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Abstract

Large language models (LLMs) are increas-
ingly deployed in collaborative settings, yet
little is known about how they coordinate
when treated as black-box agents. We simu-
late 7,500 multi-agent, multi-round discussions
in an inductive coding task, generating over
125,000 utterances that capture both final an-
notations and their interactional histories. We
introduce process-level metrics—code stabil-
ity, semantic self-consistency, and lexical con-
fidence—alongside sentiment and convergence
measures, to track coordination dynamics. To
probe deeper alignment signals, we analyze
the evolving geometry of output embeddings,
showing that intrinsic dimensionality declines
over rounds, suggesting semantic compression.
The results reveal that LLM groups converge
lexically and semantically, develop asymmetric
influence patterns, and exhibit negotiation-like
behaviors despite the absence of explicit role
prompting. This work demonstrates how black-
box interaction analysis can surface emergent
coordination strategies, offering a scalable com-
plement to internal probe-based interpretability
methods.

1 Introduction

Inductive coding is a core method in qualitative
research, used to identify patterns and themes by
assigning semantic labels, or codes, to unstructured
text segments (Saldana, 2016; Braun and Clarke,
2021). This process is typically carried out by hu-
man coders who iteratively interpret, categorize,
and refine codes. Collaborative coding can en-
hance interpretive depth through discussion and
consensus, but it is also time-consuming and sub-
ject to inconsistencies caused by individual bias
and group effects (MacQueen and Guest, 2008;
Bernard, 2016; Bumbuc, 2016).

Recent advances in large language models
(LLMs) have created opportunities to automate
parts of the qualitative analysis pipeline. While

Figure 1: Overview of our multi-agent simulation
framework. LLM agents iteratively exchange outputs
via a shared conversational memory, progressing from
Round 1 to Round N . Over rounds, codes move from
dispersed to clustered in semantic space, while ROUGE
increases and intrinsic dimensionality (TwoNN-Id) de-
creases, indicating lexical convergence and semantic
compression.

prior work has examined LLMs for individual cod-
ing (Chen et al., 2024; Parfenova et al., 2025), little
is known about how they behave in multi-agent set-
tings that mirror human annotation teams. In par-
ticular, it remains unclear how coordination arises
between models, and whether convergence in their
outputs reflects shared semantic understanding, lex-
ical mimicry, or other surface-level alignment pro-
cesses.

This paper introduces a large-scale simulation
framework for multi-agent, multi-round LLM dis-
cussions in an inductive coding task. Each model
acts as a black-box agent that proposes and revises
codes over several rounds, without finetuning or
access to internal states. By analyzing only the
outputs, we track how codes evolve and align over
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time, providing an interpretable view of coordina-
tion.

We combine process-level metrics with geo-
metric analysis of output embeddings to capture
both lexical and structural aspects of coordina-
tion. Our metrics include code stability, semantic
self-consistency, and opinion–confidence dynamics,
alongside measures of embedding-space geometry
such as intrinsic dimensionality, which we inter-
pret as a proxy for semantic compression during
convergence.

Our contributions are:

1. We present a simulation framework for large-
scale, black-box multi-agent LLM discussions
applied to collaborative annotation.

2. We propose coordination metrics that capture
surface-level stability, semantic consistency,
and opinion–confidence alignment, as well as
geometric shifts in embedding space.

3. We empirically demonstrate that multiround
interactions enhance lexical convergence, re-
duce embedding space dimensionality, and
yield asymmetric influence patterns between
models.

2 Background

Qualitative data analysis (QDA) is a central method
in the social sciences, used to identify and interpret
patterns in unstructured text (Miller et al., 1990;
Creswell, 2016). A core step in QDA is coding,
where analysts assign short labels to data segments
to capture their essential meaning (Saldana, 2016).
These codes form the building blocks for higher-
level categories and themes (Braun and Clarke,
2021). Coding is often conducted by teams of hu-
man analysts who iteratively refine code definitions
and resolve disagreements through discussion.

Recent work has explored the use of large lan-
guage models (LLMs) to assist or automate parts of
the coding process (Bommasani et al., 2021; Laban
et al., 2022; Parfenova et al., 2024). While LLMs
can offer gains in speed and consistency, concerns
remain about the reliability and interpretability of
their outputs, particularly for tasks requiring subjec-
tive judgment (Morse, 1997; MacQueen and Guest,
2008; Bumbuc, 2016; Bernard, 2016).

Human coding is not only a technical activity
but also a social one, shaped by negotiation, influ-
ence, and consensus-building. Research in social
psychology shows that group decisions are affected

by factors such as confidence, majority opinion,
and perceived commitment (Moussaïd et al., 2013;
Suzuki et al., 2015). These findings suggest that
group coding dynamics extend beyond individual
annotation to include broader mechanisms of coor-
dination and persuasion.

