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Abstract
This study conducts a detailed analysis of the
side effects of rank-one knowledge editing us-
ing language models with controlled knowl-
edge. The analysis focuses on each element of
knowledge triples (subject, relation, object) and
examines two aspects: “knowledge that causes
large side effects when edited” and “knowledge
that is affected by the side effects.” Our find-
ings suggest that editing knowledge with sub-
jects that have relationships with numerous ob-
jects or are robustly embedded within the LM
may trigger extensive side effects. Furthermore,
we demonstrate that the similarity between rela-
tion vectors, the density of object vectors, and
the distortion of knowledge representations are
closely related to how susceptible knowledge
is to editing influences. The findings of this
research provide new insights into the mecha-
nisms of side effects in LM knowledge editing
and indicate specific directions for developing
more effective and reliable knowledge editing
methods.

1 Introduction

Language models (LMs) can store knowledge in
their internal parameters through training and re-
search focusing on analyzing the knowledge stored
inside LMs have gained attention (Petroni et al.,
2019; Jiang et al., 2020; Heinzerling and Inui, 2021;
AlKhamissi et al., 2022). Although this capabil-
ity is essential in building human-aiding assistants,
challenges related to reliability and safety are also
reported. For example, LMs possess knowledge
only up to the point when their training data was
collected, making them not robust to the constantly
changing real-world knowledge (De Cao et al.,
2021; Mitchell et al., 2022a; Kasai et al., 2023).
Additionally, there is a risk that LMs could leak
personal and confidential information contained in
the training data, raising privacy concerns (Huang
et al., 2022; Jang et al., 2023). To address these
challenges, several studies have been conducted on

knowledge editing (Feng et al., 2023; Zhang et al.,
2024; Dai et al., 2022; Meng et al., 2022, 2023; Li
et al., 2023) and knowledge deletion (Jang et al.,
2023; Ishibashi and Shimodaira, 2023; Trippa et al.,
2024; Wang et al., 2025). While these studies have
reported some success in knowledge editing and
deletion, they have identified problems with side
effects caused by the editing process.

This study investigates the mechanisms underly-
ing side effects in knowledge editing from multiple
perspectives. Our hypothesis posits that side effects
arise from the intrinsic characteristics of knowl-
edge triple components (subject, relation, object).
Based on this hypothesis, we focus on revealing:
1) characteristics of knowledge that cause large
side effects when edited and 2) characteristics of
knowledge that are affected by the side effects.

In analyzing knowledge that causes large side
effects when edited, we focus on two properties of
subjects: connectivity and embedding robustness.
Highly connected subjects maintain numerous re-
lationships with multiple objects through diverse
relations, suggesting that modifications to these
subjects are likely to produce widespread side ef-
fects. Additionally, when subjects are deeply em-
bedded in the model’s internal representations, the
substantial changes required for editing may propa-
gate effects to other connected knowledge.

Regarding knowledge that is affected by the side
effects, we focus on relation similarity, object space
density, and knowledge distortion. Knowledge in-
volving relations that are semantically similar to
the relation in the edited knowledge instance is
likely to be susceptible to side effects. In areas
where object representations are densely clustered,
even minor modifications can lead to unintended
object substitutions. Moreover, when knowledge
instances are distorted in the internal representa-
tion space, minor edits might trigger substantial
variations in model outputs.

In this research, we quantitatively evaluate the
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Figure 1: Overview of our systematic analysis of knowledge editing side effects. We analyze the side effects of
knowledge editing from two perspectives: knowledge that causes large side effects when edited, focusing on subject
degree and edit intensity, and knowledge that is affected by side effects,examining relation similarity, object density,
and knowledge distortion.

effects and side effects of applying conventional
editing methods using artificial knowledge graphs.
By examining how each factor contributes to side
effects, we systematically categorize the factors
causing knowledge editing side effects and empiri-
cally demonstrate their impact.

2 Related Work

2.1 Knowledge Editing

Traditional paradigms for modifying the internal
knowledge and the behavior of language mod-
els include supervised fine-tuning (SFT), rein-
forcement learning from human feedback (RLHF;
Ouyang et al., 2022), and direct preference opti-
mization (DPO; Rafailov et al., 2023), among oth-
ers. These methods update models’ knowledge
via re-training and involve challenges such as the
high cost of collecting training data and difficulties
with generalization. In response, more efficient and
flexible methods for knowledge updating are being
investigated, and knowledge editing is receiving
increasing attention.

Knowledge editing approaches can be broadly
divided into two main categories. The first are
methods that adjust outputs using external knowl-
edge bases, exemplified by SERAC (Mitchell et al.,
2022b) and T-patcher (Huang et al., 2023).

The second are methods that directly mod-
ify model parameters, such as FT-L (Zhu et al.,
2020), KE (De Cao et al., 2021), MEND (Mitchell
et al., 2022a), ROME (Meng et al., 2022),
MEMIT (Meng et al., 2023), and AlphaEdit (Fang
et al., 2025), among others.

2.2 Side Effect of Knowledge Editing

Knowledge editing, such as directly modifying
model parameters, is fundamentally a method to
improve the factuality of the model. However, this
approach has the side effect of unintentionally and
significantly degrading the model’s general capa-
bilities (Gu et al., 2024).

