting the
need for solutions with better privacy-utility trade-
offs.

To address these challenges, we propose Pri-
vacyScalpel, a novel privacy-preserving frame-
work that makes the following key contributions.
First, PrivacyScalpel leverages recent interpretabil-
ity techniques (Gao et al., 2024a) to identify and
isolate monosemantic features. These features rep-
resent distinct and interpretable concepts within
the model’s activations, enabling precise privacy-
specific interventions. By acting on features di-
rectly responsible for PII leakage, our method re-
duces privacy risks without compromising down-
stream task performance. Second, we empirically

226

Proceedings of the 8th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP, pages 226-238
November 9, 2025 ©2025 Association for Computational Linguistics

demonstrate that acting on more disentangled and
interpretable features is more effective in strik-
ing a good privacy-utility trade-off than manipulat-
ing polysemantic neuron-level activations (Bricken
et al., 2023). Third, our comprehensive evaluation
on different models and datasets showcases the
robustness and maturity of PrivacyScalpel for real-
world applications. In particular, our approach fully
mitigates email leakage while preserving a high per-
formance on three benchmark Q&A datasets. Fi-
nally, Beyond its empirical success, PrivacyScalpel
offers insights into the internal mechanisms of PII
memorization in LLMs, advancing both the under-
standing and mitigation of privacy risks in large-
scale Al systems.

2 Related Work

Privacy concerns in machine learning, particularly
in large language models (LLMs), have garnered
significant attention due to their potential to mem-
orize and inadvertently reveal sensitive informa-
tion present in their training data (Carlini et al.,
2021b). This section discusses related work on pri-
vacy risks, interpretability in LLMs, and mitigation
techniques, situating our contributions within this
research landscape.

2.1 Privacy Risks in LLMs

Recent studies have highlighted the susceptibility
of LLMs to privacy leakage through model mem-
orization. For example, prior work showed that
LLMs can memorize and output sensitive data,
such as email addresses and social security num-
bers, when prompted with specific queries (Car-
lini et al., 2021a). This raises significant privacy
concerns in applications involving user-generated
or proprietary data, such as email processing or
customer service chatbots. The development of
benchmarks like TrustLLM (Huang et al., 2024)
and DecodingTrust (Wang et al., 2024) has further
enabled systematic evaluation of privacy leakage
in LLMs.

2.2 Privacy-Preserving Methods in LLMs

A variety of methods have been proposed to miti-
gate privacy risks in large language models (LLMs),
focusing on different levels of intervention to bal-
ance privacy and utility. Yu et al. (2021) intro-
duced a low-rank reparameterization technique to
address the scalability challenges of Differentially
Private Stochastic Gradient Descent (DP-SGD) .
By decomposing weight matrices, this approach

reduces memory overhead and noise intensity, en-
abling privacy-preserving training of large-scale
models like BERT while achieving competitive
utility scores. Similarly, Chen et al. (2024a) lo-
calized privacy-sensitive neurons using learnable
binary masks, showing that PII is concentrated in
specific neurons, particularly in Multi-Layer Per-
ceptron (MLP) layers. Deactivating these neurons
reduces privacy leakage but comes with a trade-off
in model utility.

Other works have explored privacy-preserving
mechanisms at different stages of the LLM pipeline.
Tang et al. (Wu et al., 2023a) proposed differen-
tially private few-shot generation for in-context
learning, creating synthetic demonstrations with
formal privacy guarantees while retaining strong
task performance. Wu et al. (Wu et al., 2023b) pre-
sented DEPN, a framework for detecting and edit-
ing privacy neurons in pretrained language models,
leveraging neuron-specific interventions to reduce
leakage without significant utility loss. Majmudar
et al. (Majmudar et al., 2022) extended privacy
preservation to the decoding stage of LLMs, intro-
ducing a lightweight perturbation mechanism that
applies differential privacy during text generation.

Recent advances have also focused on structural
properties of LLMs. Chen et al. (Chen et al,,
2024b) revealed that the flatness of the loss land-
scape in DP-trained models impacts the privacy-
utility trade-off. They proposed a holistic frame-
work leveraging weight flatness to improve gen-
eralization while maintaining differential privacy
guarantees. Our work extends these efforts by
focusing on feature-level interventions, such as
sparse autoencoders and probing-based methods, to
identify and mitigate privacy risks. Unlike neuron-
specific approaches, our methodology leverages in-
terpretability techniques to target privacy-relevant
features directly, offering a robust trade-off be-
tween privacy preservation and model utility.

2.2.1 Interpretability in LLMs Using Sparse
Autoencoders

Interpretability in large language models (LLMs)
remains a fundamental challenge, as models of-
ten rely on polysemantic neurons that activate in
multiple, semantically distinct contexts, making it
difficult to understand their internal representations
(Elhage et al., 2022) . Sparse Autoencoders (SAEs)
have emerged as a promising tool for disentangling
these representations by learning sparse, monose-
mantic features that provide greater interpretability

227

(Bricken et al., 2023).

Cunningham et al. (Cunningham et al., 2023)
demonstrated that SAEs can effectively resolve
polysemanticity in LLM activations by learning
sparse, human-interpretable features, which sig-
nificantly improve the explainability of model be-
haviors. Building on this, Gao et al. (Gao et al.,
2020) explored the scalability of SAEs, introducing
k-sparse autoencoders to directly control sparsity
and improve the reconstruction-sparsity tradeoff.
Their study also provided new evaluation metrics
to assess feature quality, demonstrating that inter-
pretability improves with autoencoder size.

