FORGETTER with forgetful hyperparameters and recurring sleeps can
continue to learn beyond normal overtfitting limits

Rui Yamamoto and Keiji Miura
Kwansei Gakuin University
1 Gakuen Uegahara, Sanda, Hyogo 669-1330, JAPAN
miura@kwansei.ac. jp

Abstract

LLMs suffer from considerable computational
costs in training. A more biologically plausible
curriculum learning may help to decrease the
learning costs. Here we propose a FORGET-
TER training algorithm, in which a model for-
gets the variables for optimization after a sleep
and the hyperparameters are set toward forget-
ting memory: rather large weight decay and
learning rates as well as small but optimized
batch sizes. By limiting minGemma model to
512 input length and speeding up the devel-
opment cycle, we compared normal and FOR-
GETTER learning algorithms by using more
than a thousand different models. Specifically,
we found and utilized the "120-rule" that the
models with about 120 (Query) heads in to-
tal, irrespective of the head number per layer,
outperform. The improvement by using the
FORGETTER algorithm is far bigger than that
by optimizing the model structure. Specifically,
FORGETTER models can learn beyond the
data size where the normal learning overfits.
The FORGETTER also works for CIFAR10
image classification. These results suggest that
forgetting can be beneficial for pretraining deep
neural networks by avoiding overfitting.

1 Introduction

Although ChatGPT’s performance was amazing
enough to revolutionize what are human jobs (Ope-
nAl, 2023; Rothman, 2024), they require consider-
able computational resources (Tunstall et al., 2022).
While many approaches for making the training
more efficient have been proposed (Goodfellow
et al., 2016; Atienza, 2020; Chollet, 2021; Geron,
2022), recent LLMs are too huge to explore their
hyperparameters and learning algorithms exhaus-
tively.

As human babies do not need as many resources
to learn a language apparently, a more efficient
learning method may remain to be discovered
(Ford, 2018; Warstadt et al., 2023). It is true that

91

nowadays a handy Trainer class in PyTorch pro-
vides a normal training routine, which enables us
to explore various model structures and other hy-
perparameters quite easily. However, it may be also
promising to explore unconventional learning pro-
cedures (Smith, 2017; Zhao et al., 2024), possibly
learned from the biological brain.

In the same vein, BabyLLM data is very suitable
to mimic how human babies earn language abil-
ities including grammars (Warstadt et al., 2023;
Mahowald et al., 2024) with rather small language
models (Raschka, 2024; Lu et al., 2025; Tunador).
Small language models allow us to explore more
hyperparameters related to learning (Warstadt et al.,
2023). Although many models succeeded to learn
BabyLM10M/100M in the past contests, the biolog-
ical plausibility of the training algorithm (Konishi
et al., 2023; Lillicrap et al., 2020) was not neces-
sarily pursued.

We believe that two ingredients are important for
biological plausibility. First of all, animals are not
perfect and inevitable to forget. For example, ani-
mals cannot keep huge training data and memory
traces without fail. Thus, a biologically plausible
model should allow animals to forget to reasonable
extent. Furthermore, animals sleep, which also
forces them to forget. If these inevitable forgetting
is beneficial or not remains an open question. The
observations on the effect of sleep on learning in
neuroscience (Norimoto et al., 2018) should be in-
corporated for training LLMs. (The algorithm that
works for big data with LLMs is also promising as
the computational model of the brain.)

Here we proposed the FORGETTER model, that
is trained with sleep and forgetful hyperparameters.
We demonstrate that it can learn beyond the data
size where the normal learning overfits.

In Section 2, as a methodology, we explain the
base model we used and the novel FORGETTER
training method, in which we insert sleep (variables
for optimization are initialized) between epochs.

Proceedings of the First BabyLM Workshop, pages 91-99
November 8, 2025 ©2025 Association for Computational Linguistics

This may be regarded as a procedural learning.
In Section 3, as results for Baby10M, we show
our FORGETTER model outperforms the normally
trained models. Specifically, you can continue and
repeat epochs for FORGETTER models, where
couples of epochs suffice to excel the normal train-
ing. In Section 4, as results for Baby100M, we
demonstrate that the benefit of FORGETTER is in-
herited to Baby100M. It can again learn beyond the
normal limits. In Section 5, we demonstrates that
the FORGETTER also works for CIFAR10 image
classification. In Section 6, as Summary and Dis-
cussion, we summarized the results and discussed
the strengths of the proposed methods. In Limita-
tion, complement to the discussion of strengths in
the main text, we discuss the limit of the proposed
methods. Specifically if a FORGETTER model is
always better than a normal model is an important
question. We discuss how general can the benefit
of the FORGETTER be.

