MoEP: Modular Expert Paths for Sample-Efficient
Language Modeling

Joonas Tapaninaho
University of Oulu, Faculty of Information Technology and Electrical Engineering, CMVS
Oulu, Finland

Abstract

Training language models under tight compute budgets with
small training datasets remains challenging for dense decoder-
only Transformers, where every token activates the full stack
of model parameters. We introduce MoEP (Modular Expert
Paths), a sparse decoder-only architecture that enables more
selective token activation, which increases model perfor-
mance and accelerates learning without increasing the total
number of parameters. We show that combining model par-
allelism with Mixture-of-Experts (MoE) style linear projec-
tions and a lightweight top-k router outperforms the GPT-2
baseline and stabilizes evaluation performance more quickly.

1 Introduction

Despite the strong dominance of dense decoder-only Trans-
formers, there is noticeable growing interest in exploring
alternative architectures, which challenge the assumption
that every token must pass through the same full stack of
layers or route.

Recent and previous work has examined sparse activation
[9, 13], routing-based decoder-only language modeling [1,
6, 10, 15], and compositional approaches, where models are
constructed from modular components [14]. These efforts
highlight a broader trend to improve efficiency and flexibility
by enabling tokens to follow different computation paths.

Our previous work, PaPaformer [14], introduced method
of remodeling Transformer layers into smaller parallel sub-
paths, which can be used as independently trainable modules.
Despite being effective for modularity, PaPaformer required
pre-trained paths to outperform the baseline architecture and
did not fully exploit the sparsity opportunities offered by
parallel paths.

This paper presents MoEP (Modular Expert Paths), which
adds model sparsity by unifying two forms of routing within a
decoder-only language model: (i) Top-k token routing across
parallel Transformer blocks, and (ii) Mixture-of-Experts
feed-forward layers based on lightweight linear projections
and comparison SwiGLU variant. As a result, each token
activates only a limited set of parallel blocks and experts in
forward-pass, creating more diverse computational pathways
while reducing redundancy. In training a load-balanced aux-
iliary loss was used to encourage stable expert and block
utilization without collapse.

We train MoEP with the BabyLM strict-small track !
data and used the official evaluation pipeline. MoEP was
able to outperform all BabyLLM strict-small baseline models,
not only GPT-2, which layer structure it follows. In addition,
MOoEP exhibits earlier learning gains in comparison to GPT-2,
which suggest faster learning capabilities. This was achieved
even though MoEP did not employ the PaPaformer [14]

Uhttps://babylm.github.io

540

style of modularity, in which independent modules were
pre-trained separately.

Linear and Norm

Layer Block

MoE grow

Parallel Layer

Layer . Layer
Block Block
S

MoE shrink

Layer Block

f

‘ Embeddings ’

Figure 1: MoEP architecture visualization. N parallel
layers are stacked before and after the MoE blocks, whose
task is to reduce or increase the hidden dimension to
match the layer blocks. In a Parallel layer, the Layer
blocks operate on a smaller hidden dimension compared
to the individual Layer blocks at the beginning and end
of the model.

This work present following contributions, which are sum-
marized below:

(1) Proposes MoEP, a modular sparse decoder-only architec-
ture that integrates top-k routing across parallel blocks
with MoE style.

(2) Employs the BabyLM evaluation pipeline on the strict-

small track to compare MoEP against GPT-2 and other

baseline models under matched conditions.

(3) Analyzes fast-eval learning dynamics, showing it earlier

stabilization in comparison GPT-2.

(4) Introduces a SwiGLU-based MoEP variant, whose learn-

ing behavior is more similar to GPT-2, but which strug-

gles to match its performance.

Proceedings of the First BabyLM Workshop, pages 540-547
November 8, 2025 ©2025 Association for Computational Linguistics

https://babylm.github.io

2 Related Works

2.1 Sparse and Routing-Based Models

Mixture-of-Experts (MoE) architectures [9, 13] introduced
sparse token-wise routing within feed-forward layers, en-
abling models to increase capacity without a proportional
increase in computational density. Follow-up works such as
GLaM [6], DeepSeek-V2 [15], and OLMoE [10] extended
this idea with improved routing strategies. More recently,
approaches like MoR [1] explored layer-level routing, where
different tokens may skip or use fewer layers. These works
reflect a broader trend toward architectures that diversify
token computation paths beyond uniform dense stacks.

Our work aligns with this trajectory but integrates routing
both across parallel Transformer blocks and within MoE
experts.

2.2 Parallel Architectures

As alternative to dense Transformer architecture design, some
works have explored parallelization as purpose to increase
expressiveness or efficiency. PaLM [4] introduced pathway-
based scaling, while Branchformer [11] combined MLP and
attention to parallel components. Our prior work, PaPaformer
[14], proposed a alternative approach, combining indepen-
dently trained parallel paths into larger composite models.
MOoERP is build on this line by maintaining parallelism but
coupling it with more MoE style top k routing.

