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Abstract

We present TafBERTa, a compact RoBERTa
(Liuetal., 2019) based language model tailored
for Hebrew child-directed speech (CDS). This
work builds upon the BabyBERTa (Huebner
et al., 2021) framework to address data scarcity
and morphological complexity in Hebrew. Fo-
cusing on determiner-noun grammatical agree-
ment phenomena, we show that TafBERTa
achieves competitive performance compared
to large-scale Hebrew language models while
requiring significantly less data and computa-
tional resources. As part of this work, we also
introduce a new corpus of Hebrew CDS, HT-
Berman, aligned with morphological metadata
and our new grammatical evaluation bench-
mark for Hebrew, HeCLiMP, based on minimal
pairs. Our results demonstrate the effectiveness
of TafBERTa in grammaticality judgments and
its potential for efficient NLP in low-resource
settings.

1 Introduction

In the last few years, Language Models (LMs) have
expanded in both parameter count and training data
size (Kaplan et al., 2020). Besides the numerous
contributions to NLP tasks (Min et al., 2023; Zhao
et al., 2023) and their application in many domains
(Chiarello et al., 2024), this trend brings various
challenges, including computational inefficiency,
increased environmental costs and difficulties in
adapting models to low-resource languages.

Recently, works such as BabyBERTa (Huebner
et al., 2021) and the BabyLM Challenge (Warstadt
et al., 2023) addressed these aspects by developing
English compact models trained on child-directed
language, demonstrating strong grammatical abili-
ties with minimal data. However, no such efforts
have not been done in Hebrew, a low resource lan-
guage where data scarcity is a main challenge, leav-
ing a significant gap in efficient, accessible lan-
guage modeling for Hebrew NLP.
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Figure 1: Overall accuracy of Hebrew language models
on the HeCLiMP benchmark (see Section 4). Bubble
size represents the number of words seen during train-
ing, while the x-axis indicates the logarithm of model
parameters (M).

In this paper, we introduce TafBERTa, a compact
RoBERTa (Liu et al., 2019) based model optimized
for Hebrew. To assess the effectiveness and effi-
ciency of TafBERTa, we pose several key research
questions. First, we investigate how TafBERTa’s
smaller size—defined by both its reduced num-
ber of parameters and the smaller dataset used for
training—impacts its performance relative to HeRo
(Shalumov and Haskey, 2023, a Hebrew version
of RoBERTa). This comparison assesses whether
a more compact architecture can achieve compet-
itive results, despite having fewer computational
resources and less training data (Q1). Beyond this
direct comparison, we explore whether a search
over the parameter space was necessary for opti-
mizing TafBERTa’s performance, particularly in
training a ROBERTa architecture on the HTBer-
man child-directed speech corpus we introduce
(Q2). Additionally, we evaluate the capabilities
of TafBERTa against other Hebrew models using
other architectures or tokenization methods, to es-
tablish its relative strengths and weaknesses within
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the Hebrew NLP landscape (Q3). Finally, we as-
sess the adaptability of TafBERTa’s architecture
by testing its ability to learn from alternative data
sources, specifically evaluating its performance
when trained on Wikipedia-derived Hebrew text
rather than child-directed speech (Q4). These ques-
tions guide our evaluation, providing insights into
both the efficiency of small-scale models and the
nuances of Hebrew NLP.

Our contributions: (1) introducing TafBERTa, an
efficient Hebrew model, (2) introducing HTBerman
dataset for Hebrew Child-Directed Speech (CDS),
(3) presenting HeCLiMP, a benchmark for Hebrew
grammatical evaluation tailored to CDS, and (4)
conducting a comparative study against HeRo and
other models. Results show TafBERTa achieves
competitive performance despite its reduced size,
highlighting the potential of small, well-tuned mod-
els for low-resource NLP.!

2 Related Work

2.1 Baby Language Models

In response to the parameter and data expansion in
Large Language Models (LLMs), research has in-
creasingly turned toward smaller, more efficient
models that retain strong linguistic capabilities.
The BabyLM challenge (Warstadt et al., 2023)
exemplifies this shift, encouraging the develop-
ment of compact models that learn from limited
yet high-quality data, mimicking human language
acquisition. A key resource is the CHILDES
database (MacWhinney, 2000), which includes
well-established corpora of casual speech to chil-
dren that has shaped studies in cognitive linguistics
and NLP (Huebner and Willits, 2021; Mueller and
Linzen, 2023). Building on this foundation, Baby-
BERTa (Huebner et al., 2021) was introduced as
a scaled-down RoBERTa variant trained on child-
directed language, demonstrating that even with
fewer parameters and less training data, models can
develop strong grammatical abilities. Evaluation
of such models relies on syntactic and grammatical
benchmarks like BLiMP (Warstadt et al., 2020) and
Zorro (Huebner et al., 2021), which test linguistic
phenomena.