2 Methods

All the computation was done by the custom-
written Python codes on 7 PCs with NVIDIA RTX
3090, 4080, 4090 or A6000 GPU. All the codes
to reproduce this paper’s results and the list of
validated loss for varieties of model structures
trained with normal or FORGETTER algorithms
are available at GitHub (https://github.com/
keiji-miura/FORGETTER-BabyLM).

2.1 DATA

Baby10M and Baby100M dataset were used for
(pre)training of next token prediction. The both
Baby10M and Baby100M data were tokenized by
the GPT2 Tokenizer. We saved the tokenized data
to a single file (separately for Baby10M/Baby100M
or training/validation) to speed up I/O during train-
ing, in which consecutive 512 tokens were cut out
at a random starting point for training data. There,
we used different random starting points for differ-
ent 512 tokens within a batch.

2.2 BASE MODELS

The minGemma model (Tunador; Gemma Team,
2024) was entirely used in this paper as a text gen-
eration model. We trained the minGemma model
from scratch by using either the BabyLM10M or
the BabyLM100M. In this paper, we solely com-
pared the normal and FORGETTER models. The

92

Hyperparam. Babyl0M Baby100M
Tokenizer GPT2 GPT2
Input Size 512 512

Drop Out No (p=0) No (p=0)
Weight Decay 1.0 0.25

Batch Size 12 28
Learning Rate:

- Normal 1.35 x 1073 1073

- FORGETTER 1073 0.8 x 1073
N Steps/Epoch:

- Normal 19600 144000

- FORGETTER 10000 70000

Table 1: Hyperparameters. Fixed setting (GPT2 Tok-
enizer, input length=512, no drop-out) speeded up the
development cycle, which enabled us to explore differ-
ent training methods and varieties of model structures.

difference between the normal models and FOR-
GETTER models are in the training algorithms.

2.2.1 model representation

We represent a model by the combination of the
numbers such as "1.24-6(3)-648 x4-240". (These
numbers are what we occasionally changes to ex-
plore better results.) The meaning of the numbers
are the number of layers, the number of Query
heads, the number of Key/Value heads (this must
divide the number of Query heads), the hidden
dimension at the input layer of the feed forward
layer, the hidden dimension at the hidden layer of
the feed forward layer, the head dimension at at-
tention. Note that, as our minGemma model was
Gemma-based (Gemma Team, 2024), we not only
explored the number of Query heads but also the
number of Key/Value heads in a grouped attention.

2.3 TRAINING ALGORITHM
2.3.1 Normal training algorithm

The normal model was trained by using the Py-
Torch Trainer class with a single epoch where the
learning rate linearly decays to zero. The number
of steps in an epoch was optimized so that more
steps caused overtraining.

2.3.2 FORGETTER with sleep 1 (light sleep)

The FORGETTER models was trained by repeating
the Pytorch Trainer with multiple epochs. There,
in each epoch, the learning rate linearly decays
to zero. Between epochs, the model was not ini-
tialized (specifically the weights were kept) while
the variables for AdamW were initialized. That

https://github.com/keiji-miura/FORGETTER-BabyLM
https://github.com/keiji-miura/FORGETTER-BabyLM

is, only the optimizer was reinitialized between
epochs. This is why we say FORGETTER mod-
els "sleep", after which the optimizer is initialized.
When we simply mention "sleep”, we mean this
sleep 1.

2.3.3 FORGETTER with sleep 2 (deep sleep)

Because sleep is a rather vague concept, we can
consider another definition for sleep. For "sleep2",
not only the optimizers but also all the state vari-
ables in the model except weights are initial-
ized. We implemented this simply by loading
the pre-dumped weights to a newly constructed
minGemma model in PyTorch.

In principle, at the transition of epochs, you can
use either sleep 1 or sleep 2. However, we found
sleep 2 can be most effective at last. That is, after
the repetition of sleep 1, in the final epoch sleep 2
can drop the validated loss largely. We sometimes
call this phenomenon "last big drop" by sleep 2.

In this paper, specifically, once (repeated) Sleep
1 overfits (=validated loss increases), it is switched
to Sleep 2 (with the model in the previous epoch
recovered), although Sleep 2 also overfits soon (at
the second time or so) typically.