In parallel, studies have modeled LLM agents
in multi-party negotiation and collaboration set-
tings, showing that they can replicate aspects of
human interaction, including persuasion strategies
and iterative reasoning (Fu et al., 2023; Deng et al.,
2024; Abdelnabi et al., 2024). For example, Vac-
caro et al. (2025) show that negotiation outcomes
among LLM agents are influenced by social di-
mensions such as warmth and dominance, and that
LLMs exhibit reasoning strategies not fully pre-
dicted by existing human negotiation theories.

However, these interactional capabilities have
not been systematically examined in applied anno-
tation settings such as qualitative coding, where
sustained collaborative interpretation is central. Ex-
isting research has largely focused on single-turn
or task-specific interactions, leaving open ques-
tions about how LLMs behave in multi-turn, group-
based annotation, and how such interactions shape
the semantic and structural properties of their out-
puts.

This work addresses this gap by simulating
multi-agent, multi-round discussions among di-
verse LLMs performing inductive coding. Drawing
on insights from qualitative research, social psy-
chology, and agent-based modeling, we analyze
how LLMs negotiate semantic content, influence
each other’s decisions, and converge—or fail to
converge—on shared annotations.

3 Dataset

We construct a dataset for collaborative qualitative
coding by sampling 500 English-language com-
ments from the Jigsaw Unintended Bias in Toxic-
ity Classification dataset.* Comments are selected
based on two criteria: (1) high annotator disagree-
ment scores to capture subjectivity, and (2) a min-
imum length of 100 words to ensure interpretive
richness. The resulting dataset consists of identity-
related, linguistically diverse utterances suited for
thematic analysis.

*https://www.kaggle.com/c/
jigsaw-unintended-bias-in-toxicity-classification
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4 Experimental Setup

We simulate structured group discussions among
large language models (LLMs), varying both group
size (2, 3, or 5 agents) and discussion depth (1–5
rounds). For each configuration, we generate 500
discussions, yielding a total of 7,500 multi-agent
simulations. Each discussion proceeds through
three phases: (1) initial code generation from each
agent, (2) one to five rounds of turn-based refine-
ment, and (3) final synthesis.

Agents take turns in a fixed sequence. After each
turn, the agent is prompted to summarize its mes-
sage in a single sentence. These summaries are ac-
cumulated as conversational memory and provided
as context for subsequent responses, approximat-
ing memory through accumulated turn summaries.
This setup avoids external memory modules and
finetuning, instead relying on prompt-based infer-
ence alone. It also enables scalable context manage-
ment while preserving discourse coherence. The
full algorithm is outlined in Algorithm 1 (Appendix
A).

Each discussion is initialized with one of five
prompt templates (see Table 1), ranging from for-
mal coding instructions to informal summary re-
quests. The prompts are iterated sequentially to
ensure balanced coverage.

Prompt ID Prompt Text

1 A code is often a word or short phrase that symbolically assigns a
salient, essence-capturing and/or evocative attribute to a portion
of language-based or visual data. Perform thematic analysis on the
following comment and generate a concise qualitative code.

2 Summarize the main idea of this sentence in a short, thematic code.
3 From the perspective of a social scientist, summarize the following

sentence as you would in thematic coding.
4 Can you tell me what the main idea of this sentence is in just a few words?
5 If you were a social scientist doing thematic analysis, what code

would you give to this citation?

Table 1: Prompt formulations used across the simulation
setup to elicit qualitative codes from models (Parfenova
et al., 2025). Each discussion is seeded with one of
these prompts.

4.1 Corpus Statistics

Across all settings, the simulation produces 7,500
discussions. With each agent generating an ini-
tial code, multiple turn-level refinements, and a
final synthesis, the corpus contains approximately
125,000 discrete agent utterances. We store all tran-
scripts, turn summaries, and final codes in struc-
tured JSON and CSV formats for reproducible anal-
ysis.

5 Metrics

We compute ROUGE-1, ROUGE-2, and ROUGE-
L scores (Lin, 2004) to quantify lexical similarity
and convergence between generated codes over dis-
cussion rounds. To inspect structural patterns in
embedding space, we project sentence embeddings
with UMAP (McInnes et al., 2018), visualizing
both 2D and 3D clustering to assess inter-model
separability and convergence.

We also evaluate toxicity using the Unitary Toxi-
city classifier,†, treating full agent turns as the unit
of analysis.

To capture richer stylistic and psycholinguistic
patterns, we apply the ELFEN toolkit‡, extracting
features such as lexical diversity, syntactic com-
plexity, and emotional intensity.

5.1 Stability, Consistency, and Confidence

We introduce three process-level metrics:
Code Stability – proportion of string-identical

outputs between consecutive rounds, reflecting how
much each model revises its own prior outputs.

Self-consistency Score – average cosine similar-
ity between TF-IDF representations of a model’s
outputs at round t and t+1, measuring semantic
drift.