We address here these questions from the per-
spective of the Hebrew language, tackling chal-
lenges in low-resource language adaptation.

'We release the code and datasets at https://github.
com/NLU-BGU/tafberta/ to facilitate reproducibility and fu-
ture research.
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2.2 Baby Language Models in Other
Languages

While much of the research on baby language mod-
els has focused on English, recent work has ex-
panded these efforts to additional languages.

For instance, in Italian, Capone et al. (2024) intro-
duced a benchmark designed for the standardized
evaluation of Italian BabyLMs. To assess its ef-
fectiveness, researchers applied the benchmark to
Minerva (Orlando et al., 2024), an LLM pretrained
from scratch on Italian. The results revealed that
Minerva struggled with certain linguistic aspects,
achieving an age-equivalent score of just four years.
This under-performance highlights the necessity of
refining model training approaches to improve lan-
guage acquisition efficiency. In German, Bunzeck
et al. (2025) studied the effect of utterance-level
construction distributions in German child-directed
and child-available speech on the model perfor-
mance at the word-level, syntactic and semantic
levels. The grammatical abilities of Baby Language
Models beyond English have also been investigated
in Salhan et al. (2024), covering Chinese, French,
German, and Japanese, and focusing on the effect
of curriculum learning. Focusing on phonology,
Goriely and Buttery (2025) trained small monolin-
gual language models on child-directed and child-
produced speech, covering 11 languages.

Several recent studies have explored second lan-
guage acquisition (L.2) with language models, draw-
ing parallels to human language learning processes.
In Italian, BAMBINO-LM (Shen et al., 2024), a
bilingual pre-training approach for BabyLLM, en-
hances Italian proficiency while maintaining En-
glish skills, using alternation and PPO (proximal
policy optimization)-based perplexity rewards. Ya-
davalli et al. (2023) and Oba et al. (2023) examined
L2 acquisition in neural models, by pretraining
LMs in a certain language, further training them
in English as an L2, and evaluating and analyzing
their linguistic generalization in L2. They found
that L1 pretraining accelerates L2 learning, with
varying linguistic transfer effects.

We focus here on Hebrew, a low-resource lan-
guage for which Baby Language Models have not
been explored, and address it in a monolingual set-
ting.

2.3 Hebrew Language Models

Hebrew language models continue to lag behind
their English counterparts, facing challenges in data


https://github.com/NLU-BGU/tafberta/
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availability and computational efficiency (Tsarfaty
etal., 2019).

Compared to English, Hebrew has more lim-
ited corpora for training large-scale models, mak-
ing it difficult to achieve the same level of perfor-
mance. Despite this limitation, several Hebrew
language models have been developed to bridge
the gap. AlephBERT (Seker et al., 2022), Ale-
phBERTGimmel (Gueta et al., 2023) and HeRo
(Shalumov and Haskey, 2023) were among the first
transformer-based models for Hebrew providing
contextual embeddings suited to the language’s
structure. DictaBERT (Shmidman et al., 2023)
and its successor, DictalLM 2.0 (Shmidman et al.,
2024), further refined Hebrew language modeling,
improving general-purpose NLP tasks. While these
advancements mark progress, Hebrew NLP still
requires larger, higher-quality datasets and more
efficient training strategies to reach the capabilities
of English LLMs.

Another difficulty in Hebrew NLP is the linguis-
tic challenge (Tsarfaty et al., 2019). Hebrew is
a morphologically-rich language (MRL), and in
MRLs, every input token could contain some lex-
ical and functional units, known as morphemes,
each playing a distinct role in shaping the syntactic
or semantic representation. One challenge arises
from the necessity to segment Hebrew tokens into
their constituent morphemes before processing He-
brew texts. The segmentation process has experi-
enced significant advancement with the utilization
of tools like YAP (Yet Another (Natural Language)
Parser, More et al., 2019) or the DictaBERT model
(Shmidman et al., 2023), which has been fine-tuned
specifically for the segmentation task.

In Hebrew NLP, only after performing the seg-
mentation phase, we should chose the tokenizer.
The most popular tokenization algorithms are Byte-
Pair Encoding (BPE) (Sennrich et al., 2016) and
Google’s WordPiece (Song et al., 2021), which are
used by RoBERTa and BERT respectively. Another
method based on morphemes is used by HeBERT
and AlephBERTGimmel. See Gazit et al. (2025)
and Gorman and Pinter (2025) for further perspec-
tives on Hebrew tokenization.