The challenges of knowledge editing have been
reported from multiple perspectives:

1. Continuous forgetting: Even a single knowl-
edge edit can potentially cause model collapse
and the ability to perform downstream tasks
is also lost (Yang et al., 2024; Gupta et al.,
2024).

2. Impact on neighbor knowledge: Investiga-
tions into the effects of model knowledge up-
dates on adjacent knowledge have revealed
that while new knowledge can be effectively
added, there is also a problem of forgetting
existing correct adjacent knowledge or unin-
tentionally adding incorrect knowledge (Ma
et al., 2024).

3. Lack of ripple effects: When updating certain
knowledge, the changes should appropriately
affect other related knowledge. However, it
has become clear that current knowledge edit-
ing methods cannot consistently achieve such
cascading updates (Onoe et al., 2023; Cohen
et al., 2024).

4. Overfit: Through editing, models tend to learn
excessively strong associations between the
input prompt and the target object. As a result,
they output the target object with inappropri-
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Figure 2: Visualization of two synthetic knowledge
graphs: an Erdős-Rényi graph (left) , and a Barabási-
Albert graph (right).

ately high probability in response to complex
questions (Zhang et al., 2025)．

3 Experimental Setup

3.1 Knowledge Graphs
This work addresses relational knowledge repre-
sented in triples, such as (s, r, o). We define a
knowledge graph as a representation where the sub-
ject s and object o correspond to vertices, and the
relation r corresponds to an edge, as a knowledge
graph. Here, s and o are elements of the entity set E
with |E| = 200, and r is an element of the relation
set R with |R| = 50.

Previous studies on knowledge editing have as-
sumed the existence of knowledge graphs com-
posed of relational knowledge between entities ex-
pressed in natural language (Zhu et al., 2020; Meng
et al., 2022; Fang et al., 2025). This study intro-
duces an approach by creating a synthetic knowl-
edge graph, allowing for precise control over the
information LMs acquire through training. We cre-
ated two synthetic knowledge graphs with different
characteristics (Figure 2). The first is an Erdős-
Rényi (ER) graph (Erdös and Rényi, 1959), struc-
tured to ensure the probability of forming edges be-
tween vertices is uniform. The second is a Barabási-
Albert (BA) graph (Barabási and Albert, 1999),
characterized by a vertex degree distribution that
follows a power law, thus resembling the structure
of the real world more closely. This graph, with
varied vertex degrees, enables analyses of the rela-
tion between the degree of each entity (vertex) and
the side effects of knowledge editing.

3.2 Storing Knowledge Graphs in LMs
We first assign five names to each entity ei (0 ≤
i < |E| ; i ∈ N), denoted as eij (0 ≤ j < 5 ; j ∈
N). Similarly, we assign five names to each re-
lation ri (0 ≤ i < |R| ; i ∈ N), denoted as rij

Knowledge
Graph Model Accuracy on

Training Data
Accuracy on

Full Data

ER
6 layers 0.9998 0.9941

12 layers 0.9985 0.9983
24 layers 0.9900 0.9905

BA
6 layers 0.9991 0.9987

12 layers 0.9991 0.9989
24 layers 0.9972 0.9964

Table 1: Accuracy of training data and full data for each
model after training the RA graph and the BA graph.

(0 ≤ j < 5 ; j ∈ N) and include these names in the
model vocabulary and tokenizer. Hereafter, names
referring to the same entity (or relation) are termed
“paraphrases.” We then create a corpus composed
of sequenecs each with three tokens (e.g., “e00 r11
e14”) using the synthetic knowledge graphs created
in Section 3.1, and train models with GPT-2 archi-
tecture with 6, 12, and 24 layers (Radford et al.,
2019; Sanh et al., 2019).

During inference, we input two tokens into the
model, and the model predicts one token. A pre-
diction is correct if the predicted token represents
any paraphrases indicating the gold entity. During
training, we use 20% of the entire knowledge base,
which includes paraphrased knowledge, intending
to achieve generalization across all paraphrased
knowledge. After training, the model achieves an
accuracy rate of approximately 99% not only on
the training data but also on the full data, indicat-
ing that it has successfully memorized the provided
knowledge (see Table 1). Additionally, by princi-
pal component analysis on the word embeddings
before and after training, it was suggested that ap-
propriate embeddings were acquired after training
(for details, see Appendix A).

3.3 Knowledge Editing Method

While our analysis framework is agnostic to
other knowledge editing methods, we opt for
ROME (Meng et al., 2022), one of the primary
knowledge editing methods for causal LMs, in this
work. ROME attempts to edit knowledge by up-
dating model weight through the following two
steps.

Step 1: Causal Tracing The first step is to iden-
tify a model component that plays a crucial role
in knowledge association. This is achieved by an-
alyzing the contribution of each hidden state of
the model to the prediction regarding the target
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knowledge1 (for details, see Appendix B). The
results of Causal Tracing revealed that the initial
Feed-Forward (FF) layer significantly contributes
to knowledge association, supporting research in-
dicating that FF layers serve as key-value memory
storage for knowledge (Geva et al., 2021).