Confidence We use a lightweight, output-
only proxy for expressed confidence: the length-
normalized difference between counts of certainty
cues (e.g., clearly, definitely, must) and hedging
cues (e.g., might, possibly, seems). Formally,

Conf(u) =
|C(u)| − |H(u)|

tokens(u)
.

This does not measure true certainty; it approxi-
mates how assertive the language reads. In Limita-
tions, we discuss sensitivity to lexicon design and
normalization (tokens vs. words vs. sentences).

6 Code Convergence and Quality

We organize our analysis around two dimensions:
the codes produced by LLMs at each round, and
the discussion dynamics that shape those codes.
Results span all group sizes (2, 3, or 5 models),
rounds (1–5), and prompt types (5 total), highlight-
ing trends in convergence, confidence, and coordi-
nation.

†https://huggingface.co/unitary/
unbiased-toxic-roberta

‡https://github.com/mmmaurer/elfen
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Figure 2: UMAP projection of LLM-generated codes
before and after four rounds of multi-agent discussion
(5 models). Each point represents a single code, colored
by model type. Pre-discussion codes are more dispersed
in embedding space (left), while post-discussion codes
form tighter clusters with greater cross-model overlap
(right). This reflects both lexical convergence and a
form of semantic compression, where diverse initial pro-
posals collapse into a lower-dimensional, more aligned
representation.

ROUGE Analysis. In all configurations, the
ROUGE-1, ROUGE-2, and ROUGE-L scores
between LLM steadily increase over successive
rounds, indicating progressive lexical convergence
during the discussion (Figure 3). The largest gains
occur between the penultimate and final rounds,
suggesting that multi-turn interaction yields cu-
mulative benefits that are most visible late in the
process. Table 2 reports final round ROUGE-L
scores across prompts. Peak performance is ob-
served in the 3-model, 4-round setting for Prompt 1
(Max: 0.8070), with similarly strong outcomes
for Prompt 2 and Prompt 4. While additional
rounds generally enhance convergence, improve-
ments plateau after the fourth round.

Opinion and Confidence. Figure 7 (see Ap-
pendix B) tracks the average confidence of each
model over rounds, estimated from lexical cer-
tainty and hedging cues. Mistral produces the
most assertive outputs, while Deepseek is the most
hedging-prone. All models increase in confidence
over time, consistent with growing certainty as the
discussion unfolds.

In Deepseek’s case, the lower confidence scores
may be partly attributable to the presence of its rea-
soning part after <think> token in outputs, which
was deliberately not removed during preprocessing
and may be interpreted as a hedging or reflective
cue by our metric.

We further project utterance embeddings into
a 2D opinion–confidence space. Opinion is de-

Figure 3: ROUGE Score Convergence Across Rounds
for Three LLMs. This plot shows ROUGE-1, ROUGE-
2, and ROUGE-L similarity scores between pairs
of models (Llama4 Maverick, Llama3.3 70B, and
Deepseek-R1 70B) across successive discussion rounds.
Scores are computed based on model-generated codes
at each round, capturing convergence in lexical overlap
over time.

rived by reducing 384-dimensional MiniLM sen-
tence embeddings to a single principal component,
capturing the primary axis of semantic variance
across all responses. Confidence is computed as the
normalized frequency difference between certainty
and hedging expressions. Heatmaps in Figure 4
show that early rounds produce multiple dense
clusters (divergent stances, moderate confidence),
whereas later rounds reveal consolidation into more
concentrated regions, reflecting both semantic and
epistemic alignment.

This visualization is inspired by prior social sci-
ence work on human group decision-making, no-
tably (Moussaïd et al., 2013), which mapped indi-
viduals into an opinion–confidence space to study
convergence under social influence. Our results
mirror their findings: multi-round interactions drive
both opinion convergence and an overall upward
shift in expressed confidence.

Toxicity. Average toxicity scores, measured via
a zero-shot social bias detector, generally decrease
over time (see Figure 8, Appendix B). Mistral and
Gemma converge to near-zero toxicity by Round 4,
while Deepseek maintains relatively higher levels.

Stability and Consistency. Figure 5 summa-
rizes two intra-model metrics: stability (percent-
age of unchanged tokens between rounds) and
self-consistency (semantic similarity of consecu-
tive outputs). Four models maintain high stability
throughout, while Deepseek shows greater vari-
ability. Deepseek and Mistral achieve the high-
est self-consistency, whereas Maverick exhibits

209



Figure 4: Density plots of normalized opinion vs. confidence across discussion rounds. Each subplot represents a
2D histogram of model utterances in a given round, showing how expressed opinions (x-axis) relate to confidence
scores (y-axis). Darker regions indicate higher concentration of utterances. Over rounds, the distribution evolves
from distinct opinion-confidence clusters (Round 1) to more dispersed and overlapping patterns (Rounds 3–5).