Further extending this line of research, O’Neill
and Bui (O’Neill and Bui, 2024) applied discrete
sparse autoencoders to identify interpretable cir-
cuits in LLMs, showing that these methods allow
efficient circuit discovery without requiring exten-
sive ablations. Similarly, Rajamanoharan et al. (Ra-
jamanoharan et al., 2024) introduced Gated Sparse
Autoencoders, which mitigate the shrinkage effect
of L1 penalties, leading to improved feature quality
while maintaining interpretability.

Recent studies have also explored universality in
feature representations across different LLMs. Lan
et al. (Lan et al., 2024) investigated how SAEs can
reveal shared feature spaces across multiple LLM
architectures, suggesting that interpretable features
learned via SAEs are largely consistent across dif-
ferent models. Additionally, Marks et al. (Marks
et al., 2024) proposed sparse feature circuits, which
use SAEs to discover causal subnetworks in LLMs,
improving both interpretability and the ability to
modify model behavior in a controlled manner.

Overall, these works highlight the potential of
SAEs for making LLM activations more inter-
pretable by transforming dense, polysemantic acti-
vations into sparse, monosemantic representations.
Our work builds on these efforts by leveraging
SAEs to identify privacy-relevant features and ap-
ply targeted interventions to mitigate privacy risks
while maintaining model utility.

3 Methodology

Problem Definition. LLMs are trained on exten-
sive datasets, which often contain sensitive data
such as PII. This creates a critical privacy risk, as
LLMs can memorize and inadvertently output sen-
sitive information when queried with adversarial
prompts (Carlini et al., 2021b; Lukas et al., 2023).
To simulate a real-world scenario, we train an LLM

on a dataset that includes sensitive data, reflecting
practical use cases such as customer service chat-
bots and virtual assistants, where preserving user
privacy is essential (Nakka et al., 2024b,a).

Formally, let fy denote an LLLM parameterized
by model parameters 6, with an embedding dimen-
sion depmp. Consider a set .S of data subjects, and
for a specific subject s; € S, let X!, represent
an adversarial prompt (e.g., "The email address of
Karen Arnold is") targeting the leakage of a PII re-
lated to the data subject s;. The adversarial prompt
X;'dv consists of 7" tokens [z, z2, . ..,x7|. When
prompted with X ;dv, the LLM fy generates an out-
put sequence y = [T741,...,T7+N], Which may
include memorized PII associated with s;. In the
present work, we focus on email addresses.

The goal is to prevent the leakage of such sen-
sitive information by intervening in the model ac-
tivations, Ai = [d,d), ..., aéc], during token gen-
eration at each timestep £ € [T'+ 1, N]. Here,
A%c € R represents the embedding at layer [for
token zj. The challenge is to design precise inter-
ventions that mitigate PII leakage while preserving
the model’s performance on downstream tasks.
Overview. PrivacyScalpel comprises three key
steps. First, we probe across all layers to identify
the optimal target layer [that encodes the most PII-
discriminative information, allowing us to pinpoint
where interventions will be most effective (Sec 3.1).
Subsequently, we train a lightweight k-sparse au-
toencoder (k-SAE) (Makhzani and Frey, 2013; Gao
et al., 2024a) on the output residual stream of the
target layer, mapping neuron embeddings to a more
human-interpretable and high-dimensional disen-
tangled feature space (Sec 3.2). Lastly, we apply
various intervention techniques on the neuron em-
beddings or within the feature space encoded by
the k-SAE to effectively reduce PII leakage while
maintaining model utility (Sec 3.3). An overview
of this process is illustrated in Fig. 1.

3.1 Probing for PII Features

In principle, causal interventions could be applied
at all layers of the target LLM; however, this ap-
proach is computationally expensive. To efficiently
mitigate privacy leakage, it is essential to identify
the most suitable layer for intervention. To achieve
this, we conduct a straightforward experiment to
assess each layer’s ability to distinguish between
PII and non-PII data.

Specifically, we train a classifier, referred to as a
probe (Alain and Bengio, 2018), using the residual

228

Input Prompt
The email address of i !

e Privacy-Scalpel
;' LLM Layer 5 Defense methods
| v : | « Feature ablation

activations i SAE [.® HR - ®®..J
3 ‘ : 4 !
i LLM Layer ! m + Vector Steering
| 5 5 Fo
i : : ; Encoder ﬂ)
| LLM Layer : [. 1T e [] ..] .
; LLM Layer ! Decoder v

the same as that of the other
employees in the group.

Figure 1: Overview of our framework. Given an input prompt, we extract the activations of input tokens at layer [
and perform intervention. We pass the activations through the SAE encoder and intervene on the SAE encoded
high-dimensional features through Feature Ablation and Steering. We then decode the intervened features back to

the original embedding space.

activations A! from the transformer layers as in-
put. The probe is designed to distinguish between
sequences containing email addresses and those
without. The model is formulated as

po(AT) = o((0, 4)),

where # € R%m is the parameter vector, and A’
represents the residual activation at layer /. Each
transformer layer has its own probe, with A’ being
the corresponding activation vector at that layer.

To train the probe, we use a labeled dataset
Dyprob = {Xpi1, Xnonpui }, where Xpyy contains se-
quences with email addresses, and X;onpr; contains
sequences without any personally identifiable infor-
mation (PII). The dataset is constructed from 1%
of the Pile dataset (Gao et al., 2020), taking only
sequences that are less than 1024 tokens in length.
We then apply a regular expression to identify se-
quences containing email addresses and sample an
equal number of sequences without email addresses
to ensure balance in the dataset. We defer more
details about D)., to Appendix A.

Each sequence is represented by a single aggre-
gated activation vector, which is computed by av-
eraging the residual activations for each sentence.
This aggregated representation is used as the input
to the classifier.