Step 2: Rank-One Model Editing The second
step is to add a rank-1 matrix to the weights W2

of the FF layer (defined by Equation 1 where σ is
the activation function), which was identified as
most contributing to the prediction through Causal
Tracing.

FFN(x) = W2 σ(W1x+ b1) + b2 (1)

In the ROME approach, W2 is conceptualized as
an associative memory for existing key-value pairs
(K,V )2, and perform edits to insert a new key-
value pair (k∗, v∗). This editing objective can be
formulated as a constrained least-squares optimiza-
tion problem. The solution yields the updated
weight matrix Ŵ2, which takes the form:

Ŵ2 = W2 + Λ(C−1k∗)⊤ (2)

Here, C = KK⊤ represents the uncentered covari-
ance of K, and Λ is a vector proportional to the
residual error of the new key-value pair (k∗, v∗).

3.4 Knowledge Editing from LMs
Knowledge editing can be treated as reassociating
an entity with a different entity from one already
connected. In this work, we introduce a new en-
tity etarget as the target object entity to be newly
associated, and formalize knowledge editing as the
process of updating the target knowledge instance
(s, r, o) such that s, which was originally associ-
ated with o via r, is instead associated with etarget.

4 Evaluation of Knowledge Editing

4.1 Evaluation Metrics
To comprehensively evaluate knowledge editing,
we introduce three categories of metrics: Efficacy,
Generalization, and Specificity. These metrics aim
to assess not only the direct effectiveness of editing
but also its broader implications on the model’s
behavior.

Efficacy measures how successfully the model
incorporates the newly edited knowledge. We de-
fine two metrics in this category:

1Here, predicting o for an input (s, r) is referred to.
2K = [k1|k2| . . .] and V = [v1|v2| . . .], where k and v

represent vectors.

• Efficacy Score (ES): The proportion of cases
where the probability of the target object
(etarget) exceeds that of the original object (o)
after editing, i.e., P[etarget] > P[o].

• Efficacy Match (EM): The proportion of cases
where the model outputs the target object
(etarget) as its primary prediction after editing.

Generalization evaluates whether the editing
effects extend to paraphrased versions of the same
knowledge. This is measured through:

• Paraphrase Score (PS): Similar to ES, but cal-
culated using prompts (s, rp) where rp is a
paraphrase of the original relation r.

• Paraphrase Match (PM): Similar to EM, but
for paraphrased prompts.

Specificity assesses how localized the editing
effects are by examining impacts on neighboring
knowledge. We consider two types of neighbor-
hood relationships. Let us define subject-sharing
knowledge as knowledge instances that share the
same subject as the edited knowledge. For these
subject-sharing knowledge instances:

• Subject Sharing Score (Subj. SS): The propor-
tion of instances where P[o] > P[etarget].

• Subject Sharing Match (Subj. SM): The pro-
portion of instances where the original knowl-
edge is maintained.

Similarly for relation-sharing knowledge, defined
as knowledge instances that share the same relation
as the edited knowledge:

• Relation Sharing Score (Rel. SS): The propor-
tion of instances where P[o] > P[etarget].

• Relation Sharing Match (Rel. SM): The pro-
portion of instances where the original knowl-
edge is maintained.

We also compute the harmonic mean of ES, PS,
Subj. SS, and Rel. SS to capture the overall perfor-
mance balancing these aspects, which we denote as
Score (S). This combined metric helps evaluate the
trade-off between effective editing (Efficacy), ro-
bust generalization (Generalization), and minimal
side effects (Specificity).

In all metrics, larger values indicate small side
effects.

4.2 Quantitative Results
Table 2 shows the quantitative evaluation results of
knowledge editing across different model architec-
tures and knowledge graph structures. The results
reveal several vital patterns in how ROME affects
different aspects of model behavior.
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Knowledge
Graph Model

Efficacy Generalization Specificity Score

ES ↑ EM ↑ PS ↑ PM ↑ Subj. SS ↑ Subj. SM ↑ Rel. SS ↑ Rel. SM ↑ S ↑

ER
6 layers 0.9877 0.9824 0.9635 0.9508 0.7676 0.5724 1.0000 0.9996 0.9189

12 layers 0.9947 0.9912 0.6134 0.4517 0.8982 0.3958 1.0000 0.9975 0.8423
24 layers 0.9982 0.9965 0.4490 0.1727 0.8398 0.3592 1.0000 0.9905 0.7381

BA
6 layers 1.0000 1.0000 0.8790 0.7657 0.8270 0.4757 1.0000 0.9986 0.9202

12 layers 0.9915 0.9882 0.8574 0.7234 0.8225 0.2482 1.0000 0.9993 0.9110
24 layers 0.9729 0.9509 0.9264 0.7593 0.4892 0.1653 1.0000 0.9980 0.7765

Table 2: Quantitative Evaluation of Knowledge Editing: Comparison of editing effectiveness metrics, including
efficiency measures (ES, EM), generalization to paraphrases (PS, PM), and retention of subject-sharing (Subj. SS,
SM) and relation-sharing (Rel. SS, SM) knowledge. The overall Score represents the harmonic mean of ES, PS,
Subj. SS, and Rel. SS.