Figure 5: Model Stability and Self-consistency Across
Rounds. Top: Code Stability (1 - change rate) measures
the proportion of tokens retained between rounds, re-
flecting how much models revise their outputs. Bottom:
Self-consistency Score is computed as the cosine sim-
ilarity of TF-IDF vectors between consecutive rounds,
indicating semantic consistency.

more exploratory behavior before converging in
later rounds.

Semantic Influence Between Models. We com-
pute round-wise pairwise cosine similarities be-
tween each model’s output and every other model’s
prior-round output, producing a 5×5 influence ma-
trix per round (Figure 9, see Appendix C). Diagonal
entries capture self-consistency and off-diagonals
capture cross-model semantic alignment.

Early rounds show diffuse influence, with
Gemma and Deepseek serving as semantic anchors.
By mid-discussion, Llama3.3 emerges as a stronger
source of influence, particularly for Gemma and

Mistral. Deepseek increasingly absorbs content
from peers, acting as a semantic integrator. By
Rounds 6–7, both self- and cross-influence scores
rise across all models, reflecting a shift toward mu-
tual alignment and emergent inter-model coordina-
tion.

7 Geometric Interpretability of Code
Evolution

Recent work by Lee et al. (2025) has shown that
intrinsic dimensionality (Id) of neural activations
can reveal how language models compress or pre-
serve information during reasoning and instruc-
tion following. While their approach uses hid-
den states, our focus is strictly output-level ge-
ometry: we track how the intrinsic dimension of
LLM-generated codes changes over multi-round
discussions, using external sentence embeddings
from sentence-transformers. This makes our
analysis a proxy for semantic complexity in outputs
rather than a direct probe of internal representa-
tions.

7.1 Intrinsic Dimensionality Shrinkage Across
Rounds

We estimate Id using the Two-Nearest Neighbor
method (TwoNN-Id; Facco et al. 2017) for codes
at each round in 2-, 3-, and 5-model setups (not
diving by prompts used). Intuitively, for each point
we look at the distances to its nearest and second-
nearest neighbors; the distribution of the ratio of
these distances has a closed-form dependence on
the underlying manifold dimension. Fitting this
distribution yields an ID estimate. In our output-
only setting, ID serves as a proxy for how dispersed
or compressed the semantic space of codes is; lower
ID indicates tighter, lower-dimensional structure.
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Table 2: Average and Maximum ROUGE-L scores at final round across prompts, number of models, and number of
rounds.

Prompt # Models / Rounds 1 2 3 4 5

Prompt 1
2 models Avg: 0.7658 / Max: 0.7658 0.5124 / 0.5124 0.6327 / 0.6327 0.7754 / 0.7754 0.6851 / 0.6851
3 models 0.6881 / 0.7089 0.7274 / 0.7410 0.7409 / 0.8055 0.7729 / 0.8070 0.7634 / 0.7897
5 models 0.6175 / 0.6827 0.6450 / 0.7220 0.6861 / 0.7410 0.7237 / 0.7857 0.7062 / 0.7824

Prompt 2
2 models 0.4703 / 0.4703 0.4755 / 0.4755 0.5450 / 0.5450 0.6274 / 0.6274 0.5342 / 0.5342
3 models 0.5971 / 0.6260 0.7043 / 0.7584 0.6728 / 0.7341 0.6827 / 0.7463 0.6871 / 0.7489
5 models 0.5225 / 0.6253 0.5379 / 0.6370 0.5343 / 0.6284 0.5677 / 0.6928 0.5986 / 0.6961

Prompt 3
2 models 0.3609 / 0.3609 0.3407 / 0.3407 0.4056 / 0.4056 0.4193 / 0.4193 0.4081 / 0.4081
3 models 0.2836 / 0.3200 0.3417 / 0.4070 0.3812 / 0.4941 0.3643 / 0.4521 0.3950 / 0.4767
5 models 0.2819 / 0.3866 0.3055 / 0.4287 0.3306 / 0.4764 0.3194 / 0.4467 0.3332 / 0.4658

Prompt 4
2 models 0.4811 / 0.4811 0.4680 / 0.4680 0.5185 / 0.5185 0.5688 / 0.5688 0.4836 / 0.4836
3 models 0.6880 / 0.7304 0.6534 / 0.6768 0.7068 / 0.7518 0.7152 / 0.7575 0.6363 / 0.6682
5 models 0.5207 / 0.6544 0.5822 / 0.6850 0.5932 / 0.6894 0.6171 / 0.6688 0.5966 / 0.7061

Prompt 5
2 models 0.5477 / 0.5477 0.4712 / 0.4712 0.5979 / 0.5979 0.6586 / 0.6586 0.5908 / 0.5908
3 models 0.4417 / 0.4983 0.4665 / 0.5789 0.4809 / 0.5910 0.5102 / 0.5872 0.5350 / 0.6474
5 models 0.3457 / 0.5164 0.3602 / 0.5305 0.3508 / 0.4881 0.3758 / 0.5280 0.3975 / 0.5857

As shown in Figure 6 and Table 4, the 3- and
5-model groups display a steady decline in Id
over rounds, consistent with semantic compression
through discussion. The sharpest drop occurs be-
tween the initial round (R0) and the first exchange
(R1), with smaller reductions thereafter. In contrast,
the 2-model setup remains relatively stable, sug-
gesting limited restructuring of the representational
space.