Our work takes these challenges into account
by focusing on data efficiency and morphological
complexity, designing a model that learns from lim-
ited yet high-quality Hebrew data while addressing
the constraints of low-resource language modeling.
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2.4 Probing Grammatical Rule Learning

Recent LLMs have demonstrated remarkable suc-
cess in addressing a wide array of downstream
tasks. However, there is still a need to determine
the extent to which these LLMs comprehend the
syntax of natural languages. To tackle this ques-
tion, several studies have examined the syntactic
understanding of language models using tailored
datasets specifically designed for targeted syntac-
tic evaluations. One way to examine it is using a
probing task i.e., a classification problem that fo-
cuses on simple linguistic properties of sentences
(Conneau et al., 2018). The objective of this task
is to assess the quality of a model, focusing on
its language proficiency, particularly in syntax and
grammar. Some explored this question by evaluat-
ing language models’ (LMs) preferences between
minimal pairs (MP) of sentences differing in gram-
matical acceptability, as in the next example:

1. Imagination is more important than knowl-
edge. (grammatical)

2. Imagination are more important than knowl-
edge. (ungrammatical)

A MP is classified correctly if a LM assigns a
higher probability to the grammatical sentence than
to the ungrammatical one.

The Benchmark of Linguistic Minimal Pairs
(BLiMP, Warstadt et al., 2020) is a benchmark de-
signed with linguistic principles in mind. It evalu-
ates the ability of language models to discern ac-
ceptability differences across various English phe-
nomena. However, most of the studies have fo-
cused on English and other European languages.
Only few studies extended this investigation to non-
European languages, such as CLIMP (Xiang et al.,
2021) and JBLiMP (Someya and Oseki, 2023),
for Chinese and Japanese languages respectively.
The authors of CLIMP built the corpus of Chi-
nese MPs in the by generating data from gram-
mar templates for every paradigm they incorporate,
building an annotated vocabulary, and generating
sentences by sampling words from the vocabulary,
which is a translation of BLIMP English Vocabu-
lary. The authors of JBLIMP created the corpus
of Japanese MPs based on acceptability judgments
extracted from journal articles in theoretical lin-
guistics. These minimal pairs are grouped into 11
categories, each covering a different linguistic phe-
nomenon. In some other languages (specifically
Italian, English, Hebrew and Russian), Gulordava



et al. (2018) strengthen the evaluation paradigm
of MPs in terms of subject-verb agreement. Their
assessment involves nonsensical sentences, chal-
lenging language models by eliminating reliance
on semantic or lexical cues (“The colorless green
ideas I ate with the chair sleep furiously”). The
evaluation test sets are extended to other phenom-
ena, resulting in the CLAMS benchmark (Mueller
et al., 2020).

Differently from the Hebrew section of
CLAMS, we build here a grammatical benchmark
(HeCLiMP) tailored to CDS, abstracting away from
lexical complexity, yet addressing two main He-
brew grammatical phenomena that exemplify the
rich morphology in Hebrew. HeCLiMP also dif-
fers from CLAMS by being constructed directly
in Hebrew, abstracting away from the effects of
translation from the English language.

Grammatical benchmarks in English that are tai-
lored to CDS include Zorro (Huebner et al., 2021)
and BabySLM (Lavechin et al., 2023).

3 Training Data: HTBerman dataset

Our main corpora of interest are the original ver-
sion of CHILDES Hebrew Berman Longitudinal
Corpus (Armon-Lotem, 1996, Berman corpus)?,
written in latin-based phonemic Hebrew talk tran-
scription and a version of it written in standard
Hebrew script (Albert et al., 2012).3

The Berman corpus comprises longitudinal nat-
uralistic data gathered weekly from four Hebrew-
speaking children. In order to fairly compare with
other Hebrew language models, we use the ver-
sion of the corpus written in standard Hebrew
script. Since the latter does not contain the meta-
data present in the original version, we merge the
two versions, creating a comprehensive dataset that
incorporates Hebrew text along with all the annota-
tions, at the utterance and word levels.

As part of the corpora merge, we performed data
cleaning, which included morphological segmenta-
tion (More et al., 2019) and punctuation correction
(See Section A for the details). The resulted corpus
HTBerman (Hebrew Transcription Berman) con-
tains 53K sentences, 233k words and ~8K unique
words of Hebrew transcribed CDS.

*This corpus is part of CHILDES project (MacWhinney,
2000).

*We use as initial data the outputs of the automatic con-
verter built by Albert et al. (2012).
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3.1 Corpora

3.1.1 CHILDES Hebrew Berman
Longitudinal Corpus

Our main corpus of interest is CHILDES Hebrew
Berman Longitudinal Corpus. This corpus is tran-
scribed with a Latin-based phonemic of Hebrew
talks. The transcripts were all transcribed in the
CHAT format (CHILDES) with adaptations to He-
brew. The dataset comprises longitudinal natu-
ralistic data gathered weekly from four Hebrew-
speaking children. These children are all native
Hebrew speakers raised in households where He-
brew is the primary language and the environment
is characterized by high levels of education. Each
child was audio-recorded in various settings at their
home, including mealtime, bath time, solitary play
and interactions with siblings, parents and grand-
parents. This corpus includes the following mor-
phological annotations:

* Participants: This component refers to the
individuals involved in the conversation. In
CHILDES, the convention is to designate the
child being studied as CHI and the child’s
mother as MOT. Each utterance in the con-
versation begins with an indication of the par-
ticipant speaking, denoted by an asterisk (*)
followed by the participant code.