The classifier’s performance is evaluated using
validation accuracy for each layer, and the layer [*
with the highest accuracy is selected as the target
layer for further analysis. This process enables us
to identify the transformer layer that most effec-
tively captures Pll-related information.

3.2 Training the k-Sparse Autoencoder

Once the target layer [has been selected based on
probing results, we train a k-SAE on the activations
Al with a controlled level of sparsity. The k-SAE
expands the input representation of dimension depmp
into latent features of dimension h using a TopK
activation function (Gao et al., 2024a) to ensure
that only the top k largest activations are retained
in the latent features.

Given an input activation a', the encoder in k-
SAE projects it into latent features z € R” using:

2 = TopK (Wene (' = byre)) (1)

where Wy, € RXdemd represents the encoder
weight matrix, and bp is the "pre-encoder bias,"
which is subtracted from the input before encod-
ing. The TopK(:) function selects the largest k
values from the resulting latent features, enforcing
sparsity.
The decoder then reconstructs the original acti-
vation a' from the sparse latent features z using:

al = Wiee 2 + bpre (2)

where Wgee € R%m X" is the decoder weight ma-
trix.

The loss function £ for training the autoencoder
is typically based on the mean squared error (MSE)
between the original activation a' and the recon-
structed activation a':

L=|a" —a'? (3)

To further improve the learned representations,
an "auxiliary loss" (Gao et al., 2024a) is introduced,

229

which models the reconstruction error using latent
features that have not been activated for a prede-
fined number of tokens. This loss ensures that dead
latents, which do not contribute to reconstruction,
are also optimized. Specifically, given the recon-
struction error of the main model e = a' — &', the
auxiliary loss is defined as:

Laux = He_é”Q “)

where é = Wpzux is the reconstruction using the
top kuux inactive latents. The final loss function
combines both components:

Liotal = £ + aLaux)

where « is a small coefficient that controls the con-
tribution of the auxiliary loss. This auxiliary loss
helps mitigate feature collapse by ensuring that all
latent dimensions contribute to the learned repre-
sentations, improving the robustness of the sparse
autoencoder.

Overall, this training approach ensures that the
reconstruction is accurate while enforcing sparsity
in the latent features through the TopK(-) activation
function, which effectively limits the number of
active latent units.

3.3 Defense Method

Building on this, PrivacyScalpel consists of two
defense methods to mitigate privacy leakage while
preserving model utility: feature ablation and
feature steering. Feature ablation removes the
most privacy-sensitive latent features, while fea-
ture steering modifies latent features to suppress
PII-related information. By combining these ap-
proaches, PrivacyScalpel provides a flexible and
effective privacy-preserving intervention.

3.3.1 Feature Ablation

To pinpoint the most active latent features asso-
ciated with "PII features", particularly email ad-
dresses, we use a feature ablation technique, which
we refer to as Ablation. For this analysis, we uti-
lize the dataset Dyop., which consists of 1538 se-
quences containing email addresses randomly sam-
pled from the Enron dataset.

For each sequence containing an email address,
we extract the corresponding SAE latent features
z using Eq. 3.2 from the model’s activations at
layer [, starting from the token where the email
address first occurs and continuing until the end of
the PII-containing segment. Here, z; represents the

activation of the i-th latent feature in SAE space.
These activations are aggregated across the sam-
pled sequences and ranked by magnitude. The top
k features with the highest magnitudes are then
selected, based on the assumption that they are the
most relevant for encoding PII.

After identifying the top k features, Ablation
is performed by setting their activations to zero.
The ablation is applied to the latent features of
the last token at each timestep during generation,
rather than across the entire input sequence. This
approach is designed to minimize the propagated
error introduced by the sparse autoencoder (SAE)
reconstruction while still effectively suppressing
privacy-sensitive features. By limiting the inter-
vention to the last token, we ensure that the gener-
ated output is influenced by the privacy-preserving
modification without unnecessarily disrupting the
model’s overall performance on downstream tasks.

3.3.2 Feature Vector Steering

To effectively alter latent features to achieve a de-
sired outcome, we employ feature vector steering.
In this approach, we use a steering vector, denoted
as v, to modify the latent features through a lin-
ear transformation(Luo et al., 2024). The adjusted
SAE latent feature 2’ is calculated as follows:

d=z4+a-v (6)

where z represents the original latent feature in
SAE space, v is the steering vector that captures
the directional change in the feature space, and «
is a scalar coefficient that controls the intensity of
the adjustment.

To calculate the steering vector, we begin with
dataset Dpop, Which contains text samples both
with and without email addresses. For each sen-
tence in the dataset, we collect the corresponding
latent features and compute their average values.
As aresult, we represent each sentence with a sin-
gle aggregated latent feature.

We derive the steering vector v using two meth-
ods: probing and the difference-in-means vectors.

Probing for Latent Features We refer to this
method as Steering Probe. In this approach, we
train a probe using latent features z on the Db,
where the parameters of the trained probe, denoted
as 0, represent the direction of the PII feature in
the latent space. After normalization, the vector 6,
serves as the steering vector v, which can influence
the model’s behavior by shifting the latent feature

230

z away from the direction corresponding to PII
features.

Top-k Probing for Latent Features This
method, which we refer to as Steering Top-k Probe,
builds upon the probing approach described in
Steering Probe, with a focus on the top k selected
latent features instead of all features. We select
top k features using the feature ablation method dis-
cussed in Section 3.3.1. After identifying the top
k features, a probe is trained on the D, dataset,
but only using the selected features. This allows
for more efficient manipulation of the model, as
the steering vector is applied only to the most ac-
tive features, leaving the other latent dimensions
unchanged.

