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Abstract

State-of-the-art vision-and-language models
consist of many parameters and learn from enor-
mous datasets, surpassing the amounts of lin-
guistic data that children are exposed to as they
acquire a language. This paper presents our ap-
proach to the multimodal track of the BabyLM
challenge addressing this discrepancy. We de-
velop language-only and multimodal models
in low-resource settings using developmentally
plausible datasets, with our multimodal mod-
els outperforming previous BabyLM baselines.
One finding in the multimodal language model
literature is that these models tend to underper-
form in language-only tasks. Therefore, we
focus on maintaining language-only abilities
in multimodal models. To this end, we experi-
ment with model merging, where we fuse the
parameters of multimodal models with those
of language-only models using weighted linear
interpolation. Our results corroborate the find-
ings that multimodal models underperform in
language-only benchmarks that focus on gram-
mar, and model merging with text-only models
can help alleviate this problem to some extent,
while maintaining multimodal performance.

1 Introduction

Current state-of-the-art multimodal language mod-
els (MLMs) are composed of many layers contain-
ing billions of parameters and they require huge
amounts of data to learn how to handle and bridge
visual and textual modalities. On the other hand,
children acquire language with the help of much
smaller sets of linguistic input. The BabyLM chal-
lenge (Warstadt et al., 2023) focuses on this discrep-
ancy and encourages the implementation and train-
ing of sample-efficient, developmentally plausible
models in resource-limited contexts. Although uti-
lizing small datasets and models could prove chal-
lenging to outperform current MLMs, such setups
could allow for cognitive plausibility, also mak-
ing the development and use of such models more

Language-Only
Model Multimodal Model(α) x (1 - α) x+

Merged Model
θLLM θVLM

Figure 1: Weighted merging of language-only and mul-
timodal models in the form of linear interpolation.

accessible and efficient.
Despite the general good performance of MLMs

in multimodal tasks, previous work shows that
these models tend to underperform in language-
only tasks (Zhuang et al., 2024). Recent work in the
multimodal BabyLM challenge also points to the
same issue (Amariucai and Warstadt, 2023; Kler-
ings et al., 2024). Therefore, our aim in this paper
is to first test our own models on multimodal and
text-only benchmarks, and second, if we observe
the same issue, to try to mitigate it.

We develop language-only and multimodal mod-
els, the latter of which outperforms previous
BabyLM baselines.1 However, our results indeed
confirm that our developmentally plausible MLMs
lack in text-only benchmarks. Hence, we explore a
model augmentation technique to potentially over-
come this shortcoming: model merging. Model
merging has been utilized to prevent catastrophic
forgetting and combine the capabilities of multi-
ple models trained on different tasks, datasets, or
modalities (Yang et al., 2024; Dash et al., 2025).

In our approach, during inference time, we fuse
the parameters of models trained on text-only and
multimodal data in a straightforward, training-free
way (see Figure 1). Our results indicate that such
an augmentation yields a single model maintaining
accuracy and robustness in both text-only and mul-
timodal benchmarks in the earlier and later stages
of training the multimodal model.

1Code and models available at https://github.com/
ecekt/babylm_multimodal_model_merging
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2 Background

We first go into detail about the multimodal ap-
proaches to the BabyLM challenge in Section 2.1,
and then, provide a summary of the recent work on
model merging in Section 2.2.

2.1 Developmentally Plausible Multimodal
Language Models

The BabyLM initiative encourages the develop-
ment of models that can be small-scale, trained
on smaller sets of data, using various techniques
such as model compression, learning from interac-
tion, knowledge distillation. Our focus is on the
multimodal track. Multimodal models have been
explored in the 2nd BabyLM challenge (Choshen
et al., 2024) and re-introduced in the 3rd BabyLM
challenge (Charpentier et al., 2025) as the submit-
ted models did not outperform the baselines re-
leased by the BabyLM organizers (Hu et al., 2024).
The baselines were GIT (Wang et al., 2022) and
Flamingo (Alayrac et al., 2022) models trained on
the BabyLM’s multimodal corpus to ground lan-
guage to vision.

These models encode image inputs and gener-
ate text using text decoders conditioned on visual
tokens. The methodologies from the past submis-
sions include curriculum learning where the cap-
tions were ordered based on the number of concepts
they included (Saha et al., 2024), where this helped
on developmentally plausible benchmarks. Pre-
training on text also seems to be beneficial; Saha
et al. (2024) investigates first training on text and
then captions along with curriculum learning us-
ing image-caption pairs. However, in general, it
appears to be difficult to observe a strong pattern
across model types, datasets and tasks.