First, regarding Efficacy, we observe consistently
high performance across all configurations, with
ES and EM exceeding 97% in most cases. This in-
dicates that ROME successfully modifies the target
knowledge regardless of model size or knowledge
graph structure. The slight decrease in efficiency
metrics for larger models (24 layers) in the BA
graph suggests that knowledge editing becomes
marginally more challenging as model complexity
increases.

Generalization performance exhibits consider-
able variation across model configurations. For the
ER graph, we observe an apparent degradation in
generalization ability as the number of layers in-
creases, with PS dropping from 96.35% (6 layers)
to 44.90% (24 layers). Interestingly, the BA graph
maintains more robust generalization across model
sizes, with PS remaining above 85% even in larger
models.

The Specificity metrics reveal a striking asym-
metry in how knowledge editing affects subject-
sharing and relation-sharing knowledge. Across
all configurations, relation-sharing knowledge is
exceptionally well preserved (Rel. SS and Rel. SM
consistently near 100%). However, subject-sharing
knowledge shows substantially lower preservation
rates, particularly in Subject Sharing Match (Subj.
SM). This effect becomes more pronounced in
larger models, with Subj. SM dropping to 16.53%
in the 24-layer BA graph model.

When comparing the ER and BA graphs, we ob-
serve that while both achieve similar overall Scores
for smaller models, the BA graph maintains better
performance in larger architectures, particularly in
terms of generalization. This suggests that the more
realistic power-law structure of the BA graph might
facilitate more robust knowledge representations.

These results highlight a fundamental challenge

in knowledge editing. While ROME can effectively
edit specific knowledge and maintain relation-
sharing knowledge, it significantly impacts other
knowledge associated with the edited subject, par-
ticularly in deeper models. This observation moti-
vates our subsequent analysis of the factors influ-
encing these subject-related side effects.

4.3 Analysis of Weight Update Matrix
Our quantitative results in Section 4.2 demon-
strated that knowledge editing predominantly af-
fects subject-sharing knowledge instances. We
further investigate this phenomenon by analyzing
the weight update matrix ∆W = Λ(C−1k∗)⊤ ∈
Rd×4d3 that is added to the W2 of FFN by ROME.
This weight update affects model inference through
the transformation ∆Wk, where k ∈ R4d is the in-
put vector to the second linear transformation in
the FF layer.

We investigate the effect of ∆W on the output
of FFN by analyzing the singular value decompo-
sition of ∆W , inspired by (Millidge and Black,
2022). Since ROME performs rank-one updates,
∆W can be decomposed as ∆W = σuv⊤, where
σ ∈ R denotes the singular value, u ∈ Rd is the left
singular vector, and v ∈ R4d is the right singular
vector. We quantify the impact of the weight update
by the update magnitude, defined as m = σv⊤k.
This scalar value quantifies how strongly the update
∆W affects the output of FFN.

In Table 3, we show update magnitudes aver-
aged over subject-sharing knowledge and relation-
sharing knowledge. The results demonstrate consis-
tently higher update magnitudes for subject-sharing
knowledge across all model configurations, sug-
gesting that the weight updates are inherently struc-
tured to have a stronger impact on knowledge in-

3d denotes the model’s hidden dimension.
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Knowledge
Graph Model

Update Magnitude m

Subj. Sharing
Knowledge

Rel. Sharing
Knowledge

ER
6 layers 19.1609 3.7725

12 layers 8.4228 5.3302
24 layers 7.3184 5.6542

BA
6 layers 6.3663 3.0569

12 layers 5.8021 3.8179
24 layers 5.8738 4.7027

Table 3: Comparison of average update magnitude
for subject-sharing knowledge instances and relation-
sharing knowledge instances.

stances that share the same subject.
This analysis of the weight update matrix pro-

vides mechanistic evidence for why ROME ex-
hibits a stronger effect on subject-sharing knowl-
edge instances, corroborating our empirical find-
ings from the quantitative evaluation.

5 Analysis of Side Effects

Our analysis in Section 4 reveals that knowledge
editing primarily affects subject-sharing knowledge
instances. In light of these findings, we examine
two key aspects: 1) the characteristics of subject
entities that correlate with side effects (Sections 5.1
and 5.2), and 2) the distinguishes factors between
knowledge instances that are affected by side ef-
fects from those that are not (Sections 5.3 to 5.5).

5.1 Impact of Subject Degree
Procedure We investigate how a subject’s degree
in the knowledge graph correlates with the magni-
tude of editing side effects. To quantify the impact
of editing knowledge related to a subject s, we
define the impact measure I(s) as:

I(s) = accpre − accpost(s) (3)

where accpre represents the accuracy before editing
and accpost(s) denotes the accuracy after editing
knowledge with subject s. Using this measure, we
examine the relationship between the magnitude of
side effects and the subject’s degree in the knowl-
edge graph.