Transcriptions: Transcriptions capture the
spoken language in written form.

Dependent tiers: These are additional lay-
ers of linguistic information associated with
each transcription line. They are preceded
by a percentage symbol (%) and are linked
to the transcription line immediately above.
Dependent tiers can include morphological
information (%mor), grammatical relations
(Yogra), intonation (%int) and others. While
some tiers are common in CHILDES datasets,
none are obligatory.

The % mor tier: This tier provides morpho-
logical information about each word in the
transcription. It aligns one-to-one with the
segmented words and disregards any annota-
tions present in the transcription line. Each
item in the %mor tier consists of a part-of-
speech tag followed by inflectional or deriva-
tional information, separated by a pipe (). For
example, "qnlmore" indicates a nominal quan-
tifier aligned with the word "more".



* The %gra tier: The grammatical relations
tier represents relationships between words in
terms of heads and dependents in dependency
grammar. Each item in the %gra tier corre-
sponds one-to-one with the segmented words
in the transcription, as well as with items in
the %mor tier. It specifies the syntactic rela-
tionship between words, such as subject-verb
or quantifier-noun.

Other tiers: In addition to %mor and %gra,
there may be other dependent tiers providing
further linguistic or contextual information.
For example, the %int tier captures intonation
patterns, while others may contain informa-
tion about the recording session or the context
of the conversation.

We accessed the data using PyLangAcq (Lee
etal., 2016).

3.1.2 Standard Hebrew Berman Longitudinal
CHILDES Corpus

The Standard Hebrew Berman Longitudinal
CHILDES corpus has the same talks as in 3.1.1,
but written in standard Hebrew. This corpus has
only raw data of Hebrew text, while the original
one, transcribed in latin-based phonemic, has also
morphological annotations as metadata.

Our objective is to merge these datasets, creating
a comprehensive dataset that incorporates Hebrew
text along with all the annotations from 3.1.1, both
at the utterance level and the word level. The anno-
tations are needed for the creation of the HeCLIMP
evaluation benchmark (See Section 4).

3.2 Corpora Merge and Data Preprocessing

The corpora merge involves file-level, utterance-
level, and token-level matching. As part of the
corpora merge, we performed data cleaning, which
included morphological segmentation (More et al.,
2019) and punctuation correction (See Appendix
A for more details). The resulted corpus HTBer-
man (Hebrew Transcription Berman) contains 53K
sentences, 233k words and ~8K unique words of
Hebrew transcribed CDS.

4 HeCLiMP Evaluation Benchmark

We compile HeCLiMP (Hebrew Child-Directed
Linguistic Minimal Pairs), a Hebrew CDS gram-
mar test suite, to evaluate how well language mod-
els grasp grammaticality in an environment that
closely reflects the linguistic input children receive.
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Based on minimal pairs (Conneau et al., 2018),
HeCLiMP is composed of sentence pairs that dif-
fer by just one key element — one sentence is
grammatically correct and the other is minimally
incorrect. We focus on two grammatical phenom-
ena, adapting Determiner-Noun (DN) agreement
from BLiMP and Zorro to Hebrew. By doing so,
we address a phenomenon that exists in English
(number agreement) and one that does not hold in
English (gender agreement):

(1) DN Number Agreement: e.g., ‘ha-kova ha-ze’
(‘this hat’-singular) vs. ‘ha-kovaim ha-ele’ ( ‘these
hats’-plural).

(2) DN Gender Agreement: Unlike English, He-
brew requires determiners to match the gender of
the noun , e.g., ‘ha-kova ha-ze’ (‘this hat’-masc.)
vs. ‘ha-simla ha-zo’ ( ‘this dress’-fem.).

Following the procedure used for Zorro in the
case of English, we generated minimal pairs using
template filled with words from HTBerman (Sec-
tion 3). Each paradigm consists of 5,596 minimal
pairs in the test set and 1,398 minimal pairs in the
development set.

Most existing grammar evaluation benchmarks
in NLP focus on adult-directed language, posing
challenges for assessing the grammatical compe-
tence of models trained on CDS. To address this
gap in the case of Hebrew, we developed HeCLiMP,
a benchmark specifically designed to evaluate He-
brew grammatical learning in models trained on
CDS. Our approach follows the methodology of
BLiMP and Zorro, but with simplified templates
that prioritize morphological features relevant to
Hebrew language acquisition.