2.4 FIXED HYPERPARAMETERS for
FORGETTING

Here we briefly describe three hyperparameters
that are set toward forgetting memory: rather large
weight decay and learning rates as well as small
but optimized batch sizes.

2.4.1 Weight decay is as large as 1 or 1/4 for

Baby10M or Baby100M

Conventionally, a small value of weight decay like
as small as 0.01 has been used (see PyTorch doc-
ument for example). However, we found that a
rather large value of the weight decay was benefi-
cial irrespective of the model structures and other
hyperparameters. While the optimal weight decay
strongly depends on the training data size, it does
not strongly depend on the other hyperparameters
like model structures, apparently. Therefore, we
set weight decay to 1.0 for Baby10M and 0.25 for
Baby100M.

Weight decay is the speed to forget weights. So it
is convenient from the viewpoint of biological plau-
sibility that the weight decay as large as 1.0 or 0.25
is optimal for pretraining. It seems that animals or
babies can forget rather a lot and still achieve the
best learning performance, fortunately. (Note that

93

optimality here is regarding the next token predic-
tion.) So we consider that the weight decay value
we use throughout the paper is consistent with the
idea of forgetful learning.

2.4.2 Batch size is as small as 12 or 28 for
Baby10M or Baby100M

The batch size was fixed to 12 for Baby10M or
28 for Baby100M. This is because we believe that,
while the optimal batch size strongly depends on
the training data size, it does not strongly depend
on other the hyperparameters like model structures.

Although 32 can work as well for Baby100M,
you need more VRAM in that case. So we chose 28.
But it is actually hard to judge which one is better
under the high trial-to-trial variability in validated
losses.

Batch sizes can be regarded as a memory for
recently encountered data. 12 or 28 is rather small
and not like 512 or 1024, which are typically used
numbers in deep learning. So it is convenient from
the viewpoint of biological plausibility that the
batch size as small as 12 or 28 is optimal for pre-
training. It seems that animals or babies need to
memorize only small number of data to achieve
the best performance, fortunately. So we consider
the batch size is again consistent with the idea of
forgetful (=small memory) learning.

2.4.3 Learning rates is as large as 0.001

Within each epoch the learning rate linearly decays
to zero. The initial (maximum) learning rate in an
epoch was fixed to about 0.001. The value we used
may be rather large, compared with the conventinal
one like 0.0001 or smaller (see PyTorch Document,
for example). However, we found that a rather large
value of the learning rate is beneficial irrespective
of the model structures and other hyperparameters.
That is, we believe that, while the optimal learning
rate strongly depends on the training data size, it
does not strongly depend on other hyperparameters
like model structures. Therefore we set learning
rate to 1073, (To be precise, we used the range
from 0.8 x 1073 t0 1.35 x 1073 as in Table 1.)

A learning rate can be regarded as a rate to forget
past encounters. 0.001 is rather big. So it is conve-
nient from the viewpoint of biological plausibility
that the learning rate as large as 0.001 is optimal
for pretraining. Therefore, animals or babies can
forget rather a lot and achieve the best performance,
fortunately. So we consider that the learning rate
value we use is again consistent with the idea of

Babyl0M, Normal

161
141
121
10+

—e— QOptimized Models
"120-Rule"

N AR OO 0

Number of Heads per Layer

Number of Layers

Figure 1: Number of (Query) heads per layer for best
models for a given number of layers. These optimal
models obey "120-rule" and have about 120 heads in
total, irrespectively of the number of layers.

forgetful (=small memory) learning.

3 Results for Baby10M

3.1 120 rule for searching model structure

First, good model structure was searched with
the normal training algorithm for Baby10M. The
model structures were explored in order to obtain
as lowest validated loss as possible. (In this paper,
the optimality is always about the validated loss for
the next token prediction.)

To see the impact of the number of layers, we
searched optimal model structures for a given num-
ber of layers (Figure 1). That is, we plotted the
number of (Query) heads for the models whose
structures are optimized for a given number of lay-
ers (by simple grid search for head number, hidden
dim etc). Figure 1 demonstrated that, Surprisingly,
the optimal models always had about 120 (Query)
heads in total irrespective of the number of layers.

Although the result is variable even for the
same hyperparameters and model structures, we
tried more than a hundred models per layer for
BabyLM10M. Therefore we believe the rule is true
as an overall tendency. For example, regarding the
validated loss for the normal training, it is rather
easy to obtain <3.05 for 48-layers models but not
for 18-layers models.