7.2 Per-Model Semantic Complexity

Figure 16 shows per-model Id trajectories. In
the 2-model setup, both LLaMA3.3 and Maver-
ick maintain high, stable Id values. In the 3-model
setup, Maverick spikes around R3 before return-
ing to baseline, while the others remain flatter.
The 5-model setup exhibits the greatest divergence:
Gemma rises sharply before dropping, Deepseek
fluctuates moderately, and Mistral shows two steep
drops at R2 and R5, indicating that larger groups
may induce greater instability and diversity in se-
mantic complexity.

Pooled vs. per-model Id. The pooled Id curves
in Figure 6 are computed by concatenating all
codes from all models at a given round into a single
set before estimating intrinsic dimensionality. This
treats the group as a unified annotator and reflects
the overall diversity of the shared representational
space. In contrast, the per-model curves in Fig-
ure 16 (see Appendix D) estimate Id separately for
each model’s codes across comments, capturing
how much semantic variability each agent main-
tains over time.

Averaging per-model Id values would not be

equivalent to the pooled estimate: pooled Id in-
corporates cross-model differences within a round,
while per-model Id measures only within-model
variation. Thus, pooled Id can be lower than indi-
vidual Ids when models converge on similar codes,
even if each model’s own space remains internally
diverse.

7.3 Cosine Similarity vs. Intrinsic Dimension

To compare semantic compression with surface-
level convergence, we also track average pairwise
cosine similarity. While cosine similarity rises
steadily in all setups and then again decreases at
the final round, giving a marginally small increase
in similarity overall, Id decreases much sharply
(Figure 6). This divergence suggests that models
become lexically closer while reducing the com-
plexity of their outputs, supporting the idea that
cosine similarity captures alignment in wording,
whereas Id reflects deeper compression of semantic
space.

8 Structural and Affective Linguistic
Features

To capture how LLM interaction dynamics shape
the linguistic, stylistic, and emotional properties
of generated codes, we computed 190 discussion-
level features using the ELFEN toolkit. These fea-
tures span multiple linguistic dimensions including
syntactic complexity, lexical diversity, readability,
part-of-speech distributions, emotional valence and
arousal, sensorimotor concreteness, and psycholin-
guistic norms.
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Figure 6: Comparison of intrinsic dimension (solid)
and average cosine similarity (dashed) across rounds
for 2-, 3-, and 5-model setups. While cosine similar-
ity shows slight increases (surface-level alignment), in-
trinsic dimension reveals strong semantic compression,
especially in the 5-model group. This suggests deeper
convergence beyond lexical overlap.

8.1 Affective Divergence and Emotional
Breakdown

Prompt 3, an academic-style instruction asking
models to adopt a social scientist perspective,
produces the lowest ROUGE convergence of all
prompt types (Table 2). This suggests that inter-
pretive ambiguity and abstraction hinder lexical
alignment. The affective trajectories (Figure 10,
Appendix C) mirror this pattern: trust, joy, and
valence drop sharply mid-discussion, while fear,
sadness, and arousal rise, particularly for Maverick,
which undergoes an affective collapse.

In contrast, the highest-performing prompt (Fig-
ure 13, Appendix C) shows steady affective fea-
tures: trust, dominance, and positive sentiment
gradually increase, and negative sentiment remains
low and stable. These findings suggest that main-
taining a consistent emotional tone, rather than
fluctuating between affective extremes, supports
shared understanding and iterative refinement.

8.2 Structural and Lexical Differences

We report (i) Yule’s K (lexical repetitiveness;
higher means more repetition), (ii) Hapax rate (ra-
tio of singletons; higher means more novelty), and
(iii) HDD (Hypergeometric Distribution Diversity;
robust type–token measure). We also track read-
ability (Flesch) and syntactic depth (constituent
tree depth).

Lexical and structural analyses (Figures 11,
14, Appendix C) highlight substantial differences
in discourse coherence between low- and high-
performing prompts. Under low-performing con-
ditions, LLMs display volatile behavior: Yule’s K,

hapax legomena rates, and HDD fluctuate unpre-
dictably, while readability scores (e.g., Flesch)
reach implausible extremes for some models.
Deepseek and Maverick show high lexical volatil-
ity, while Gemma spikes in Yule’s K—suggesting
degeneracy or repetitive overfitting.