Another work reports a related result where
learning in phases appears to benefit multimodal
BabyLM models (AlKhamissi et al., 2024). The
model first learns the language-only tasks, then
grounding, followed by self-synthesized data and
more advanced reasoning tasks.

There are also contributions to the language-
only track where the models were influenced or
informed by multimodal input (Fields et al., 2023;
Amariucai and Warstadt, 2023).

Klerings et al. (2024) explore a weighted loss
function for text-only and multimodal data during
training. However, they show that vision does not
significantly benefit the performance in language-
only benchmarks. This is in line with prior findings

showing limited or no improvements when incorpo-
rating visual data (Amariucai and Warstadt, 2023;
Zhuang et al., 2024), with the exception of low-
data regimes (Zhuang et al., 2024), which inspired
our work.

2.2 Model Merging

Model merging has been utilized as a technique for
adaptively extending the capabilities of models or
balancing performance during inference time in the
tasks multiple models were trained on. See (Yang
et al., 2024) and (Goddard et al., 2024) for surveys
of various merging techniques.

A straightforward averaging technique called
‘model soups’ has been found beneficial in improv-
ing accuracy and robustness. The techniques in-
volve combining the parameters of multiple mod-
els trained on different hyperparameters, in addi-
tion to more sophisticated weighted merging meth-
ods (Wortsman et al., 2022; Matena and Raffel,
2022). Similarly, Aakanksha et al. (2024) find that
merging models is better than mixing training data
for facilitating safety and multilingual generaliz-
ability.

Regarding vision-and-language models, Zhu
et al. (2025) learn modules for various multimodal
tasks that are later merged; whereas (Li et al.,
2025) exploit text-only reward models to transfer
to vision-and-language reward models in a cross-
modal model merging scheme.

Closer to our approach, AyaVision is an exam-
ple of cross-modal merging to maintain text-only
capabilities within multimodal models to prevent
catastrophic forgetting (Dash et al., 2025). The
authors built their multimodal model on their best-
performing text-only checkpoint, which makes the
setup more suitable for merging. Similarly, Sung
et al. (2023) conduct detailed experiments on mul-
timodal model merging, finding that simple linear
interpolation is a competitive and efficient method,
which we also opt for in this work to test its effec-
tiveness in low-data and low-compute settings.

3 Data

To train our models, we use the data from the mul-
timodal BabyLM challenge, which consists of 2
parts: text-only and multimodal.
Text-only. We use the 50M-word text data pro-
vided by the BabyLM challenge. This data con-
sists of text stemming from 6 sources as explained
by Choshen et al. (2024), and corresponds to the
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Data Train Val
Localized Narratives 729349 38387
CC3M 2061837 108518
BabyLM - text-only 5492930 289102
Total 8284116 436007

Table 1: Number of samples per dataset in the splits
we created (after filtering, validating and deduplicating
CC3M images and captions, and trimming it to fit 100M
words in total).

first halves of the text-only subsets released for the
language-only challenge of the BabyLM task.
Multimodal. This part includes image-caption
pairs from Localized Narratives (Pont-Tuset et al.,
2020) and Conceptual Captions 3M (Sharma et al.,
2018). We download the Localized Narratives (LN)
images and captions from the dataset’s website.2

We use the COCO (train) (Lin et al., 2014) and
Open Images (train and test) (Kuznetsova et al.,
2020) subsets of LN.3

Additionally, we download the captions for the
existing images from the Conceptual Captions
(CC3M) dataset.4 Filtering out the images that
do not exist anymore as well as the corrupt and du-
plicate image files, we end up with fewer than 3M
images, which is lower than the provided captions
for the previous multimodal BabyLM challenge.
Final dataset. The statistics of our final dataset
are provided in Table 1, with our random train
and validation splits where 95% of each subset
contributes to the training set and the rest goes into
the validation set.