The blue line in Figure 2 denotes the validated
losses for the same models as in Figure 1 for normal
training. The deeper models performed well in
general and the 48-layers model showed the best
performance (3.0457).

54-layers models were worse, possibly because
they have limited options on head numbers per
layer. For example, 3 heads per layer is too much

94

BabylOM

3.06
[} \\M‘\/
(%]
S

3.04 1
—
Q
ot
©
o
< 3.02
> —e— Normal

—e— FORGETTER

10 20 30 40
Number of Layers

50

Figure 2: Validated losses for best models for a given
number of layers trained with normal or FORGETTER
algorithm for Baby10M.

(3 x 54 = 162 heads in total), but 2 heads per layer
is too little (2 x 54 = 108 heads in total).

3.2 NOTE: model search range can be limited

We succeeded not only to fix considerable hyperpa-
rameters without losing performance as in Tablel,
but also to limit the model structure search range.

The head dimension, the dimension projected im-
mediately before the attention, was only explored
from 96 to 352, because optimal values for a given
number of layers were always between 192 to 288
for Baby10M trained with normal algorithms (i.e.,
in the well-explored category).

As the optiml number of Query heads per model
was always around 120, we only needed to try
limited ranges. For example, when we explored
twelve-layer models, the models with ten or twelve
Query heads tended to perform very well while
too many or too little heads did not perform well.
Sometimes we call this observational fact "120-
rule" for short.

The hidden dimension for the token represen-
tation tended to be optimized around 700. So
we only chose some value close to that within
the multiples of the number of Query heads. For
Baby10M trained with normal algorithms (i.e., a
well-explored category), the optimal models for a
given number of layers had from 576 to 832 dimen-
sions to represent a single token.

The dimensions of the hidden layer of the feed
forward layer is always fixed to the four times that
of the input layer of the same feed forward block.
Although we have changed from x4 to x3, x5,
X6, x8, we could not observe significant improve-
ments. (Consider this "x4" as a fixed parameter.)

Babyl10M, L9
3.151 * Normal
w —e— FORGETTER
S
5 3101
3
©
S
T 3.054
P
0.2 0.4 06 08 1.0 1.2
Training Data Size (Billion Tokens)
Baby10M, L12
3.154 e Normal
v —e— FORGETTER
S
- 3.101
()
3
(]
©
'r—; 3.054
=
3.00 ; T T : . .
0.2 0.4 0.6 0.8 1.0 1.2
Training Data Size (Billion Tokens)
Babyl0M, L16
3.1501
e Normal
@ 3.125 —e— FORGETTER
S 31001
T
3 3.0751
3
= 3.050
- 3.0254
01 02 03 04 05 06 07
Training Data Size (Billion Tokens)
BabylOM, L18
® Normal
v 3151 —e— FORGETTER
o
|
e
8 3.101
(G
o
8305{ ¢
———
0.1 0.2 0.3 0.4 0.5 0.6 0.7
Training Data Size (Billion Tokens)
Babyl0M, L22
3.125- ¢ Normal
0 —e— FORGETTER
£ 3,100
-
E 3.0751
©
T 3.0501
©
> 3.025
3.000

02 03 04 05 06 07

Training Data Size (Billion Tokens)

01

Figure 3: Five examples of training course of FORGET-
TER algorithm for Baby10M for models with 9, 12, 16,
18 and 22 layers. Validated losses for FORGETTERSs
are plotted as time series in red. The validated losses
for normal models are denoted by a blue point.

95

Hyperparameter Normal FORGETTER
N Layers 48 22

N Q Heads/Layer 3 8

N K/V Heads/Layer 1 4

Hidden Dimension 648 672

FFI Dimension 648x4 672x4

Head Dimension 288 192

Validated Loss 3.0457 3.0053

BLiMP Score 0.6958 0.7257

Table 2: Optimal model structures for Baby10M when
input token length is 512.

3.3 Normal vs FORGETTER

The results in Figure 2 demonstrate that FORGET-
TER models are always much better than normal
models. Although the 48-layers model was the best
for the normal training, the 22-layers model turned
out to be the best for the FORGETTER training.

Note that the difference between normal and
FORGETTER models are much larger than that by
model structures. This means that the model struc-
ture search is not that fruitful. Rather, changing
the learning curriculum to FORGETTER is much
more efficient way to improve the performance.