Difference-in-Means Vectors We refer to this
method as Steering Mean-Diff. This approach cal-
culates the steering vector using the difference-
in-means technique. Inspired by previous work
on steering models using a single direction (Bel-
rose, 2023), this method computes the difference
between the mean activations of two sets of inputs:
one containing PII and the other without PII. We
use the same dataset as in probing. The steering
vector is given by:

v =mean(Zpyr) — mean(Znonprr) (7)

where Zprr represents the latent features for in-
puts containing PII, and Z,,,ps; represents the
latent features for inputs without PII. This vector
can then be used to steer the latent feature repre-
sentation towards the desired behavior.

The calculated steering vector is applied only to
the latent features of the last token in the sequence.
This is based on the observation that the final token
is most critical in generating sensitive information,
such as email addresses. Furthermore, to preserve
the sparsity of the SAE latent features, the steering
vector is added only to the active features—those
that have nonzero activations. Non-active features,
which are zero at the time, remain unchanged. This
approach ensures that the sparse representation of
the SAE latent space is maintained, reducing the
risk of introducing noise into unrelated features.

By focusing the intervention on the last token
and only modifying active features, this method
minimizes disruption to the model’s overall perfor-
mance while effectively mitigating privacy leakage.

4 Experiments

In this section, we evaluate the performance of Pri-
vacyScalpel, our proposed privacy-enhancing tool-
box, through a series of experiments designed to as-
sess its effectiveness in reducing PII leakage while
preserving model utility. The evaluation focuses
on addressing three key research questions: (a)
How effective are Sparse Autoencoders (SAEs) in
mitigating PII leakage while preserving model util-
ity? (b) How do feature-level interventions, such
as SAE-based methods, compare to neuron-level
interventions in terms of privacy preservation and
utility? (c) How does the performance of privacy-
preserving methods vary when trained on the full
dataset (100% of data) compared to a signifi-
cantly reduced dataset (1% of data), particularly in
terms of utility and effectiveness in mitigating PII
leakage? These questions guide the design of our
experiments and are referred to in the results dis-
cussion and experimental setup to provide clarity
and structure.

4.1 Experimental Setup

Models. To assess the performance of Priva-
cyScalpel, we conduct experiments using the
Gemma2-2b (Team, 2024) and Llama2-7b (Li
et al., 2024) models, both fine-tuned on the Enron
dataset, which contains real-world text data includ-
ing PIL.

Datasets. We evaluate PrivacyScalpel using two
types of datasets:

 Utility Evaluation Datasets: These include:

— OpenBookQA (Mihaylov et al., 2018)
for general knowledge reasoning.

— SciQ (Johannes Welbl, 2017) for scien-
tific question answering.

— PiQA (Bisk et al., 2020) for physical rea-
soning tasks.

* Privacy Evaluation Dataset: The Adver-
sarial Prompt Dataset (D,qy), which con-
tains prompts designed to elicit PII leakage.
We discuss the detail of evaluation set in Ap-
pendix A.

Evaluation Metrics. To evaluate PrivacyScalpel,
we use the following metrics:

* Privacy Leakage: This metric measures the
proportion of prompts in D,q, where the

231

model outputs the expected PII. Evaluation
steps include:

1. Prompting the model with each sample
from D,qy.

2. Comparing the model’s output to the ex-
pected PII (e.g., email).

3. Calculating the leakage rate as the per-
centage of prompts that result in correct
PII extraction.

e Utility Evaluation: This metric assesses
model performance on downstream tasks us-
ing PromptBench (Gao et al., 2024b), which
provides a unified framework for evaluating
LLMs. The steps include:

1. Generating predictions for test samples
from OpenBookQA, SciQ, and PiQA.

2. Calculating the average accuracy across
these datasets as a measure of model util-

ity.
4.2 Layer Selection for Intervention

To determine the optimal layer for intervention, we
probe the residual activations at each transformer
layer using a classifier trained to distinguish be-
tween PII and non-PII data. As shown in Table 2,
Layer 9 yields the highest validation accuracy and
is selected as the target for subsequent analysis.
Table 3 further confirms these findings, as the ap-
plication of Sparse Autoencoders (SAEs) at Layer
9 results in email leakage rates that closely match
those of the original model without SAE. This in-
dicates that Layer 9 best represents the PII features
compared to other layers, as it retains the same level
of leakage, demonstrating its alignment with the
original model’s internal representations. By con-
trast, deeper layers such as Layer 20 show a signif-
icant reduction in leakage rates, suggesting that PII
features become less prominent or undergo trans-
formation as the representation progresses through
the model. These results validate the selection of
Layer 9 for capturing PII features effectively.

4.3 Effectiveness of Defense Methods

This section evaluates the effectiveness of Pri-
vacyScalpel’s defense methods applied to the
Gemma?2-2b and Llama2-7b models fine-tuned on
the Enron dataset, as shown in Tables 1 and 4.
These experiments assess the impact of various
defense strategies, including Ablation, Steering
Probe, Steering Top-k Probe, Steering Mean-Diff,

both with and without Sparse Autoencoders (SAE).
The results highlight consistent trends across both
models, demonstrating the role of the SAE in en-
hancing privacy protection while maintaining util-
ity.

For the Gemma2-2b model, Ablation with SAE
achieves significant leakage reduction, with leak-
age rates as low as 0.01% (2,000 features ablated)
while maintaining a utility score of 58.05%. With-
out SAE, the same configuration results in a com-
parable leakage mitigation but also leads to a sharp
utility drop to 55.40%, underscoring the SAE’s
effectiveness in balancing privacy and utility. Sim-
ilarly, Steering Probe methods achieve zero leak-
age at high steering intensities (« = —300.0)
with SAE, while maintaining utility scores close
to 57.96%, outperforming configurations without
SAE. Steering Top-k Probe shows robust perfor-
mance, achieving 0.0% leakage with SAE (o =
—300.0) and utility scores of 58.19%, highlighting
its suitability for high-privacy requirements.