Conversely, high-performing prompts yield flat-
ter or gradually improving trends in lexical di-
versity and sentence complexity. Maverick and
LLaMA 3.3 demonstrate increasing syntactic tree
depth, lexical density, and stable POS chunking.

8.3 Sensorimotor Grounding

Psycholinguistic features from the Lancaster
Norms (Lynott et al., 2020) reveal nuanced dif-
ferences in perceptual grounding across prompt
conditions (see Figures 12, 15, Appendix C). Sur-
prisingly, the worst-performing prompt shows sta-
ble or even increasing visual sensorimotor activa-
tion in several models (e.g., Mistral, Maverick),
despite concurrent declines in socialness, concrete-
ness, and emotional coherence. This may indicate
that, when alignment fails, models compensate by
anchoring discourse in concrete or perceptually
vivid language—a possible fallback strategy when
abstract coordination breaks down.

In contrast, the best-performing prompt exhibits
flatter or slightly declining visual grounding over
rounds, accompanied by stronger emotional cal-
ibration and lexical stability. This suggests that
high-quality convergence does not require percep-
tual vividness; rather, it benefits from emotional
and structural consistency. Overall, sensorimotor
features provide useful but non-linear signals.

9 Qualitative and Error Analysis

While overall trends point to increasing conver-
gence across rounds, individual discussion threads
reveal that this process is not uniformly successful.
In some cases, interaction leads to clearer, more
aligned codes; in others, it produces drift, vague-
ness, or unnecessary complexity. To illustrate, we
present two examples from the 5-model, 5-round
setting: one where peer interaction improves qual-
ity, and one where it undermines it.

Semantic drift and oversimplification. In some
discussions, models converge confidently on codes
that are less nuanced than their starting points. For
example, in one case, the initial codes were the-
matically diverse -“Criticizing Enabling Culture”,
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Table 3: Excerpted transcripts showing negative (left) and positive (right) influence patterns. Each turn shows the
speaking model and its proposed code, with adopted lexical items in blue.

Row 0: Semantic Flattening Row 30: Positive Alignment

Maverick (R0): Criticizing Enabling Culture Maverick (R0): Challenging Sexist Stereotypes
LLaMA3.3 (R0): Compassionate Condemnation LLaMA3.3 (R0): Challenging Stereotypical Portrayals
Deepseek (R0): Critique of Ineffective Urban Compassion Deepseek (R0): Challenging Sexist Stereotypes
Gemma (R0): Compassion Fatigue & Blaming Policy Gemma (R0): Gendered Representation in Mining Media
Mistral (R0): Misguided Compassion Mistral (R0): Challenging Media Stereotypes: Independent

Women vs. Sexualized Roles
All models (Final): Exasperated Urban Compassion Fatigue
& Policy Critique

All models (Final): Challenging Sexist Stereotypes in Media

Setup Initial Id Final Id ∆Id (Final - R0) Steepest Drop Drop Round

2-Model 13.55 13.11 -0.44 -1.72 Final
3-Model 7.94 0.64 -7.30 -4.63 R1
5-Model 7.66 0.42 -7.24 -3.75 R1

Table 4: Intrinsic dimension (TwoNN) metrics across different model group sizes. All setups start at round R0
and proceed through multi-round discussions. Semantic compression is most pronounced in the 3- and 5-model
configurations.

“Compassionate Condemnation”, “Misguided Com-
passion”, and a detailed multi-component code
from Gemma explicitly identifying both compas-
sion fatigue and blaming policy. Over the discus-
sion, these variants collapsed into a highly uniform
label, “Exasperated Urban Compassion Fatigue
& Policy Critique”, adopted by all models. While
lexical similarity and ROUGE-L scores increased
sharply (+0.61), intrinsic dimensionality dropped
from 6.10 to 1.07, signalling reduced representa-
tional diversity. This semantic flattening risks eras-
ing meaningful sub-themes in pursuit of consensus.

Positive lexical alignment. Other interactions
show peer influence improving conceptual clarity.
In another case, the group began with semantically
related but lexically varied codes such as “Chal-
lenging sexist stereotypes”, “Gendered Represen-
tation in Mining Media”, and “Challenging Media
Stereotypes: Independent Women vs. Sexualized
Roles”. Through successive rounds, the phrase
“Challenging Sexist Stereotypes in Media” emerged
and was adopted by all agents by the final round.
Here, convergence aligned both lexical form and
semantic content, increasing ROUGE-L by +0.45
and cosine similarity by +0.24, while preserving
the central meaning of the original codes.

Illustrative excerpts. Table 3 presents con-
densed transcripts from these two cases. High-
lighted terms (blue) indicate lexical items or phras-
ings introduced by one model and later adopted by
others.

Overall, these cases illustrate that convergence
can either reinforce accurate, semantically coher-
ent codes or collapse diversity into overgeneralised
formulations. Monitoring for semantic drift and in-
corporating occasional human oversight could help
maintain thematic richness while benefiting from
the efficiency of multi-agent LLM discussions.