In fact, if you look at the time course of the
training, the FORGETTER model excels the nor-
mal model within a couple of iterations as shown
in Figure3. The sleep interval of FORGETTER,
that is optimized to minimize the validated loss for
next token prediction task, was about half of that
of normal models. This is shown as the number
of steps per epoch in Table 1. (In normal models,
there is no sleep and the entire training consists
of only a single interval or epoch.) Therefore the
computational time for the two epochs for FOR-
GETTER models is roughly equivalent to that for
normal models. At that time, their performances
are almost equal. However, FORGETTER mod-
els can continue to learn beyond the normal limit
as in Figure3. Note that the number of steps per
epoch for the normal model (=19600) was already
optimized. That means if you used longer steps
(more training data) per epoch, the model would
overfit and its validated loss deteriorates. Thus, it
is interesting that FORGETTER can continue to
learn beyond the normal overfitting limits.

Surprisingly, there is a drop in the end of the
training (Figure 3). This was caused by sleep 2
(deep sleep). This drop is commonly observed
among the models with different layers. The im-

Babyl00OM

a 2487 \/
3
- 2.474
8 == Normal
4{3‘ 2.46 —e— FORGETTER
o
o 2.451
=2

2.44+

20 25 30 35

Number of Layers

10 15

Figure 4: Validated losses for best models for a given
number of layers trained with normal or FORGETTER
algorithm for Baby 100M.

pact of the last big drop is much larger than that
by the difference of the model structures. Again,
this means that the model structure search is not
that fruitful. Rather, changing the learning cur-
riculum to the FORGETTER (with sleep 2 in the
end) is much more efficient way to improve the
performance.

Remember that our FORGETTER algorithm is
not just a learning rate scheduler, but, it randomly
initializes state variables after each sleep. The last
drop demonstrates how the initialization after the
sleep is effective. As the effect of last drop (sleep 2
in the end) is rather variable, the resulting validated
loss for the FORGETTER fluctuates across layers
(the red line in Figure 2).

Table 2 summarized the best normal and FOR-
GETTER models for Baby10M, where we also
computed the BLIMP Score. (We believe that
BLiMP Score is almost in one-to-one correspon-
dence to the validated loss for the next token pre-
diction. This is because we have not observed the
contradictory results before.) The BLiMP score is
(inversely) related to the validated loss for the next
token prediction in the current case. The absolute
value of BLiMP Score is rather limited because the
models were trained with only Baby10M dataset.

4 Results for Baby100M

We trained the minGemma models with variable
structures with normal or FORGETTER training
algorithm for Baby100M, specifically, to see if the
FORGETTER is also effective for Baby100M. The
results in Figure 4 demonstrate that the FORGET-
TER models are always much better than the nor-
mal models, again.

To see if the number of layers matters, we plot-
ted the validated losses for our best models for a

96

Babyl00M, L16

2.521 e Normal
0 —e— FORGETTER
2 2,501
-
©
L 2.481
(18]
°
S 2461
2.44 : ‘ ‘ : : ‘
2 4 6 8 10 12
Training Data Size (Billion Tokens)
Babyl00M, L18
2.527 e Normal
" —e— FORGETTER
& 2.50
—
o
9 2.48
©
B
T 2.461
P
2.441 . ‘ ‘ ‘
5 10 15 20
Training Data Size (Billion Tokens)
Babyl00M, L24
2.501 s Normal
o —e— FORGETTER
S
> 2.484
(5]
8
©
2 2.464
B

2 4 6 8 10 12 14

Training Data Size (Billion Tokens)

Figure 5: Three examples of training course of FOR-
GETTER algorithm for Baby100M for models with 16
(top), 18 (middle), and 24 layers (bottom). Validated
losses for FORGETTERSs are plotted as time series in
red. The validated losses for normal models are denoted
by a blue point.

given number of layers in Figure 4. We observed a
clear trough in the plot and the model with 18 lay-
ers is the best for both normal and FORGETTER
training for Baby100M. (However, we should ad-
mit that our structure search may not be complete
for Baby100M, whose computational time is rather
long.)

Note that the difference between normal and
FORGETTER models are much larger than that
by model structures. This means that changing the
learning curriculum to FORGETTER was the most
efficient way to improve the performance.