To construct test sentences, we first designed
a set of sentence templates for each grammatical
paradigm. These templates were then populated
with words sampled from HTBerman, ensuring
that all inserted content words conformed to the
necessary morphological constraints. Word lists
were generated by filtering nouns from HTBerman
along with their gender and number annotations.

A primary focus of HeCLiMP is determiner-
noun agreement in Hebrew, specifically gender and
number agreement. We used simple templates such
as “Look at this ...” or “Look at that ...”, where
the determiner adapted according to the gender and
number of the noun.



HeRo TafBERTa
Parameters 125M 3.3M
Data size 47.5GB 1.8MB
Words in data 4.7B 233k
Batch size 8k 128
Max sequence 512 128
Epochs 25 5
Hardware 1xGTX1080 | 1XxXRTX6000
Training time 35 days 105 seconds

Model Configurations

Vocabulary size 50K 7317
Hidden size 768 64
Layers number 12 10
Attention heads 12 4
Intermediate size 3072 2048
Max. sequence 512 128
Accuracy * 73.5 69.4

Table 1: A Comparison between HeRo, pre-trained on 4.7B words of web text, and TafBERTa, pre-trained from
scratch on 233k words of child-directed input. * Accuracy results on the evaluation task.

5 TafBERTa

Model We introduce a scaled-down masked lan-
guage model based on RoBERTa, with 3.3M pa-
rameters, 7317 vocabulary items trained on 233K
words. We will refer to this model as TaAfBERTa*.
All hyper-parameters were identified by tuning Taf-
BERTa on a masked word prediction task using a
held-out portion of our corpus of transcribed CDS
as input. A detailed comparison between hyper-
parameters of TafBERTa and other Hebrew LMs
we compared to is in Tables 1 and 2. Briefly, Taf-
BERTa uses only 10 layers, 4 attention heads, 64
hidden units and an intermediate size of 2048.

Vocabulary TafBERTa uses a Byte-Pair Encod-
ing (Sennrich et al., 2016) sub-word vocabulary,
like HeRo and RoBERTa. Instead of HeRo’s S0K
word vocabulary, we built a 7317-word vocabulary
from HTBerman.

Hyper-Parameters Search We optimized hyper-
parameters on the development set (Table 5), fo-
cusing on those with significant improvements in
BabyBERTa. The development set consisted of the
two DN agreement paradigms from HeCLiMP.

6 Experiments

Results reflect the average performance over six
runs with different seeds including RoBERTa on

“Taf means toddler in Hebrew
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HTBerman (§6.2), BabyBERTa on HTBerman
(§6.2), and the Wikipedia-trained model (§7).

The models used for the comparison are HeRo >,
AlephBERT ¢, AlephBERTGimmel 7, DictaBERT
8, and DictaLM2.0 °. Differently from the other
models, which are encoder-based language mod-
els, DictalLM2.0 is a large decoder-based language
model. A comparison between the models is pre-
sented in Table 2.

6.1 Evaluation Method

Inspired by the BabyBERTa paper, we use holistic
scoring (Zaczynska et al., 2020). For each mini-
mal pair, we calculate the model’s preference for
the grammatical sentence over the ungrammatical
one. This score is obtained by summing the cross-
entropy errors across all positions in the sentence.
Accuracy is the ratio of correct choices to total
pairs.

6.2 Results

The results are presented in Table 3. These ques-
tions (Q1, etc.) are as described in the introduction.

5https://huggingface.co/HeNLP/HeRo
®https://huggingface.co/onlplab/
alephbert-base
"https://huggingface.co/imvladikon/
alephbertgimmel-base-512
8https://huggingface.co/dicta—il/dictabert
*https://huggingface.co/dicta-il/dictalm2.0


https://huggingface.co/HeNLP/HeRo
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https://huggingface.co/onlplab/alephbert-base
https://huggingface.co/imvladikon/alephbertgimmel-base-512
https://huggingface.co/imvladikon/alephbertgimmel-base-512
https://huggingface.co/dicta-il/dictabert
https://huggingface.co/dicta-il/dictalm2.0

Model AlephBERT | AlephBERTGimmel | DictaBERT | DictaLM 2.0 | HeRo | TafBERTa
Parameters 126M 184M 184M 7B 125M 3.3M
Words in data 1.9B 2B 3.8B 35B* 4.7B 233K

Table 2: Comparison of model sizes and training data.