Results Figure 3 illustrates the relationship be-
tween entity degrees and editing impact I(·) in the
6-layer model trained on ER and BA graphs. We
observe no significant correlation between entity
degrees and impact for the ER graph model, in-
dicated by a relatively flat trend line. In contrast,

Figure 3: Analysis of the relationship between subject
degrees and editing impacts in a 6-layer model trained
on the knowledge graph.

the BA graph model exhibits a clear positive cor-
relation: entities with higher degrees show larger
impact values, while those with lower degrees show
smaller impacts. This pattern persists across mod-
els with different numbers of layers. Table 4 shows
the Spearman correlation coefficients between en-
tity degrees and their impact across different model
architectures. The ER graph maintains low corre-
lation coefficients for all model sizes (6, 12, and
24 layers), while the BA graph consistently shows
significant positive correlations. These results sug-
gest that in knowledge graphs with power-law de-
gree distributions (such as the BA graph), which
better reflect real-world knowledge structures, edit-
ing knowledge related to highly connected entities
leads to more extensive side effects. Conversely,
editing knowledge about entities with fewer con-
nections results in more localized changes. This
relationship is not observed in the ER graph, where
the uniform degree distribution results in more con-
sistent editing impacts regardless of entity connec-
tivity.

5.2 Impact of Edit Intensity

Procedure We examine the relationship between
editing side effects and the magnitude of change
in subject representations caused by editing oper-
ations. We introduce Edit Intensity (EI) for this
analysis, quantifying the extent of representation
change. EI is defined as the Euclidean distance
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Knowledge
Graph Model Degree Edit Intensity

ρ p-value ρ p-value

ER
6 layers 0.2623 0.0002 0.3135 0.0000

12 layers 0.3155 0.0000 0.3027 0.0000
24 layers 0.3300 0.0000 0.3021 0.0000

BA
6 layers 0.8190 0.0000 0.6405 0.0000

12 layers 0.8933 0.0000 0.7054 0.0000
24 layers 0.9428 0.0000 -0.0490 0.2343

Table 4: Spearman correlation coefficients (ρ) and their
corresponding p-values between side effects and two
subject-related metrics: the degree of the target knowl-
edge’s subject and the editing intensity of the target
knowledge.

between a subject’s feature vectors before and after
editing:

EI(s) = ∥hpre(“s”, 0, 0)− hpost(“s”, 0, 0)∥2
(4)

where h(p, t, l) represents hidden-state immedi-
ately after layer l at position t when prompted with
prompt p. We set l = 0, corresponding to the layer
where ROME applies the edit. t is set to 0 as we
only feed one subject token to the model in this
analysis. The subscripts “pre” and “post” refer to
the hidden state before and after ROME is applied.
We then analyze the correlation coefficient between
this EI metric and the impact of editing I defined
by Equation 3.

Results Table 4 shows the Spearman correlation
coefficients and p-values between the Edit Inten-
sity of subject entities and the impact of side ef-
fects I . Except for a 24-layer model trained on
BA graphs, which is an exception, we generally ob-
serve positive correlations. Notably, strong positive
correlations are found in the 6-layer and 12-layer
models trained on BA graphs. These results suggest
that knowledge editing operations requiring larger
changes to subject entity representations tend to
produce more substantial side effects. This finding
indicates that the robustness of subject entity em-
beddings within the model significantly influences
the extent of side effects during knowledge editing.

5.3 Relation Similarity
Procedure We investigate how the similarity be-
tween relation vectors of knowledge instances af-
fects the occurrence of side effects, focusing on
instances that share the same subject as the edited
knowledge. Here, relation vectors are defined as
h(“r”, 0, 0).

Results The results in Table 5 reveal significant
differences in relation similarity between knowl-
edge instances that are affected by editing and those
that are not. Specifically, knowledge instances
affected by editing showed higher average rela-
tion vector similarities compared to unaffected in-
stances.

5.4 Object Density
Procedure We examine how the density of ob-
ject vectors in the embedding space affects the
occurrence of side effects, focusing on subject-
sharing knowledge. We define object vectors as
h(“s r”, 1,−1), where l = −1 denote the final
layer. The density is computed using the k-Nearest
Neighbor algorithm (Fix, 1985), where we calcu-
late the density of each instance with respect to the
complete set of object vectors from all knowledge
instances4.

Results As shown in Table 5, there are dif-
ferences in object density distributions between
knowledge instances that experience side effects
and those that do not. Knowledge instances af-
fected by editing exhibit consistently higher av-
erage object vector densities compared to unaf-
fected instances. This pattern persists across vari-
ous model architectures and graph types, suggest-
ing that knowledge instances whose objects are
located in dense regions of the embedding space
are more sensitive to editing operations and are
more prone to side effects.

5.5 Knowledge Distortion
Procedure We examine how distortions in knowl-
edge instance embeddings influence the occurrence
of side effects. While measuring the smoothness
of knowledge instance embeddings is non-trivial,
inspired by (Jukić and Šnajder, 2024), we analyze
knowledge distortions through the lens of Lipschitz
continuity. The Lipschitz constant (LC) is defined
as:

LC(s, r, o) =
∥hpre(“s r”, 1,−1)− hpost(“s r”, 1,−1)∥2

∥hpre(“s”, 0, 0)− hpost(“s”, 0, 0)∥2
(5)

This metric quantifies the relative magnitude of
changes in the object embeddings with respect to
changes in the subject embeddings. A higher LC
indicates greater distortion in the knowledge repre-
sentation.