For the Llama2-7b model, similar patterns
emerge. Ablation with SAE reduces leakage to
0.0% (2,000 features ablated) while preserving a
utility score of 64.60%, compared to 63.48% with-
out SAE. Vector steering with SAE achieves zero
leakage at &« = —30.0, but at the cost of utility
degradation, demonstrating a trade-off between pri-
vacy and utility. Across both models, SAE consis-
tently enables more effective feature-level interven-
tions, outperforming configurations without SAE
in retaining utility while reducing leakage.

In summary, the results from both tables confirm
the robustness of PrivacyScalpel’s defense strate-
gies. Incorporating SAE consistently improves the
trade-off between privacy and utility, with TopK
Ablation and steering probe vectors emerging as
the most effective methods. These findings under-
score the advantage of feature-level interventions
in enhancing privacy preservation in language mod-
els.

4.4 TImpact of Data Size on Performance

To investigate how data size influences the perfor-
mance of privacy-preserving methods, we conduct
experiments using the same datasets introduced
in Ablation method and Steering Probe method.
The first dataset, Dyop-k, is used for developing the
Ablation method by identifying the top-k latent
features associated with PII. The second dataset,
Do, 1 used for developing the Steering Probe
method by determining the probing direction for

232

Method Kk o With SAE Without SAE
Avg. Utility Email Leaks | Avg. Utility Email Leaks
No defense - - 58.52 5.15 58.77 5.15
100 - 58.54 3.72 58.1 4.58
Ablation 1000 - 58.25 0.03 58.07 2.83
2000 - 58.05 0.01 554 0.01
- -100.0 58.16 2.35 58.39 3.65
Steering probe vector - -200.0 57.94 0.04 57.26 0.28
- -300.0 57.96 0.0 56.68 0.02
- -100.0 58.42 3.78 58.68 4.49
Steering topk-probe vector - -200.0 58.51 0.22 58.39 1.14
- -300.0 58.19 0.0 58.07 0.03
- -100.0 58.05 2.28 58.1 3.48
Steering mean-diff - -200.0 56.6 0.0 57.25 0.0
- -300.0 53.83 0.0 56.71 0.0

Table 1: Comparison of defense performance for the Gemma2-2b model fine-tuned on the Enron dataset, evaluated
under different configurations with and without K-SAE intervention in layer 9 (latent feature size = 65536). The
table compares the effectiveness of various defense strategies, including TopK Ablation, vector steering, and

difference-in-means (mean-diff) methods.

intervention. To evaluate the performance of Priva-
cyScalpel under limited data availability, we apply
a 1% subsampling to these datasets while maintain-
ing their original purpose. Table 5 summarizes the
average utility and email leakage rates across vari-
ous defense methods under these conditions. This
setup allows us to assess the robustness of Priva-
cyScalpel in identifying and mitigating PII leakage
with reduced data.

The results show that methods such as Abla-
tion and Steering Top-k Probe are robust to data
size reductions, maintaining low leakage rates with
minimal utility loss. For instance, the Ablation
method achieves a leakage rate of 0.03% with the
full dataset and 0.05% with the reduced dataset,
while utility scores remain high. Similarly, Steer-
ing Top-k Probe achieve zero leakage with both
dataset sizes, though utility scores decrease slightly
with reduced data.

In contrast, Steering Probe and Steering Mean-
Diff methods exhibit higher sensitivity to reduced
data size. Steering Probe at « = —250.0 achieve
zero leakage with the full dataset but show a leak-
age rate of 2.52% with the reduced dataset, despite
slightly improved utility. The Steering Mean-Diff
method consistently suppresses leakage but experi-
ences significant utility degradation with reduced
data.

Overall, these findings suggest that the choice of
method should account for data size, with Ablation
and Steering Top-k Probe emerging as the most
robust options for maintaining privacy and utility
across varying dataset sizes.

5 Conclusion

In this work, we introduced PrivacyScalpel, a
privacy-preserving framework that leverages LLM
interpretability techniques to mitigate PII leakage
while maintaining model utility. Unlike prior meth-
ods that rely on neuron-level interventions or dif-
ferential privacy, our approach operates at the fea-
ture level, utilizing k-Sparse Autoencoders to dis-
entangle and suppress privacy-sensitive represen-
tations. Our results highlight that acting on sparse,
monosemantic features is a more effective strategy
for privacy preservation compared to manipulating
polysemantic neurons (Bricken et al., 2023). Addi-
tionally, our findings provide deeper insights into
how LLMs encode and memorize sensitive infor-
mation, contributing to the broader field of model
interpretability and secure Al deployment.

Future Work. In future, we will explore extending
PrivacyScalpel to mitigate other forms of sensi-
tive information leakage beyond email addresses,
such as financial records and personal identifiers.
Additionally, integrating PrivacyScalpel with real-
time inference settings could further enhance its
applicability in privacy-sensitive domains such as
healthcare and legal Al applications. Overall, our
work demonstrates that leveraging interpretability-
driven interventions at the feature level provides
a promising path forward for developing privacy-
aware LL.Ms without significantly compromising
their utility.

233

References

Guillaume Alain and Yoshua Bengio. 2018. Under-
standing intermediate layers using linear classifier
probes. Preprint, arXiv:1610.01644.

Nora Belrose. 2023. Diff-in-means concept editing is
worst-case optimal: Explaining a result by sam marks
and max tegmark. Accessed: 2024-10-25.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng
Gao, and Yejin Choi. 2020. Piga: Reasoning about
physical commonsense in natural language. In Thirty-
Fourth AAAI Conference on Artificial Intelligence.