Next, we looked at the time course during train-
ing (Figure 5). Again, the FORGETTER model
excels the normal model within a couple of itera-
tions as shown in Figure 5. The sleep interval for
the FORGETTER, that is optimized to minimize

Hyperparameter Normal FORGETTER
N Layers 18 16

N Q Heads/Layer 8 9

N K/V Heads/Layer 4 3

Hidden Dimension 576 612

FFI Dimension 576x4 612x4

Head Dimension 256 224

Validated Loss 24691 24374

BLiMP Score 0.7669 0.7761

Table 3: Optimal model structures for Baby100M when
input token length is 512.

the validated loss for next token prediction task,
was about half of that of normal models. This is
shown as the number of steps per epoch in Talbe 1.
(In normal models, there is no sleep and the entire
training consists of only a single interval or epoch.)

Therefore the computational time for the two
epochs for FORGETTER models is roughly equiv-
alent to that for normal models. At that time, their
performances are almost equal. However, FOR-
GETTER models can continue to learn beyond the
training data size where normal models overfit as in
Figure5. Note that the number of steps per epoch
for the normal model (=144000) is already opti-
mized, which means that if you used longer steps
(more training data) per epoch, the model would
overfit and its validated loss deteriorates.

The drop in the end of the training caused by
sleep 2 (deep sleep) was also effective but mild for
Baby100M (Figure 5).

Table 3 summarizes the best normal and FOR-
GETTER models for Baby100M, where we also
computed the BLiMP Score. Note that the vali-
dated losses for Baby100M is much smaller than
that of Baby10M. The BLiMP score is in one-to-
one correspondence to the validated loss for the
next token prediction in the current case.

The absolute value of our BLiMP Score is rather
mild (cf. 47.7, 46.2, 78.2 and 79.1 for GPT2 Small,
Medium, Large and XL, respectively.) This is
partly because the input token length was limited
to 512 entirely in this paper. Having shorter input
token lengths is as if setting another task. It can
impose the upper limit for performances. Although
we believe that the comparison between normal
and FORGETTER models gave a general result,
trying longer input token lengths toward contest
quality will be needed in the future work.

97

CIFAR10
0.88
0.87 1
>
O
©
5 0.861
8 * Normal w/ dropout (p=1/6)
< 0.85 1 —e— FORGETTER w/ dropout (p=1/6)
' Normal w/o dropout (p=0)
FORGETTER w/o dropout (p=0)
0.841

20 40 60 80
Training Data Size (number of epochs)

Figure 6: Accuracy of CIFARIO classification for
normal or FORGETTER algorithm with and without
dropout. p = 0 represents the case without dropout.

5 Results for CIFAR10

We examined if FORGETTER is also effective for
CIFAR10 image classification by CNNs. The result
in Figure 6 demonstrates that the FORGETTER
with a CNN used in a tutorial (Sayah, 2022) can
again continue to learn beyond the normal overfit-
ting limit with or without dropout.

The optimal training data size for the normal
training with linear learning rate decay was 10
epochs (=10 repeats of the entire training dataset)
and longer training caused overfitting. Meanwhile,
the optimal inter-sleep interval for the FORGET-
TER was 7 epochs. That is, the learning rate lin-
early decayed within every 7 epochs there (the
learning rate is reset after 7 epochs). Thus, it is
natural that the accuracy of the FORGETTER after
one sleep or at 7 epochs is worse than that of the
normal model, that learns for 10 epochs. But it
exceeds after two sleeps or at 14 epochs. Then, it
continues to avoid overfitting for a long time.

These observations are common with or without
dropout. Although dropouts might not be strictly
needed for pretraining, the impact of dropout is
interesting in the sense it can somehow have a sim-
ilar effect as forgetting. Forgetful hyperparameters
and sleeps that initialize optimizers might enhance
the redundancy and robustness of representations,
which can be a similar role as dropout.

In fact, the dropout (p = 1/6) is not only effec-
tive but also synergistic with the FORGETTER cur-
riculum learning, suggesting that the mechanism
of FORGETTER may be independent from that
of dropout. Specifically, the FORGETTER with
dropout (p = 1/6) attained 88% (87.96%) even
without data augmentation. Note that the same
code with normal training attains 88% only with
data augmentation (Sayah, 2022).