4See Appendix C for detailed calculations.
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Graph Model Relation Similarity Object Density Knowledge Distortion

Affected Unaffected Affected Unaffected Affected Unaffected

ER
6-layer 0.5931 0.4865 0.3668 0.3818 1.6360 1.4216
12-layer 0.4923 0.4371 0.3463 0.3374 2.4217 1.8883
24-layer 0.5293 0.4227 0.4137 0.4043 4.2525 3.4570

BA
6-layer 0.4476 0.3728 0.4656 0.4563 1.3327 1.1151
12-layer 0.3822 0.3285 0.6236 0.6220 1.8367 1.4594
24-layer 0.5423 0.5115 0.4768 0.4020 3.6963 3.1530

Table 5: Analysis of subject-sharing knowledge based on three metrics (Relation Similarity, Object Density,
and Knowledge Distortion), comparing knowledge affected by side effects versus unaffected knowledge. Values
represent the mean scores for each metric across respective knowledge groups.

Results As demonstrated in Table 5, knowledge
instances affected by side effects consistently show
larger Lipschitz constants than unaffected instances.
This finding suggests that knowledge instances
lacking smooth representations in the embedding
space are more susceptible to editing operations.
The results indicate a strong relationship between
the local geometric properties of learned knowl-
edge representations and their stability under edit-
ing. Specifically, knowledge encoded with smooth
embeddings demonstrates greater robustness to
editing operations, while knowledge characterized
by abrupt changes in the embedding space is more
vulnerable to editing effects and has a higher prob-
ability of producing unintended side effects.

6 Discussion

Findings from Section 5 provide important impli-
cations for developing more effective knowledge
editing methods. First, the correlation between
Edit Intensity and side effects suggests that con-
straining the magnitude of changes in subject en-
tity representations before and after editing could
enable more localized knowledge editing. Second,
understanding the propagation mechanism of side
effects among subject-sharing knowledge instances
is expected to contribute to designing more sophis-
ticated editing techniques.

Furthermore, the characteristics of side effects
we show in this study have significant implica-
tions for evaluating knowledge editing methods.
While conventional evaluation metrics have pri-
marily measured the effectiveness of editing on
target knowledge instances, our findings suggest
the need for more comprehensive evaluation ap-
proaches, including (1) weighted evaluation based
on subject entity degree, (2) quantification of side
effects based on relation vector similarity, and (3)
stability assessment considering local density of

knowledge representations.
Continued verification in environments that

more closely approximate real-world knowledge
structures is also important. With the above con-
siderations, we expect the establishment of more
robust knowledge editing methods and evaluation
techniques.

7 Conclusion

In this study, we conducted a comprehensive analy-
sis of the side effects caused by knowledge editing
of LMs. In the analysis of what kinds of knowl-
edge instances cause large side effects when edited,
we showed that instances with higher-degree sub-
ject entities and greater edit intensity lead to larger
side effects. Further analyses on which kinds of
knowledge instances get affected by editing other
knowledge revealed that, particularly among the
subject-sharing knowledge with edited knowledge,
(1) knowledge instances with high relation vector
similarity to the edited instance, (2) knowledge
instances with objects existing in dense regions,
and (3) knowledge instances with distorted repre-
sentations are susceptible to side effects. These
findings provide valuable insights into the mecha-
nisms behind side effects in knowledge editing and
highlight important considerations for developing
more precise and reliable editing methods．

Future works include validating these findings
using larger-scale models, exploring generaliza-
tion across different editing algorithms, and con-
ducting comprehensive evaluations with real-world
datasets. Additionally, we aim to leverage these
insights to develop more robust knowledge edit-
ing techniques and establish complete evaluation
frameworks to ensure the reliability of edited mod-
els in practical applications．
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Limitations

One limitation of this study is the constraint on the
choice of model architecture. Specifically, while
we adopted the GPT-2 architecture and conducted
verification with multiple layer settings, this is just
one of the basic architectures in natural language
processing tasks. By conducting verification with
models of different architectures, it may be possible
to more broadly evaluate the generalizability of the
insights gained in this study.

Second, there is a limitation regarding the scope
of verification of knowledge editing methods. In
this study, we focused only on ROME, an editing
method based on rank-1 matrices, and analyzed its
side effects in detail. However, the analysis frame-
work established in this study is also applicable to
other different editing methods, and it is expected
that more comprehensive insights into the side ef-
fects of knowledge editing can be obtained through
comparative analysis between methods.

Third, the simplification of the knowledge repre-
sentation used in the analysis is another limitation.
In this study, as an initial stage of the analysis, we
adopted an artificial knowledge graph that repre-
sents each element of subject, relation, and object
as a single token and treats it as a static embedding.
However, in actual large-scale language models,
representations consisting of multiple tokens are
dynamically interpreted through the attention mech-
anism to generate rich semantic representations de-
pending on the context. To conduct an analysis that
is more in line with the actual language processing
situation, it is essential to verify the knowledge
graph including multi-token representations and
context-dependent embeddings. Furthermore, it
is considered possible to deepen the understand-
ing of the impact of knowledge editing in natural
language by developing the analysis using knowl-
edge extracted from actual text corpora such as
Wikipedia.