4 Methodology

Models. We modify the implementation of
LLaVa (Liu et al., 2023, 2024) from Hugging-
Face5, inheriting the LlavaForConditionalGener-
ation model, and replace the visual encoder with

2https://google.github.io/
localized-narratives/

3Although the BabyLM OSF repository at https://
osf.io/ad7qg/files provides captions and extracted im-
age representations for this subset, we noticed a discrep-
ancy in the number of samples compared to the origi-
nal LN. It seems that the test set of the Open Images
subset is also counted in the BabyLM corpus to end up
with the 50M word count. Therefore, we also included
that part. Localized Narrative subset IDs of Open Im-
age downloaded from https://storage.googleapis.com/
openimages/web/download_v7.html. COCO images from
https://cocodataset.org/

4We download the captions from https://ai.google.
com/research/ConceptualCaptions/download and the
images using the script provided at https://github.com/
igorbrigadir/DownloadConceptualCaptions.

5‘llava-hf/llava-1.5-7b-hf’

DINOv2-large (Oquab et al., 2024)6. We also make
necessary changes to the image processing code
and modeling code in relation to the dimensions
of the image features. We randomly initialize a 6-
layer version of this model as the language model,
together with a mapping layer that projects the im-
age representations to the language model’s space.
Image representations. Unlike the BabyLM
benchmark’s image representations from last year
that are 768-dimensional vectors from DINOv2
ViT-Base, we use the large version of DINOv2,
which processes images into 256 image tokens of
1024 dimensions. While we originally intended to
feed all 256 image tokens extracted from the vi-
sion encoder, due to time and compute constraints,
we modified the model to feed a single pooled im-
age token directly. We implemented a version of
the model where we pre-extract all image token
representations and mean-pool them. This single
summary token (1024 dim) is fed to the LM directly
(bypassing the vision tower). The summary image
representation goes through a multimodal projector
composed of a linear layer projecting from 1024
to 768 dimensions, GeLU activation and another
linear layer projecting from 768 to 768. This multi-
modal projector is trained along with the language
model, while keeping the image representations
frozen.

For text-only data, we create a black image (640
x 420) and always input the features of this place-
holder image both in the text-only model and the
multimodal model.
Training the tokenizer. Using all the text in the
final dataset (token count = 100M), we train a tok-
enizer from scratch employing the configurations
of the LLaVA tokenizer (LlamaTokenizerFast, a
byte-pair encoding model based on SentencePiece),
with a vocabulary size of 30000 including a spe-
cial token for image representations. Using the
BERT pre-tokenizer, we apply splitting on whites-
pace and punctuation. This preprocessing yields a
1.36 word-to-subword ratio.7

Intermediate checkpoints. To investigate the
learning speed and model behavior dynamics, we
save checkpoints (every 1M words up to 10M, ev-
ery 10M up to 100M, every 100M up to 1B). We
estimate the words-seen using the ratio of word-
pieces to actual words in our dataset (1.36). We use
this ratio to roughly determine how many ‘words’

6‘facebook/dinov2-large’
7Words: 99,999,990. Subwords (as tokenized by our tok-

enizer, skipping special tokens): 136,034,832.
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the models were exposed to in the training batches
(excluding special tokens).
Hyperparameters and setup. We follow the re-
strictions of the BabyLM challenge, 100M words,
10 epochs, resulting in 1B tokens seen in total.

We set the maximum length to 150 tokens. We
truncate longer samples if they do not fit this con-
straint; if they are shorter, we pad them.

We train the models on 2 A10 GPUs with 24GB
memory on CrossEntropy Loss using the AdamW
optimizer with a learning rate of 1e-4. For the mul-
timodal model, batches can contain text-only or
multimodal data, and the loss is calculated in the
same way for both modalities. We use fp16 half
precision and make use of the Accelerate library
for data parallelism to speed up training. We accu-
mulate gradients for 8 steps and then apply gradient
updates to optimize the model, effectively increas-
ing our batch sizes from 64 to 512. The numbers
of words seen are gathered from each GPU and
only logged and checked in the main process. We
opted for a smaller layer number (6) to allow for
a speed-up in the training by exposing the model
to larger and more batches in a shorter amount of
time. It takes 6.7 days for the multimodal model
(with text-only and multimodal data) to be trained,
and the text-only model 4.3 days.

5 Model Merging at Inference Time

Since our language-only and multimodal models
share the same architecture, random initialization
and the text-only data, they can be combined in a
straightforward way. We apply a simple weighted
sum of the multimodal model’s parameters and the
text-only model’s parameters. We experiment with
merging weights α of 0.3, 0.5, and 0.8,8 where θ
indicates all the trainable parameters of a model:

θmerged = αθLLM + (1− α)θV LM (1)

In this way, the merged model is a linear interpo-
lation of the multimodal and text-only models.