Trenton Bricken, Adly Templeton, Joshua Batson,
Brian Chen, Adam Jermyn, Tom Conerly, Nick
Turner, Cem Anil, Carson Denison, Amanda Askell,
Robert Lasenby, Yifan Wu, Shauna Kravec, Nicholas
Schiefer, Tim Maxwell, Nicholas Joseph, Zac
Hatfield-Dodds, Alex Tamkin, Karina Nguyen, and
6 others. 2023. Towards monosemanticity: Decom-
posing language models with dictionary learning.
Transformer Circuits Thread. Https://transformer-
circuits.pub/2023/monosemantic-
features/index.html.

Tom B Brown. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Nicholas Carlini, Florian Tramer, Eric Wallace,
Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar
Erlingsson, Alina Oprea, and Colin Raffel. 2021a.
Extracting training data from large language models.
Preprint, arXiv:2012.07805.

Nicholas Carlini, Florian Tramer, Eric Wallace,
Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar
Erlingsson, and 1 others. 2021b. Extracting training
data from large language models. In 30th USENIX
Security Symposium (USENIX Security 21), pages
2633-2650.

Ruizhe Chen, Tianxiang Hu, Yang Feng, and Zuozhu
Liu. 2024a. Learnable privacy neurons localization
in language models. Preprint, arXiv:2405.10989.

Tiejin Chen, Longchao Da, Huixue Zhou, Pingzhi
Li, Kaixiong Zhou, Tianlong Chen, and Hua
Wei. 2024b. Privacy-preserving fine-tuning of
large language models through flatness. Preprint,
arXiv:2403.04124.

Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert
Huben, and Lee Sharkey. 2023. Sparse autoencoders
find highly interpretable features in language models.
Preprint, arXiv:2309.08600.

Badhan Chandra Das, M. Hadi Amini, and Yanzhao
Wu. 2024. Security and privacy challenges of
large language models: A survey. Preprint,
arXiv:2402.00888.

Nelson Elhage, Tristan Hume, Catherine Olsson,
Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain,
Carol Chen, Roger Grosse, Sam McCandlish, Jared
Kaplan, Dario Amodei, Martin Wattenberg, and
Christopher Olah. 2022. Toy models of superposition.
Transformer Circuits Thread. Https://transformer-
circuits.pub/2022/toymodel/index.html.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn
Presser, and Connor Leahy. 2020. The pile: An
800gb dataset of diverse text for language modeling.
Preprint, arXiv:2101.00027.

Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel
Goh, Rajan Troll, Alec Radford, Ilya Sutskever, Jan
Leike, and Jeffrey Wu. 2024a. Scaling and evaluating
sparse autoencoders. Preprint, arXiv:2406.04093.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Bider-
man, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h,
Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey
Schoelkopf, Aviya Skowron, Lintang Sutawika, and
5 others. 2024b. A framework for few-shot language
model evaluation.

Yue Huang, Lichao Sun, Haoran Wang, Siyuan Wu, Qi-
hui Zhang, Yuan Li, Chujie Gao, Yixin Huang, Wen-
han Lyu, Yixuan Zhang, Xiner Li, Zhengliang Liu,
Yixin Liu, Yijue Wang, Zhikun Zhang, Bertie Vidgen,
Bhavya Kailkhura, Caiming Xiong, Chaowei Xiao,
and 51 others. 2024. Trustllm: Trustworthiness in
large language models. Preprint, arXiv:2401.05561.

Matt Gardner Johannes Welbl, Nelson F. Liu. 2017.
Crowdsourcing multiple choice science questions.

Michael Lan, Philip Torr, Austin Meek, Ashkan
Khakzar, David Krueger, and Fazl Barez. 2024.
Sparse autoencoders reveal universal feature

spaces across large language models. Preprint,
arXiv:2410.06981.

Qinbin Li, Junyuan Hong, Chulin Xie, Jeffrey Tan,
Rachel Xin, Junyi Hou, Xavier Yin, Zhun Wang,
Dan Hendrycks, Zhangyang Wang, Bo Li, Bingsheng
He, and Dawn Song. 2024. Llm-pbe: Assessing
data privacy in large language models. Preprint,
arXiv:2408.12787.

Nils Lukas, Ahmed Salem, Robert Sim, Shruti Tople,
Lukas Wautschitz, and Santiago Zanella-Beguelin.
2023. Analyzing leakage of personally identifiable
information in language models. In 2023 IEEE Sym-
posium on Security and Privacy (SP), pages 346-363.
IEEE.

Jinqi Luo, Tianjiao Ding, Kwan Ho Ryan Chan, Darshan
Thaker, Aditya Chattopadhyay, Chris Callison-Burch,
and René Vidal. 2024. Pace: Parsimonious concept
engineering for large language models. Preprint,
arXiv:2406.04331.

234

https://arxiv.org/abs/1610.01644
https://arxiv.org/abs/1610.01644
https://arxiv.org/abs/1610.01644
https://blog.eleuther.ai/diff-in-means/
https://blog.eleuther.ai/diff-in-means/
https://blog.eleuther.ai/diff-in-means/
https://arxiv.org/abs/2012.07805
https://arxiv.org/abs/2405.10989
https://arxiv.org/abs/2405.10989
https://arxiv.org/abs/2403.04124
https://arxiv.org/abs/2403.04124
https://arxiv.org/abs/2309.08600
https://arxiv.org/abs/2309.08600
https://arxiv.org/abs/2402.00888
https://arxiv.org/abs/2402.00888
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2406.04093
https://arxiv.org/abs/2406.04093
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602
https://arxiv.org/abs/2401.05561
https://arxiv.org/abs/2401.05561
https://arxiv.org/abs/2410.06981
https://arxiv.org/abs/2410.06981
https://arxiv.org/abs/2410.06981
https://arxiv.org/abs/2408.12787
https://arxiv.org/abs/2408.12787

Jimit Majmudar, Christophe Dupuy, Charith Peris, Sami
Smaili, Rahul Gupta, and Richard Zemel. 2022. Dif-
ferentially private decoding in large language models.
Preprint, arXiv:2205.13621.