6 Summary and Discussion

We extensively explored the optimal model struc-
ture for Baby10M and found "120-rule" where opti-
mal models always almost have 120 (Query) heads.
This suggests that there is a specific number (=120)
of information processing the model has to treat.
And the optimal model tends to have this num-
ber of attention heads. We compared normal and
FORGETTER models for Baby10M and found that
FORGETTER models performed much better. This
tendency also holds for Baby100M, in which the
best performance was much better. The FORGET-
TER also worked for CIFAR10 image classifica-
tion. Overall, FORGETTER models can continue
to learn beyond the normal overfitting limits. These
results suggest that forgetting can be beneficial for
pretraining deep neural networks by avoiding over-
fitting.

The FORGETTER training can bring about
Copernican Revolution on overfitting. It is ben-
eficial if you can control to train beyond the normal
overfitting limits.

Regular sleep intervals (number of steps per
epoch) apparently worked, once interval lengths
were carefully optimized as in Table 1. We could
not get a significantly better result by using lin-
early increasing/decreasing sleep intervals. Also
we could not get a significantly better result by
using linear increasing/decreasing initial learning
rates across epochs.

120 rule saves your computational cost for model
structural search. We already found the similar rule
for WikiText-103 dataset (not shown), although the
magic number (120 for Baby10M) seems different
depending on datasets. If this rule holds for gen-
eral datasets, when you search for the best model
for a new dataset, probably you can start finding
the magic number of the rule for that dataset first.
Once the prospected total number of heads can be
estimated first, then, you can save your exploration
cost quite a lot. Although "120-rule" by itself can-
not select a unique best model, having another rule
as well like "about 700 hidden-dim needed to rep-
resent a token in FFNs" could uniquely determine.
Typically, language models have not only attention
structures but also feed forward networks. The bal-
ance between the (input) dimensions of attention
structures and FFNs may be the key for the best
performance like two wheels.

98

Limitations

Generalizability is unclear. So far, other than
Baby10M, Baby100M and CIFAR10, we have ob-
served the significant benefits of the FORGET-
TER training algorithms only for WikiText-103
and WikiText-2 as training datasets (not shown). It
is highly important to examine how general the ben-
efit is by trying different (possibly large) training
datasets.

Only GPT Tokenizer was used. We are not sure
if there is a better one. Although we almost did
not explore alternative tokenizers, we hope that the
comparison results, such as normal versus FOR-
GETTER models, are general to some extent. Also,
it is not clear if an existing tokenizer like the GPT
2 Tokenizer is biologically plausible. Maybe to-
kenizer should also be learnt from BabyLLM with
limited vocabrary. We need further study.

We entirely used 512 as a input token length
throughout the paper. Although this length is
shorter than that of GPT2 (=1024), we observed
that the effect on the performance is mild, com-
pared with shorter input lengths such as 256 or 128.
However, scalability to long text should be checked
with large GPU resources.

Transfer learning (instruction learning) is nowa-
days important for LLMs. Then the effect of the
FORGETTER, that was used for pretraining, on
fine-tuning is interesting. Our evaluation was by
next token prediction throughout this paper. There-
fore it is interesting how the FORGETTER learn-
ing beyond the normal overfitting limits can affect
the following instructive learning. Relatedly, dis-
tillation is nowadays important for small language
models. The combination of FORGETTER with
distillation is interesting but to be done.

Although we repeated training beyond the nor-
mal overfitting limit as a curriculum learning, we
just repeated the same type of learning homoge-
nously. It is possible a model is good at some topic
but not in another. By sampling training data from
the topics the model is not good at, you could ac-
celerate the training (Miiller et al., 2025).

Ethics Statement
This work complies with the ACL Ethics Policy.

Acknowledgements

KM is partially supported by JSPS KAKENHI
Grant Number JP25K15283.

https://www.aclweb.org/portal/content/acl-code-ethics

References

Rowel Atienza. 2020. Advanced Deep Learning with
TensorFlow 2 and Keras: Apply DL, GANs, VAEs,
deep RL, unsupervised learning, object detection and
segmentation, and more. Packt.

Francois Chollet. 2021. Deep Learning with Python
2nd Edition. Manning.

Martin Ford. 2018. Architects of Intelligence: The truth
about Al from the people building it. Packt Publish-
ing.

Google DeepMind Gemma Team. 2024. Gemma 2:
Improving open language models at a practical size.

Aurlien Geron. 2022. Hands-On Machine Learning
with Scikit-Learn, Keras, and Tensorflow: Concepts,
Tools, and Techniques to Build Intelligent Systems.
O’Reilly.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
2016. Deep Learning. The MIT Press.