Ethical Considerations

This research focuses on understanding knowledge
editing mechanisms in language models through
the use of synthetic knowledge graphs． Our
methodological choice of employing symbolic syn-
thetic data instead of real-world datasets naturally
mitigates potential ethical concerns regarding pri-
vacy, bias, and fairness that often arise in lan-
guage model research. This approach enables a sys-
tematic investigation of fundamental mechanisms

while avoiding risks associated with sensitive or
personally identifiable information．

During code development and writing, we used
AI assistants including language models. All the
generated code snippets and texts are checked and
modified by the authors to scientific integrity and
accuracy.
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Before Training

After Training

Figure 4: The visualization compares the word em-
bedding spaces before training (top) and after training
(bottom). In each row, the left plot displays the PCA
results for entity embeddings, while the right plot shows
the results for relation embeddings. Within these plots,
points of the same color represent five different para-
phrases of the same concept, allowing us to observe
how semantically similar expressions are clustered in
the embedding space.

A Recognition of Paraphrased
Representation in LMs

As described in Section 3.2, the synthetic knowl-
edge graphs created in this study were designed
with a structure where each entity and relation has
multiple paraphrases, more closely replicating real-
world scenarios where concepts can be expressed
in various ways. For training the model on these
knowledge graphs, we utilized only a sampled sub-
set of all possible knowledge instances as training
data. This approach is based on the consideration
that if the LM learned all relational knowledge, it
might result in the LM merely memorizing each
instance of relational knowledge, thereby hindering
its generalization ability to recognize paraphrased
expressions.

Figure 4 presents a visualization of the model’s
word embedding spaces before and after training
on an Erdős-Rényi (ER) graph, projected into two
dimensions using Principal Component Analysis
(PCA). In the pre-training state, the embeddings
of paraphrases for both entities and relationships

𝑒!!

𝑟!"

𝑝 𝑒!"!

Figure 5: Example of analysis results for the contri-
bution of FF layers in each layer by Causal Tracing
(in the case of a 12-layer model). The horizontal axis
represents the layers of the LM, and the vertical axis
corresponds to each input token. The values indicate the
difference in the probability of generating the correct
token before and after the corrupted-with-restoration
run. The darker areas indicate that restoring the corre-
sponding FF layers allows the model to generate the
correct token again, demonstrating that those FF layers
contribute to knowledge prediction.

exhibit considerable dispersion in the embedding
space. After training, however, the embeddings
of paraphrases for each entity and relation demon-
strate clear clustering behavior, despite the model
being trained on only 20% of all possible knowl-
edge instances. These results suggest that LMs do
not possess an inherent ability to recognize para-
phrases, but rather acquire this capability through
the learning process.

B Supplemental Information on the
Knowledge Editing Method

In Section 3.3, we briefly introduced ROME, an
existing knowledge editing method used in our ex-
periments. This section provides a more detailed
explanation of Causal Tracing, a step crucial for
locating the parts that play a significant role when
the LM associates knowledge. Causal Tracing an-
alyzes the contribution of each hidden state of the
LM during inference through the following proce-
dure5.

1. clean run: First, predictions related to knowl-
edge are made to obtain the normally hidden
states of the model. Specifically, all hidden
states {h(l)i | i ∈ [1, T ], l ∈ [1, L]} are deter-
mined when the model predicts o from input
x = (s, r). Here, T is the length of the input
x (in this work, T = 2), and L is the number

5Manipulations to the hidden states of LMs can also be
conceptualized as to the FF layers or attention layers.
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of layers in the model.

2. corrupted run: Next, when making predic-
tions related to knowledge, the hidden states
of the corrupted model are determined by hid-
ing information about the subject. Specifi-
cally, when input x is provided, noise is added
to the embedding representation h

(0)
1 corre-

sponding to the subject (h(0)1 := h
(0)
1 + ϵ).

Afterward, predictions related to knowledge
are made, and the corrupted hidden states
{h(l)i∗ | i ∈ [1, T ], l ∈ [1, L]} are determined.
As a result, the correct output that could be
output during the clean run can no longer be
output during the corrupted run.

3. corrupted-with-restoration run: Finally, for
the model with the corrupted hidden states
obtained from the corrupted run, specific hid-
den states h

(l)
i∗ are restored to the normally

hidden states h
(l)
i obtained during the clean

run. This process is performed for each hid-
den state individually, and predictions related
to knowledge are made. When the correct out-
put can be output again by restoring a specific
hidden state, it indicates that the hidden state
contributes to knowledge prediction.

Figure 5 presents an example result of analyzing
the contributions of the FF layers at each layer
using Causal Tracing. In this case, the FF layer in
the first layer plays a significant role when the LM
outputs the correct token e100 from the input token
sequence (e00, r

1
0). Thus, Causal Tracing facilitates

the identification of parts that play crucial roles in
the LM’s knowledge prediction.

C Object Density Calculation

The density of object vectors is estimated using the
k-Nearest Neighbors (k-NN) algorithm. For each
object vector voi , we compute its local density δi
as:

δi =
1

1
k

∑k
j=1 dij + ϵ

(6)

where:
• k is the number of nearest neighbors (set to

10 in our implementation)
• dij is the Euclidean distance to the j-th nearest

neighbor
• ϵ is a small constant (10−6) to prevent division

by zero

The density scores are then normalized to the
range [0,1] using min-max normalization:

δnorm
i =

δi −minj δj
maxj δj −minj δj

(7)

This normalized density score provides a rela-
tive measure of how clustered the object vectors
are in the embedding space. Higher values indi-
cate regions where object vectors are more densely
packed, while lower values correspond to more
sparse regions.