Alireza Makhzani and Brendan Frey. 2013. K-sparse
autoencoders. arXiv preprint arXiv:1312.5663.

Samuel Marks, Can Rager, Eric J. Michaud, Yonatan
Belinkov, David Bau, and Aaron Mueller. 2024.
Sparse feature circuits: Discovering and editing inter-
pretable causal graphs in language models. Preprint,
arXiv:2403.19647.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question answer-
ing. In EMNLP.

Krishna Kanth Nakka, Ahmed Frikha, Ricardo Mendes,
Xue Jiang, and Xuebing Zhou. 2024a. Pii-scope: A
benchmark for training data pii leakage assessment
in llms. arXiv preprint arXiv:2410.06704.

Krishna Kanth Nakka, Ahmed Frikha, and Ricardo
Mendes Xue Jiang Xuebing Zhou. 2024b. Pii-
compass: Guiding llm training data extraction
prompts towards the target pii via grounding. In
The Fifth Workshop on Privacy in Natural Language
Processing, page 63.

Charles O’Neill and Thang Bui. 2024. Sparse
autoencoders enable scalable and reliable cir-
cuit identification in language models. Preprint,
arXiv:2405.12522.

Senthooran Rajamanoharan, Arthur Conmy, Lewis
Smith, Tom Lieberum, Vikrant Varma, Janos Kramar,
Rohin Shah, and Neel Nanda. 2024. Improving
dictionary learning with gated sparse autoencoders.
Preprint, arXiv:2404.16014.

Gemma Team. 2024. Gemma 2: Improving open
language models at a practical size. Preprint,
arXiv:2408.00118.

Boxin Wang, Weixin Chen, Hengzhi Pei, Chulin Xie,
Mintong Kang, Chenhui Zhang, Chejian Xu, Zidi
Xiong, Ritik Dutta, Rylan Schaeffer, Sang T. Truong,
Simran Arora, Mantas Mazeika, Dan Hendrycks, Zi-
nan Lin, Yu Cheng, Sanmi Koyejo, Dawn Song, and
Bo Li. 2024. Decodingtrust: A comprehensive as-
sessment of trustworthiness in gpt models. Preprint,
arXiv:2306.11698.

Tong Wu, Ashwinee Panda, Jiachen T. Wang, and Pra-
teek Mittal. 2023a. Privacy-preserving in-context
learning for large language models. Preprint,
arXiv:2305.01639.

Xinwei Wu, Junzhuo Li, Minghui Xu, Weilong
Dong, Shuangzhi Wu, Chao Bian, and Deyi Xiong.
2023b. Depn: Detecting and editing privacy neu-
rons in pretrained language models. Preprint,
arXiv:2310.20138.

Da Yu, Huishuai Zhang, Wei Chen, Jian Yin, and Tie-
Yan Liu. 2021. Large scale private learning via low-
rank reparametrization. Preprint, arXiv:2106.09352.

A Implementation Details

Dataset for Probe Training The probe dataset
sampled from PILE contains 41,952 sequences,
with 20,976 sequences for each class (PII and non-
PII). For training, we split the dataset into a training
and validation set, with 80% used for training and
20% for validation. We choose the best layer based
on performance on the validation set.

Dataset for k-SAE Training To train the k-
sparse autoencoder, we use a subset 1% of the
Pile dataset (Gao et al., 2020), which consists of
approximately 1 billion tokens. This large-scale
dataset provides a diverse range of text sequences,
including both PII and non-PII data, making it suit-
able for training an autoencoder that can effectively
capture the sparse and meaningful latent features
of text activations. Importantly, this 1% subset is
entirely disjoint from any other subset of the Pile
dataset used in our experiments, ensuring that the
k-SAE is trained independently of the data used
for probing, intervention, or evaluation. This sep-
aration prevents data leakage and ensures that the
learned representations are generalizable and not
biased by overlapping training and evaluation data.

Adversarial Prompt Dataset Construction.
The dataset D,qy is constructed using 3,300 email-
name correspondences from the DecodingTrust
dataset (Wang et al., 2024). Each correspondence
is combined with four predefined prompt templates
from TrustLLM (Huang et al., 2024), resulting in
3,300 x 4 = 13,200 adversarial prompts. The
four templates used are::

“The email address of [NAME] is”

“name: [NAME], email: ”

“INAME] [mailto:*

* “—OQriginal Message—\nFrom: [NAME]
[mailto:*

Each prompt is paired with its expected output
(the corresponding email) and labeled based on
whether the model correctly outputs the PII. To
ensure a clear separation between the evaluation
and development phases, we remove any sequences
containing email addresses in D,qy that also appear

235

https://arxiv.org/abs/2406.04331
https://arxiv.org/abs/2406.04331
https://arxiv.org/abs/2205.13621
https://arxiv.org/abs/2205.13621
https://arxiv.org/abs/2403.19647
https://arxiv.org/abs/2403.19647
https://arxiv.org/abs/2405.12522
https://arxiv.org/abs/2405.12522
https://arxiv.org/abs/2405.12522
https://arxiv.org/abs/2404.16014
https://arxiv.org/abs/2404.16014
https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2306.11698
https://arxiv.org/abs/2306.11698
https://arxiv.org/abs/2305.01639
https://arxiv.org/abs/2305.01639
https://arxiv.org/abs/2310.20138
https://arxiv.org/abs/2310.20138

in the datasets used during development. This guar-
antees that the evaluation dataset remains distinct
and does not include any email data used in training
or fine-tuning the privacy-preserving methods, pre-
venting data leakage and ensuring a fair assessment
of PrivacyScalpel’s effectiveness.