B
=155 3
PIE 5| 2| 2
Model S|z | T | & =
AlephBERT | 58.6 | 58.7 | 58.5 | WP | Encoder
AlephBERT- | 59.8 | 54.3 | 65.3
Gimmel
DictaBERT | 87.1 | 90.1 | 84.2
DictaLM2.0 | 46.1 [ 31.4 | 60.8 | BPE | Decoder
HeRo 73.5 | 69.1 | 77.9 | BPE | Encoder
RoBERTa 65.6 | 83.7 | 47.5
(HTBerman)
TafBERTa 69.4 | 80.5 | 58.2

Table 3: Accuracy on each phenomenon in HeCLiMP. We used the Holistic-scoring method. “Overall” refers to the
overall accuracy across all phenomena. “Number” and “Gender” refer to determiner-noun agreement in number and
gender, respectively. WP refers to the WordPiece tokenizer.

7| 2|5

5 = =

> = o
Model o Z &)
Wikipedia | 43.3 | 30.9 | 55.7
TafBERTa | 69.4 | 80.5 | 58.2

Table 4: Performance of the Wikipedia-Trained Model and TafBERTa on the HeCLIMP subset. "Overall" refers to
the overall accuracy across all phenomena. “Number” and “Gender” refer to determiner-noun agreement in number
and gender, respectively. The highest score in each column is highlighted in bold.

Comparison with HeRo (Q1) Since HeRo and
TafBERTa share the same architecture and tok-
enizer, the comparison between the two allows
for a direct assessment of the impact of training
data and optimization choices. TafBERTa achieved
an overall accuracy of 69.4 on the test set while
HeRo reaches 73.5. Breaking this down by task, we
observe an interesting tradeoff: while TafBERTa
excels in DN agreement for number (80.5 vs. 69.1),
HeRo demonstrates superior performance in DN
agreement for gender (77.9 vs. 58.2).

Comparison to RoBERTa trained on HTBer-
man (Q2) We trained the ROBERTa architecture
on HTBerman using the same number of epochs as
TafBERTa. It achieved 65.6 overall accuracy, with
strong performance on number agreement (83.7)
but poor results on gender agreement (47.5). This
highlights the importance of tailored pre-training
objectives and hyperparameter optimization, as
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seen in TafBERTa, to achieve balanced perfor-
mance across linguistic tasks. A further analysis of
RoBERTa is presented in Appendix D.

Comparison to BabyBERTa TafBERTa and
BabyBERTa share the same underlying architec-
ture, but differ in their hyper-parameters. To di-
rectly compare the two, we trained BabyBERTa’s
architecture using its original hyper-parameters on
HTBerman. BabyBERTa achieved lower perfor-
mance than TafBERTa on the two tasks, suggesting
that careful adaptation of hyper-parameters is cru-
cial when applying a shared architecture to differ-
ent languages.

Additional comparisons (Q3) We observe that
Dictal.M 2.0, a Large Language Model being the
current state-of-the-art (SOTA) for Hebrew in gen-
eral tasks, performed the worst on the number
agreement task, achieving only 31.4 accuracy, sig-



nificantly below other models.

In the group of RoBERTa-based models us-
ing WordPiece tokenizers, DictaBERT achieved
the highest overall accuracy in this group (87.1),
with especially strong results in number agreement
(90.1). In contrast, AlephBERT and AlephBERT-
Gimmel lagged behind, with overall accuracies of
58.6 and 59.8, respectively, reflecting less robust
handling of grammatical tasks.

7 Alternative Training Data

We assess the adaptability of TafBERTa’s archi-
tecture by testing its ability to learn from alterna-
tive data sources, specifically evaluating its perfor-
mance when trained on Wikipedia-derived Hebrew
text rather than CDS (Q4). We utilized the SVLM
Hebrew Wikipedia Corpus'?, preprocessed in the
same manner as HTBerman. The dataset size was
adjusted to match the word count of HTBerman,
ensuring equivalent scales for training.

Using this dataset, we trained a new language
model that retained the architecture of TafBERTa
but replaced the training data with the processed
Wikipedia corpus. Subsequently, we evaluated this
new model on a subset of HeCLIMP, focusing on
minimal pairs containing words seen by the model
during training. For comparison, we also assessed
TafBERTa on the same test set. That is to say, the
two models we compare have seen during training
the words used in the benchmark, and only differ
by the type of the training data used (HTBerman
vs. Wikipedia).

The results (Table 4) indicate that while the
Wikipedia corpus serves as a rich and diverse re-
source, its effectiveness in training for grammatical
agreement tasks is limited compared to the original
dataset used for TafBERTa.

8 Conclusion

We present in this paper TafBERTa, a first language
model tailored to Hebrew Child-Directed Speech.
Focusing on Determiner-Noun agreement phenom-
ena, we show that TafBERTa shows competitive
performance with larger Hebrew language mod-
els. By doing so, we extend acquisition-inspired,
small-scale language model research to a low-
resource language, where such efforts are particu-
larly needed. Our results emphasize the need for
language-specific and data-specific tuning to fully

Ohttps://github. com/NLPH/
SVLM-Hebrew-Wikipedia-Corpus
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leverage the capabilities of such models. Future
work includes the extension of HeCLiMP to addi-
tional grammatical phenomena, the use of training
data originated from later stages of language ac-
quisition (i.e., language directed to older children),
and the exploration of alternative language model
architectures.