6 Benchmarks

We modify the evaluation pipeline provided by the
BabyLM challenge9 to run zero-shot evaluations

8The weights were chosen to reflect equal contribution
from both models (0.5) and a skewed contribution from one
model (0.3–more VLM and 0.8–more LLM).

9https://github.com/babylm/
evaluation-pipeline-2025

across our checkpoints using the benchmarks pro-
vided. For Winoground, we write our own evalua-
tion code.
Language-only benchmarks. We run the evalua-
tion pipeline for all the tasks in BLiMP (Warstadt
et al., 2020), EWoK, entity tracking (assign
the highest probability to the correct contin-
uation) (Kim and Schuster, 2023), Wug past
tense (Weissweiler et al., 2023), wug adjective nom-
inalization (Hofmann et al., 2025) testing morpho-
logical capabilities (correlating model probabili-
ties to human judgments). BLiMP and BLiMP-
supplement (more challenging samples) evaluate
whether the models capture grammatical phenom-
ena, where one grammatical and one ungrammat-
ical sentence are pitted against each other, testing
models’ capabilities related to syntax, morphology
and semantics. EWoK (Ivanova et al., 2025) fo-
cuses on world knowledge and reasoning about
e.g., social, physical, spatial relations.
Multimodal benchmark. We experiment on
Winoground (Thrush et al., 2022), where pairs of
images with very similar captions are provided.
Winoground consists of 400 samples, where each
sample has 2 images and 2 captions. These 2 cap-
tions have the same words, but in different orders
to match the image contents (see an example in
Figure 2).

Figure 2: An example from Winoground. Left: ‘painting
the white wall red’. Right: ‘painting the red wall white’.

We input the image and 2 captions separately to
the model to obtain predictions for Winoground. If
the likelihood of the correct caption is higher, we
increase the accuracy. We use the unpaired text-
score as used in previous BabyLM work, where we
consider each image-caption pair separately. We
use the full Winoground dataset available on Hug-
gingFace, unlike the filtered version in the BabyLM
evaluation suite.

Winoground tests abilities requiring compo-
sitionality, sensitivity to word order, common-
sense reasoning, pragmatics and overall more fine-
grained visual and linguistic analyses involving
unusual images and texts (Diwan et al., 2022).
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Figure 3: Average accuracies for the text-only model and the multimodal model over the training checkpoints, for
the BLiMP full benchmark.
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Figure 4: Average accuracies for the text-only model and the multimodal model over the training checkpoints, for
the BLiMP fast benchmark.

Winoground is a difficult dataset, with previous
BabyLM work yielding accuracies as follows:
2024 baselines Flamingo: 51.6 GIT: 55.5; 2025
baselines Flamingo: 54.8, GIT, 56.2.10

7 Results

Results on benchmarks. We first obtain the results
on the full BLiMP evaluation, which is reported in
Figure 3. Our best language-only model reaches
74.82 accuracy at the 100M checkpoint. Our best
multimodal model yields 73.84 accuracy, sur-
passing the multimodal BabyLM baselines as
well as the current 2 submissions on the mul-
timodal BabyLM leaderboard (2024 Flamingo:
70.9, GIT: 65.2, 2025 Flamingo: 70.9, GIT: 72.2).
We see that, generally, the text-only model out-
performs or is on par with the multimodal model,
except some later checkpoints.

We use the ‘fast’ versions of the benchmarks
that contain a smaller set of samples to obtain the
following results due to time and compute con-
straints.11 In Figure 4, we depict the performance

102024 baselines from: https://github.com/babylm/
evaluation-pipeline-2024/, 2025 baselines from:
https://huggingface.co/spaces/BabyLM-community/
babylm-leaderboard-2025-all-tasks

11We noticed that the Wug fast and full benchmarks are in

of the text-only and multimodal model checkpoints
on the BLiMP fast benchmark, which yields out-
comes closely aligned with those obtained from the
full benchmark.

We see similar trends for BLiMP supplement
(Figure 5), Wug past tense (Figure 6) and adjective
nominalization (Figure 7) benchmarks. This is in
line with previous work indicating that multimodal
data tend not to benefit performance on language-
only benchmarks.