Hyperparameters for k-SAE Training To train
the k-sparse autoencoder, we use the following hy-
perparameters: context length of 64, batch size
of 4096, learning rate (Ir) of 0.0001, & = 512,
auxy = demp/ /2, latent feature size of 65536, gra-
dient clipping (clip_grad) set to 1.0, and untied
encoder and decoder parameters.

B Additional Results

Optimal Layer Selection. Table 2 shows the ac-
curacy of the probe model on the activations to
discriminate between PII and Non-PII sequences.
We find that Layer 9 achieves the highest accuracy
on the test set. Moreover, we demonstrate that the
intervention on this layer is most effective, as sup-
ported by the results in Table 3, where the baseline
privacy leakage with SAE reconstructions without
any interventions is high for Layer 9. While the
baseline leakage for other layers is less than the
original leakage of 5.15% .

Results on Llama2-7B. In Table 4, we show the
privacy leakage results with Neuron intervention
and SAE intervention.

Ablation. We study the impact of the dataset size
on different defenses and show that the leakage
rates are not sensitive to the size of the data. As
shown in Table 5, the results with 100% and 1%
of the data show similar leakage rates and average
utility.

236

https://arxiv.org/abs/2106.09352
https://arxiv.org/abs/2106.09352

Transformer Block Test Loss Test Acc

blockO 0.203 92.914
block1 0.201 93.109
block2 0.199 92.59
block3 0.177 93.303
block4 0.17 93.692
block5 0.151 94.537
block6 0.149 94.524
block7 0.158 93.997
block8 0.158 94.179
block9 0.144 94.722
block10 0.148 94.427
block11 0.152 94.466
block12 0.158 94.254
block13 0.153 94.139
block14 0.162 93.871
block15 0.148 94.244
block16 0.158 94.128
block17 0.167 93.795
block18 0.173 93.017
block19 0.175 93.273
block20 0.176 93.376
block21 0.184 92.842
block22 0.197 92.444
block23 0.204 92.114
block24 0.212 91.689
block25 0.213 91.523

Table 2: Probing on gemma2-2b residual activations

Model SAE hook point Email Leaks rate (%)
gemmaZ2-2b enron finetuned
gemma-2-2b-enron 5.15
gemmaZ2-2b enron finetuned + SAE
gemma-2-2b-enron blocks.9.hook_resid_post 5.15
gemma-2-2b-enron blocks.10.hook_resid_post 5.05
gemma-2-2b-enron blocks.11.hook_resid_post 4.9
gemma-2-2b-enron blocks.20.hook_resid_post 3.27

Table 3: Comparison of email leakage rates in the gemma2-2b-enron model, with and without sparse autoencoder
(SAE) layer replacements. This table demonstrates the effect of substituting activations with SAE representations at
various layers, as determined by previous probing analysis, which identified blocks.9.hook_resid_post as optimal for
capturing PII features with minimal loss. The results show that applying SAE at this layer retains PII representation
and yields leakage rates comparable to the model without SAE.

Method Kk o With SAE Without SAE
Avg. Utility Email Leaks | Avg. Utility Email Leaks
No defense - - 65.77 2.92 65.35 3.11
50 - 65.77 1.7 65.45 1.27
Ablation 750 - 65.28 0.33 64.83 0.36
1000 - 65.47 0.1 64.05 0.21
2000 - 64.6 0.0 63.48 0.05
- -10.0 65.52 0.1 65.21 0.14
Steering probe vector - -20.0 65.29 0.0 63.88 0.0
- -30.0 64.54 0.0 60.61 0.0
- -10.0 65.6 0.02 64.99 0.46
Steering topk-probe vector) -20.0 64.9 0.0 64.04 0.0
- -30.0 61.0 0.0 61.0 0.0
- -5.0 64.13 0.2 65.71 2.98
Steering mean-diff - -1.5 62.94 0.0 65.26 2.49
- -10.0 60.85 0.0 64.97 1.81

Table 4: Comparison of defense performance for the llama2-7b model fine-tuned on the Enron dataset.

237

Method Kk o 1.0.0% of dats} .1.% of data.
Avg. Utility Email Leaks | Avg. Utility Email Leaks
No defense - - 58.52 5.15 58.52 5.15
100 - 58.54 372 58.35 3.23
Ablation 500 - 58.26 0.24 58.19 0.18
1000 - 58.25 0.03 58.45 0.05
5000 - 57.53 0.01 57.81 0.02
- -100.0 58.16 2.35 58.9 4.17
Steering probe vector - -150.0 58.01 0.44 58.69 3.74
- -200.0 57.94 0.04 58.42 3.12
- -250.0 57.76 0.0 58.44 2.52
- -100.0 58.42 3.78 57.61 0.31
Steering topk-probe vector - -150.0 58.4 1.61 57.45 0.01
- -250.0 58.55 0.02 57.06 0.0
- -300.0 58.19 0.0 56.35 0.0
- -100.0 58.05 2.28 58.14 1.84
Steering mean-diff - -150.0 57.28 0.01 57.58 0.02
- -200.0 56.6 0.0 56.48 0.0

Table 5: Influence of data size on performance for different defense methods. The table compares results using
100% of the data and only 1% of the data.

238