Limitations

While TafBERTa demonstrates progress in model-
ing Hebrew child-directed speech, several limita-
tions highlight areas for future work and improve-
ment.

Evaluation Improvements Our evaluation
framework, HeCLiMP, successfully benchmarks
grammatical proficiency but remains limited in
scope. Currently, it focuses on determiner-noun
agreement in gender and number. Future work
should expand HeCLiMP to include a set of
grammatical structures, such as verb-subject
agreement and determiner-noun agreement with an
adjective in between.

Multilingual Model Development While Taf-
BERTa is optimized for Hebrew, its application
is restricted to a monolingual context. Extending
the model to a multilingual framework by training
on related Semitic languages (e.g., Arabic) could
enhance its ability to generalize across linguistic
variations.

Training on Older Children’s Data Currently,
TafBERTa is trained on speech data directed at
younger children, which captures early-stage lan-
guage acquisition patterns. However, language
complexity increases with age. Training on speech
data directed at older children would enable the
model to learn more advanced syntactic and mor-
phological structures, better simulating additional
phases of language development.

Exploring Alternative Architectures The
BERT architecture has dominated Hebrew NLP
research and TafBERTa follows this trend.
However, exploring other architectures may
yield performance improvements. Additionally,
architectures optimized for low-resource settings,
such as efficient transformers (e.g., DistilBERT
(Sanh et al., 2020)), could offer a better trade-off
between computational efficiency and linguistic
expressiveness.
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A Data Preprocessing for the HTBerman
Construction

Our ultimate aim is to train TafBERTa using He-
brew Child-Directed Speech data. To accomplish
this, we must filter the CDS utterances in Stan-
dard Hebrew corpus 3.1.2, while the label of the
speaker appears in 3.1.1. The primary task dur-
ing the preprocessing phase involves merging the
corpora outlined at 3.1.
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A.1 File-level matching

In Hebrew corpus files, there is incompatibility
in files’ order with English Berman longitudinal
dataset. In order to overcome this problem, we
made manual changes to the Hebrew corpus, in-
cluding removing blank files and reordering ac-
cording to Berman longitudinal dataset files’ order.

A.2 Utterance-level matching

In the datasets, most files contain an equal number
of lines, except for certain files within the English
Berman longitudinal dataset. These additional lines
are filled with irrelevant or duplicate information
compared to the standard Hebrew data. We man-
ually identified and removed these lines from the
English dataset. In this corpus, there are 268 files,
out of them 64 are found to be problematic.

A.3 Token-level matching

Matching tokens for each pair of English-Hebrew
sentences often leads to numerous conflicts within
the sentence (in token level). There are several
types of gaps that lead to these conflicts. In the pro-
cess of overcoming the gaps, we edit the Hebrew
sentences in an automatic script.

Here are our primary steps to align as many sen-
tences as feasible, focusing solely on editing He-
brew sentences:

Create segmented sentences using YAP (Yet
Another (natural language) Parser)(More
et al., 2019)!2.

Merge children’s names (Hagar, Leor, Lior)
to single names instead of separated (for ex-
ample, Ha gar to Hagar).

Combine separated words that should be one
word.

Separate conjunction.

Remove random “junk’ letters in the middle
of the sentence.

Insert spaces between punctuation marks that
are directly attached to text.

If punctuation is absent in a Hebrew sentence
as it appears in the Latin transcription, add the
appropriate punctuation marks.
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* Correct prepositions (if they are written sepa-
rated in Latin transcription but connected to
words in Hebrew).

Correct double words (combine words like
"Od Paam" to "Od_Paam", as in English it
appear as a single word - again). We carried
out this step at this point rather than earlier be-
cause in the preceding sections, we addressed
all aspects concerning word indexes when sen-
tences are segmented by spaces.

e Attempt to correct the prepositions once
more, considering that the indexes may have
changed after addressing duplicate words.

Please note that during the correction of preposi-
tions, we proceeded to the next step only if our
function successfully rectified the sentence. If the
correction was not made, the incorrect sentence
was retained for another attempt.

B Implementation Details and
Reproducibility

All experiments were run for 100 epochs, with each
run taking approximately 15 minutes of training.
For each run, we identified the epoch at which
the maximum accuracy on the development set was
achieved (referred to as the "max epoch"). The final
reported result for each run is the test accuracy at
this "max epoch".

During the process, we logged two models in
MLAflow for each run: the model corresponding to
the "max epoch" and the model after completing
all 100 epochs. As the top-performing runs showed
minimal variation in development and test accuracy,
we further refined the process by training the model
for each hyper-parameter combination using six
different random seeds. The final selected model
for each configuration was the one with the highest
average development accuracy across these seeds.