10 Discussion

Our findings demonstrate that large language mod-
els can engage in structured, multi-turn coordi-
nation without explicit role conditioning or con-
straints. Across various types of prompts and group
sizes, interaction yields measurable gains in lexi-
cal and semantic convergence, greater epistemic
confidence, and reduced toxicity. These patterns
are supported by complementary metrics, including
ROUGE, self-consistency, and cross-model influ-
ence scores.

The coordination dynamics is not uniform. In-
fluence matrices reveal stable anchor models (e.g.,
Gemma, LLaMA3.3) that consistently shape peer
outputs, alongside models (e.g., Deepseek) that ab-
sorb external framing. This asymmetry parallels
established findings in human negotiation and per-
suasion, where clarity and perceived confidence
can drive consensus formation (Moussaïd et al.,
2013).

Convergence is not solely lexical. High-
performing groups maintain stable sentiment tra-
jectories and controlled syntactic complexity, sug-
gesting that emotional coherence and discourse
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stability lead to alignment. In contrast, breakdowns
are marked by volatility in sentiment, lexical de-
generation, and increased perceptual concreteness,
which may reflect compensatory grounding strate-
gies when alignment fails.

Geometric analysis adds a complementary per-
spective: intrinsic dimensionality consistently
shrinks over discussion rounds, indicating semantic
compression beyond surface overlap. This suggests
that iterative interaction narrows the representa-
tional space toward shared conceptual frames, an
effect not captured by cosine similarity or ROUGE
alone. Together, these results position multi-agent
LLM interaction as a process of both surface align-
ment and deeper conceptual convergence.

11 Conclusion

We presented a simulation framework for multi-
agent LLM discussions in inductive qualitative cod-
ing, showing that iterative interaction leads to lexi-
cal and semantic convergence, stabilizes affect, and
compresses the concept space of model outputs.
These dynamics: anchoring, asymmetric influence,
and progressive semantic narrowing, suggest that
LLM groups can exhibit forms of collective reason-
ing that go beyond simple lexical alignment.

Our findings highlight the potential of structured
multi-turn interaction for tasks requiring consensus
and interpretability, from collaborative annotation
to decision-making. Future work should extend this
approach to mixed human–LLM settings, probe the
stability of consensus under noisy or adversarial
conditions, and analyze the effects of turn-taking,
memory, and agent identity on group outcomes.

Limitations

Simulation vs. full agent systems. Agents have no
explicit roles, tools, or persistent memory beyond
turn summaries. This controlled, prompt-only set-
ting isolates interaction effects but underestimates
capabilities of richer multi-agent architectures.

Sequence effects. We randomize the starting
speaker per discussion, but order within a round re-
mains fixed, residual sequence effects are possible.

Round awareness. Prompts do not reveal how
many rounds remain; nonetheless, models could
infer session end from context. We do not observe
final-round spikes once the order is randomized,
but cannot rule out planning effects.

Confidence proxy. Our lexical proxy cap-
tures expressed assertiveness, not true epistemic

certainty, and depends on lexicon coverage and
normalization. Alternative normalizations (per
word/sentence) and learned proxies are left for fu-
ture work.

Single dataset & prompt sensitivity. We study
one dataset with five prompts; patterns general-
ize across prompts within this dataset but may
differ elsewhere. Extending to additional corpora
and mixed human–LLM teams is important future
work.

External embeddings. Semantic metrics use
external sentence embeddings; ID therefore reflects
output geometry rather than internal activations.

Ethics Statement

The analysis in this paper focuses on the behavior
of large language models in a synthetic, automated
discussion setting. No human participants were in-
volved in the generation of data or the evaluation of
outputs, and no personally identifiable information
is present. Moreover, we note that the models stud-
ied may reproduce or amplify stereotypes present
in their pretraining data. Our toxicity analyses
aim to identify such tendencies, but this work does
not constitute a comprehensive bias analysis. De-
ploying multi-agent LLM systems for annotation
in real-world settings should include human over-
sight, bias mitigation, and domain-specific ethical
review.
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A Simulation Procedure and Prompts

For transparency and reproducibility, we provide
in Algorithm 1 a detailed outline of the simulation
pipeline described in Section 4. The algorithm for-
malizes our three-phase procedure: (1) Initial code
generation, where each agent independently pro-
duces an initial qualitative code for a given input;
(2) Iterative refinement, where agents take turns
updating their code in response to accumulated
conversational memory built from one-sentence
summaries of all prior turns; and (3) Final synthe-
sis, where each agent generates a concluding code
based on the full shared history. This design en-
sures controlled turn-taking, scalable context man-
agement, and the absence of any external memory
modules or finetuning, relying solely on prompt-
based inference.

Table 1 lists the five prompt templates used to
produce discussions, rotated one after another. The
prompts range from formal thematic analysis in-
structions to more concise, informal formulations,
enabling us to test the effect of input framing on
the group coding dynamics.