D Additional Experimental Results

In Section 5.1, we demonstrated the relationship
between subject degree and side effects for the 6-
layer model. In Figures 6 and 7, we present the
results for both 12-layer and 24-layer models.

Furthermore, in Sections 5.3 to 5.5, we com-
pared the mean values of each metric between
the Affected knowledge group and the Unaffected
knowledge group. For more detailed results, his-
tograms showing the frequency distributions of
each metric are presented in Figures 8 to 10. Ad-
ditionally, Tables 6 to 8 show the statistical values
and results of the Kolmogorov-Smirnov test.
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Figure 6: Analysis of the relationship between subject degrees and editing impacts in a 12-layer model trained on
the knowledge graph.

Figure 7: Analysis of the relationship between subject degrees and editing impacts in a 24-layer model trained on
the knowledge graph.
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Figure 8: Distribution of relation vector similarities between edited knowledge and subject-sharing instances,
comparing affected (red) and unaffected (blue) cases.

Graph Model Affected Unaffected KS Test

mean median std mean median std statistic p-value

ER
6-layer 0.5931 0.6012 0.1219 0.4865 0.5031 0.1363 0.3356 9.12E-48

12-layer 0.4923 0.5269 0.5269 0.4371 0.4572 0.2237 0.2237 5.24E-06
24-layer 0.5293 0.5869 0.2517 0.4227 0.4504 0.2486 0.2220 1.25E-10

BA
6-layer 0.4476 0.4697 0.1571 0.3728 0.3890 0.1607 0.2043 1.67E-78

12-layer 0.3822 0.3909 0.1710 0.3285 0.3273 0.1571 0.1496 1.10E-40
24-layer 0.5423 0.5617 0.1436 0.5115 0.5295 0.1495 0.0941 1.90E-12

Table 6: Comparison of relation similarity distributions between affected and unaffected knowledge in subject-shared
neighborhood. For knowledge sharing the same subject as the editing target, we analyze the relation similarity
with the target. The Kolmogorov-Smirnov test results show significant differences between affected and unaffected
groups across different model architectures and graph types, suggesting that the editing impact on knowledge with
similar relations is distinguishable even within the same subject group.
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Figure 9: Distribution of object vector densities in subject-sharing instances, comparing affected (red) and unaffected
(blue) cases.

Graph Model Affected Unaffected KS Test

mean median std mean median std statistic p-value

ER
6-layer 0.3668 0.3538 0.1274 0.3818 0.3684 0.1353 0.0619 5.01E-02

12-layer 0.3463 0.3385 0.1398 0.3374 0.3109 0.1531 0.0890 1.71E-03
24-layer 0.4137 0.4246 0.1681 0.4043 0.4156 0.1888 0.1063 9.14E-03

BA
6-layer 0.4656 0.4764 0.1788 0.4563 0.4630 0.1732 0.0524 1.50E-05

12-layer 0.6236 0.6277 0.1593 0.6220 0.6277 0.1621 0.0423 1.21E-03
24-layer 0.4768 0.4638 0.1798 0.4020 0.3774 0.1453 0.2206 6.62E-67

Table 7: Comparison of object density (kNN) distributions between affected and unaffected knowledge in subject-
shared neighborhood. For knowledge sharing the same subject as the editing target, we analyze the object density
with the target. The Kolmogorov-Smirnov test results show significant differences between affected and unaffected
groups across different model architectures and graph types, suggesting that the editing impact on knowledge with
similar object density is distinguishable even within the same subject group.
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Figure 10: Distribution of Lipschitz constant in subject-sharing instances, comparing affected (red) and unaffected
(blue) cases

Graph Model Affected Unaffected KS Test

mean median std mean median std statistic p-value

ER
6-layer 1.6360 1.5796 0.3918 1.4216 1.3858 0.3667 0.2528 4.31E-27
12-layer 2.4217 2.2237 0.8699 1.8883 1.7668 0.6874 0.2872 1.44E-32
24-layer 4.2525 4.0613 1.0888 3.4570 3.2211 0.8346 0.3981 5.72E-34

BA
6-layer 1.3327 1.3017 0.3904 1.1151 1.0440 0.3644 0.2851 1.76E-153
12-layer 1.8367 1.7107 0.5775 1.4594 1.3829 0.4106 0.3422 1.26E-214
24-layer 3.6963 3.5548 0.7914 3.1530 3.0567 0.5934 0.3384 9.72E-159

Table 8: Comparison of Lipschitz constants between affected and unaffected knowledge in subject-shared neighbor-
hood. For knowledge sharing the same subject as the editing target, we analyze the Lipschitz constants with respect
to the target. The Kolmogorov-Smirnov test results show significant differences between affected and unaffected
groups across different model architectures and graph types, suggesting that the editing impact on knowledge with
similar Lipschitz constants is distinguishable even within the same subject group.
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