M Konishi, KM Igarashi, and K Miura. 2023. Bio-
logically plausible local synaptic learning rules ro-
bustly implement deep supervised learning. Front
Neurosci., 17:1160899.

TP Lillicrap, A Santoro, L. Marris, CJ Akerman, and
G Hinton. 2020. Backpropagation and the brain. Nat
Rev Neurosci., 21(6):335-346.

Zhenyan Lu, Xiang Li, Dongqi Cai, Rongjie Yi, Fang-
ming Liu, Xiwen Zhang, Nicholas D. Lane, and
Mengwei Xu. 2025. Small language models: Survey,
measurements, and insights.

Kyle Mahowald, Anna A. Ivanova, Idan A. Blank,
Nancy Kanwisher, Joshua B. Tenenbaum, and
Evelina Fedorenko. 2024. Dissociating language
and thought in large language models. Trends in
Cognitive Sciences, 28(6):517-540.

Reuven Miiller, Ying Xie, Linh Le, and Shaoen Wu.
2025. Dynamic knowledge elicitation: Leveraging
student feedback for improved language model dis-
tillation. Proceedings of International Joint Confer-
ence on Neural Networks 2025 (IJCNN2025).

H Norimoto, K Makino, M Gao, Y Shikano,
K Okamoto, T Ishikawa, T Sasaki, H Hioki, S Fu-
jisawa, and Y Ikegaya. 2018. Hippocampal ripples
down-regulate synapses. Science, 359(6383):1524—
1527.

OpenAl. 2023.
abs/2303.08774.

Gpt-4 technical report. ArXiv,

Sebastian Raschka. 2024. Build a Large Language
Model (From Scratch). Manning.

Denis Rothman. 2024. Transformers for Natural Lan-
guage Processing and Computer Vision - Third Edi-
tion: Explore Generative Al and Large Language
Models with Hugging Face, ChatGPT, GPT-4V, and
DALL-E 3. Packt.

99

Fares Sayah. 2022. Cifar-10 images classification using
cnns (88%).

Leslie N. Smith. 2017. Cyclical learning rates for train-
ing neural networks. In 2017 IEEE Winter Confer-
ence on Applications of Computer Vision (WACV),
pages 464-472.

Evin Tunador. mingemma (github).

Lewis Tunstall, Leandro Von Werra, and Thomas Wolf.
2022. Natural Language Processing with Transform-
ers: Building Language Applications with Hugging
Face. O’Reilly.

Alex Warstadt, Aaron Mueller, Leshem Choshen, Ethan
Wilcox, Chengxu Zhuang, Juan Ciro, Rafael Mos-
quera, Bhargavi Paranjabe, Adina Williams, Tal
Linzen, and Ryan Cotterell. 2023. Findings of the
BabyLM challenge: Sample-efficient pretraining on
developmentally plausible corpora. In Proceedings
of the BabyLM Challenge at the 27th Conference on
Computational Natural Language Learning, pages
1-34, Singapore. Association for Computational Lin-
guistics.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang
Wang, Anima Anandkumar, and Yuandong Tian.
2024. Galore: memory-efficient 1lm training by gra-
dient low-rank projection. In Proceedings of the
41st International Conference on Machine Learning,
ICML’24. JMLR.org.

http://arxiv.org/abs/2408.00118
http://arxiv.org/abs/2408.00118
https://doi.org/10.3389/fnins.2023.1160899
https://doi.org/10.3389/fnins.2023.1160899
https://doi.org/10.3389/fnins.2023.1160899
https://doi.org/10.1038/s41583-020-0277-3
http://arxiv.org/abs/2409.15790
http://arxiv.org/abs/2409.15790
https://doi.org/https://doi.org/10.1016/j.tics.2024.01.011
https://doi.org/https://doi.org/10.1016/j.tics.2024.01.011
https://doi.org/10.1126/science.aao0702
https://doi.org/10.1126/science.aao0702
https://arxiv.org/abs/2303.08774
https://www.kaggle.com/code/faressayah/cifar-10-images-classification-using-cnns-88
https://www.kaggle.com/code/faressayah/cifar-10-images-classification-using-cnns-88
https://doi.org/10.1109/WACV.2017.58
https://doi.org/10.1109/WACV.2017.58
https://github.com/evintunador/minGemma
https://doi.org/10.18653/v1/2023.conll-babylm.1
https://doi.org/10.18653/v1/2023.conll-babylm.1
https://doi.org/10.18653/v1/2023.conll-babylm.1