B.1 Hyper-parameter optimization

Hyper-parameter optimization was conducted us-
ing Optuna (Akiba et al., 2019)'3, an open-source
framework designed for efficient and automated
hyper-parameter tuning. Optuna employs tech-
niques such as Bayesian optimization and pruning
mechanism to enhance search efficiency and
reduce computational costs. The optimization
process was guided by a defined objective function;

BMIT License
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maximize the accuracy on the development set and
evaluating performance metrics on accuracy and
loss.

All experimental results, including hyper-
parameter trials, best-performing configurations
and model performance metrics, were systemati-
cally logged using MLflow'*. MLflow provided
experiment tracking, reproducibility and model
versioning, enabling comprehensive monitoring
and comparison of different hyper-parameter
tuning runs.

B.2 Model Logging

Both the final and best performing models were
logged using MLflow. For each of the runs, the
model on the last epoch and the best model of
the run, selected based on accuracy_dev_max, is
available for future benchmarking.

C RoBERTa Optimized

In addition to the use of the RoBERTa architec-
ture with the same number of epochs as TafBERTa
(see Section 6, we also explore the optimization
of the ROBERTa model given the HTBerman data,
increasing the number of epochs. The results are
presented in Table 6.

D Results Visualization

This appendix provides the detailed evaluation re-
sults of various Hebrew language models on gram-
matical agreement tasks. The models were as-
sessed on Number Agreement, Gender Agreement
and Overall Accuracy using the HeCLiMP bench-
mark. The figures illustrate the performance of
each model with respect to the number of parame-
ters and words seen in the training phase.

D.1 Number Agreement Accuracy

The first evaluation metric focuses on the ability
of models to correctly predict number agreement
in Hebrew. As shown in Figure 2, DictaBERT
achieved the highest accuracy at 90.1%, followed
by TafBERTa with 80.5%. HeRo performed at
69.1%, while AlephBERT and AlephBERTGim-
mel recorded 58.7% and 54.3%, respectively. Dic-
taLM 2.0 performed considerably worse than other
models with only 31.4%.

“https://mlflow.org/ with Apache-2.0 license
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Hyper-parameter Checked Intervals
num_attention_heads {2,4,6,8,10, 12}

hidden_size {64, 128, 256, 512, 768}
leave_unmasked_prob {0.0, 0.1}

num_layers {2,4,6, 8,10, 12}
intermediate_size {64, 128, 256, 512, 1024, 2048, 3072, 4096}

Table 5: Intervals checked for each hyperparameter in the Optuna objective function. The upper bound of the
search space corresponds to the hyperparameters of RoOBERTa. Thus, TafBERTa’s smaller size was not intentionally
designed to be compact, but rather emerged as the optimal configuration through hyperparameter tuning.

= | = g =
S| E|E| =
o > E g
D
Model *# | O Z &)
RoBERTa (HTBerman) | 5 | 65.6 | 83.7 | 47.5
RoBERTa (HTBerman) | 43 | 71.1 | 83.2 | 59
TafBERTa | 5 1694805582

Table 6: Accuracy on each phenomenon in HeCLiMP using the Holistic-scoring method. "Overall" refers to the
overall accuracy across all phenomena. "Number" and "Gender" refer to determiner-noun agreement in number
and gender, respectively. ROBERTa was trained for five epochs, matching TafBERTa’s training regime and also
for a longer period until convergence. When trained for five epochs, RoOBERTa achieved lower overall accuracy
(65.6) compared to TafBERTa (69.4), with higher performance on number agreement (83.7 vs. 80.5) but weaker
results on gender agreement (47.5 vs. 58.2). Training RoBERTa for more epochs improved its overall accuracy
(71.1) and performance on the gender agreement task (59) but slightly reduced its accuracy on number agreement
(83.2). TafBERTa maintains a better balance across both tasks.

D.2 Gender Agreement Accuracy

Figure 3 demonstrates that DictaBERT again per-
formed the best, reaching 84.2 accuracy. HeRo
followed with 77.9, while AlephBERTGimmel and
AlephBERT obtained 65.3 and 58.5, respectively.
TafBERTa recorded 58.2 and DictaLM 2.0 man-
aged 60.8.

D.3 Overall Accuracy

The overall accuracy metric evaluates the general
grammatical understanding of Hebrew language
models across different agreement phenomena. Fig-
ure 4 shows that DictaBERT leads with an 87.1
accuracy, followed by HeRo at 73.5 and TafBERTa
at 69.4. AlephBERT and AlephBERTGimmel
achieved 58.6 and 59.8, respectively. DictaLM
2.0 recorded an overall accuracy of 46.1, which is
notably lower than the other models.
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