Algorithm 1 Multi-agent Iterative Coding Simula-
tion
Require: Models M = {m1, . . . ,mk}, number of rounds

R, prompt p, dataset D of n items
1: for each item x ∈ D do
2: Phase 1: Initial code generation
3: for each agent mi ∈M do
4: Generate initial code c

(0)
i ← mi(p, x)

5: Summarize to one-sentence s
(0)
i ←

summarize(c(0)i )
6: end for
7: Initialize conversational memory C(0) ←

[s
(0)
1 , . . . , s

(0)
k ]

8: Phase 2: Iterative refinement
9: for round r = 1 to R do

10: for each agent mi in fixed turn order do
11: Context← C(r−1) plus current item x

12: Generate refinement c
(r)
i ←

mi(p, x, context)
13: Summarize s

(r)
i ← summarize(c(r)i )

14: Append s
(r)
i to conversational memory C(r)

15: end for
16: end for
17: Phase 3: Final synthesis
18: for each agent mi ∈M do
19: Given C(R), produce final synthesis code cfinal

i

20: end for
21: end for

B Confidence Score Computation

To quantify expressions of certainty and hedging
in model utterances, we define two lexicons: one
for certainty cues and one for hedging cues. These
lexicons are manually curated and include common
adverbs, modal verbs, and multi-word phrases asso-
ciated with either assertive or uncertain language.

Certainty Lexicon
The certainty lexicon C includes terms such as:

definitely, must, undoubtedly, always,
clearly, certainly, absolutely, without a
doubt, unquestionably, conclusively, pos-
itively, with certainty, no doubt, undeni-
ably, strongly, etc.

A full list contains 65 expressions indicative of
strong epistemic commitment or assertive framing.

Hedging Lexicon
The hedging lexicon H includes terms such as:

might, possibly, could, likely, seems, ap-
parently, perhaps, maybe, presumably,
arguably, supposedly, relatively, some-
what, in theory, reportedly, one might
argue, from what I gather, I guess, etc.
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Figure 7: Confidence Score Trajectories Across Rounds.

Figure 8: Toxicity Trends Across Rounds. Average toxi-
city scores for each model over five rounds, as measured
by a zero-shot classifier finetuned for social bias and
toxicity detection.

This list includes 70 phrases commonly asso-
ciated with epistemic uncertainty, mitigation, or
speculative reasoning.

Confidence Score Formula
Given a tokenized utterance, we compute the confi-
dence score as:

Confidence(t) =
C terms − H terms

N tokens in t
(1)

This produces a normalized score capturing the
relative assertiveness of an utterance, where higher
values indicate stronger epistemic commitment and
lower (or negative) values indicate hedging or un-
certainty.

C Semantic Influence

D Intrinsic Dimension Metrics
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Figure 9: Semantic Influence Matrices Across Discussion Rounds. Each heatmap represents the average pairwise
cosine similarity between a target model’s code at round t and all source models’ codes from round t–1, computed
using MiniLM embeddings. Diagonal values capture self-influence (semantic consistency over time), while off-
diagonal values indicate cross-model influence (semantic alignment to peers). Over time, influence intensifies,
especially for Mistral, Gemma, and Deepseek, reflecting increasing inter-model convergence and shared framing.
Notably, Llama3.3 and Deepseek emerge as consistent semantic sources, while Maverick gradually stabilizes after
early-round volatility.
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Figure 10: Affective feature trajectories for the lowest-performing prompt. Sentiment, trust, and valence drop
sharply mid-discussion, while fear, sadness, and arousal increase—indicating emotional instability and breakdown
in cooperative framing.
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Figure 11: Lexical and structural metrics for the lowest-performing prompt. Measures such as Yule’s K, hapax
legomena, and readability fluctuate erratically, with some models exhibiting lexical degeneration or overfitting-like
repetition.
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Figure 12: Psycholinguistic features for the lowest-performing prompt. Despite emotional and structural drift,
some models show increased visual grounding, suggesting a compensatory shift toward concrete, perceptually vivid
language when abstract alignment fails.

221



Figure 13: Affective feature trajectories for the highest-performing prompt. Trust, dominance, and positive sentiment
steadily rise, while negative affect remains low—indicating stable emotional regulation and cooperative tone.
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Figure 14: Lexical and structural metrics for the highest-performing prompt. Trends in lexical diversity, syntactic
depth, and token economy are stable or gradually improving, reflecting sustained discourse coherence and minimal
drift.
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Figure 15: Psycholinguistic features for the highest-performing prompt. Visual grounding remains flat or slightly
declines, while emotional and structural stability persist—suggesting effective alignment without reliance on
increased concreteness.
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Figure 16: Per-model semantic complexity across rounds, measured via intrinsic dimension (TwoNN) of each
model’s generated codes.
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