When we look at the results on the Entity Track-
ing (Figure 8) and EWoK benchmarks (Figure 9),
however, we see trends where multimodal check-
points clearly outperform the text-only checkpoints.
This could be due to the focus of these datasets,
which is more knowledge- and semantics-oriented
rather than grammatical, therefore, the multimodal
data such as the image descriptions in narrative
form from the Localized Narratives dataset could
have helped.

Although our models do not perform well in
the BLiMP supplement and Wug past tense bench-
marks, they show competitive performance in the
remaining tasks.
Results on model merging. We use BLiMP as a

fact identical.
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Figure 5: Average accuracies for the text-only model and the multimodal model over the training checkpoints, for
the BLiMP supplement fast benchmark.
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Figure 6: Correlation between model predictions and human responses from the Wug past tense benchmark, for the
text-only model and the multimodal model over the training checkpoints.
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Figure 7: Correlation between model predictions and human responses from the Wug adjective nominalization
benchmark, for the text-only model and the multimodal model over the training checkpoints.

10
00

00
0

20
00

00
0

30
00

00
0

40
00

00
0

50
00

00
0

60
00

00
0

70
00

00
0

80
00

00
0

90
00

00
0

10
00

00
00

20
00

00
00

30
00

00
00

40
00

00
00

50
00

00
00

60
00

00
00

70
00

00
00

80
00

00
00

90
00

00
00

10
00

00
00

0

20
00

00
00

0

30
00

00
00

0

40
00

00
00

0

50
00

00
00

0

60
00

00
00

0

70
00

00
00

0

80
00

00
00

0

90
00

00
00

0 las
t

Checkpoint

10

15

20

25

30

35

40

45

Av
er

ag
e 

Ac
cu

ra
cy

Entity Tracking Results
MM
Text Only

Figure 8: Average accuracies for the text-only model and the multimodal model over the training checkpoints, for
the Entity Tracking fast benchmark.
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Figure 9: Average accuracies for the text-only model and the multimodal model over the training checkpoints, for
the EWoK fast benchmark.
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Figure 10: Average accuracies for the merged models with different weights (higher α indicates more contributions
from the language-only model), along with the training dynamics of the multimodal model for the BLiMP fast
benchmark.
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Figure 11: Average accuracies for Winoground. MM represents the multimodal model checkpoints and MM Merged
indicates a merged model with α = 0.3, using the language-only checkpoint with the highest BLiMP score. The red
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use case for our model merging experiments. We
merge each multimodal checkpoint model with the
language-only model that performs best in BLiMP
(100M checkpoint) with varying weights. Fig-
ure 10 illustrates the model-merging results when
combining the language-only and multimodal mod-
els using α = 0.3, 0.5 and 0.8 as the weights of
the language-only model and 1− α for the multi-
modal model. Merging the trained language-only
model in the early training stages of the multimodal
model meaningfully helps in getting better results
in BLiMP. Additionally, in the later checkpoints
when the multimodal model’s language-only capa-
bilities begin to drop, 0.3/0.7 merging scheme helps
the model maintain language-only capabilities.

To check whether merging with the language-
only model affects multimodal performance, we
also look at the accuracy on the Winoground
benchmark after merging models. The results for
Winoground are provided in Figure 11, showing
that in some checkpoints, merging can actually be
beneficial without significantly decreasing multi-
modal scores.

8 Conclusion

We have investigated whether model modifica-
tion in the form of model merging at inference
time would benefit multimodal BabyLM models in
language-only and multimodal tasks. Our results
showed that, indeed, multimodal models tend to un-
derperform in text-only benchmarks that focus on
grammar (although surpassing previous baselines)
and model merging with text-only models can help
alleviate this issue to some extent. Future work can
explore other model merging techniques and the
effects of model merging in other benchmarks.

Limitations

Due to time and compute constraints, we altered
our intended initial setup where the model is fed
256 image patches into one where a single, pooled
image representation is relayed to the model. This
might cause information loss and performance
drop, and ideally, we would like to provide the
whole set of image patches. We tested models with
6 transformer layers, which is quite few compared
to state-of-the-art models. Therefore, this might
have resulted in lesser performance. However, we
believe that our results shed light on what to ex-
pect in compute and data-efficient/scarce setups,
which should be investigated further using more

seeds and different training orders for robustness
and generalizability of the conclusions. Addition-
ally, although the set of benchmarks we tested on
does not cover the full spectrum of language-only
and multimodal tasks in the BabyLM challenge, we
think that they span a reasonable range of them, pro-
viding insights into the dynamics visuo-linguistic
processes as training progresses.
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