2.3 Tiny Language Models

Evaluating new architectures at small scale has become in-
creasingly important, as recent results show that novel archi-
tectural methods can notably improve model performance,
while the size of current Large Language Models (LLMs)
limits the threshold for exploring such innovations. However,
small datasets such as TinyStories [8] and BabyLM [3]
enable rapid iteration with models under 100M parameters.
The BabyLLM challenge explicitly emphasizes architectural
innovations under a 100M and 1B-word budget and provides
a comprehensive evaluation—pipelinez,

MOoEP is designed within this paradigm: small enough for
fast training, yet still large enough to be reasonably evaluated
on benchmark suites such as BLiMP [19] and SuperGLUE
[18].

2.4 Decoder-Only Baselines

Dense decoder-only Transformers have long been the stan-
dard for autoregressive modeling, exemplified by GPT-2
[12], GPT-3 [2], LLaMA-2 [17], and LLaMA-3 [7], as well
as Google’s Gemini models [16]. These baseline models pro-
vide strong performance, but process every token through the
same layers and routes. MoEP is directly compared against
GPT-2 under matched data, optimization settings, and train-
ing conditions to isolate the effect of modular sparse routing.

541

Tapaninaho

Parallel

N e
Layer

Block
%) \

\ ™
Layer
Block

Layer
Block

Layer
Block

T—{ Top k Router }—T

r N

MoE =

HHEE
DL

Top k Router]

Figure 2: Overview of MoEP routing structure. Each
token is routed through a sparse subset of experts in
a Mixture-of-Experts (MoE) block, followed by a top-k
routed selection of Layer Blocks in a Parallel stack. The
routers select kK components, whose outputs are summed.
This design allows different tokens to follow distinct com-
putation paths through both experts and parallel layers.

3 Methodology

3.1 Overview of MoEP architecture

MOoEP and MoEP-SwiGLU (see Figure 1), is a decoder-only
model that interleaves two standard (dense) Large Layers
with a sparse middle stack: Layer Block (full size) — MoE
(shrink) — Parallel Layer N times with top-k routing —
MoE (grow) — Layer Block.

The first full size Layer Block operates at a higher hidden
dimension dr . A shrinking MoE Block uses E experts with
top-k routing, where experts are either simple Linear layer
or SwiGLU, which map projection in to smaller hidden di-
mension dp suited for the routed parallel stack (see Figure 2).
Parallel Layer uses top-k routing among P Layer Blocks,
which uses hidden dimension dp. After N Parallel Layers,
a growing MoE Block projection maps back from dp to dj,
before the second Large Layer.

3.2 Parallel Layers (Block Routing at
Smaller Dimension)

Each Parallel Layer contains P Transformer blocks {B1, B,
..., Bk}, which are architecturally equivalent to the full size
Layer Block, but operates at the reduced dimension dp (same
sublayer structure, distinct parameters) and Router, which
is simple Linear Layer size dp x P. In token-level, Router
applies top-k selection among P Layer Block and routed
inputs are summed together. This routing method allows

2hllps://git.hub.com/babylm/evaluation— pipeline-2025/

https://github.com/babylm/evaluation-pipeline-2025/

MoEP

different tokens traverse with different subsets of blocks
within each Parallel Layer.

Stacking N Parallel Layers yields a deep routed path in
compact dimensions.

3.3 MokE Projections (Shrink and Grow)

The two MoE Block projections implement the dimensional-
ity transitions:

shrink: d;, — dp, grow: dp — df.

Each MoE Block consists of E experts and a token-level
top-k routing over experts. In the base MoEP model, experts
are simple linear projections and in MoEP-SwiGLU, experts
use SwiGLU-based feed-forward projections.

3.4 Routing Objective and Training Loss

To avoid expert and block collapse, in training phase we used
a standard load-balancing regularizer.

Let p; denote the average routing probability assigned to
block or expert i over a batch. The balancing term is

Loalance = — Z pilogpi,
i

computed separately for block routing and expert routing.
The total objective is

L — -LCE +/1block Lb]OCk

expert pexpert
balance +4 L

balance’
where Lcg is the next-token cross-entropy loss and A
learning weight.

4 Training and Experimental Setup

Training Data

For training, we used only the BabyLM [3] strict-small
dataset, without any additional text preprocessing. The cor-
pus contains a little over 10 million words, drawn from cu-
rated English sources including CHILDES, BNC Spoken,
Gutenberg, OpenSubtitles, Simple Wikipedia, and Switch-
board. No external data were added, in order to ensure direct
comparability with the baseline submissions in the track.

Tokenization

All models were trained with the same GPT-2 style byte-pair
encoding (BPE) tokenizer. We use a fixed vocabulary of 16K
tokens, trained on the BabyLM strict-small corpus. This size
balances compactness with adequate coverage of rare sub-
words. The tokenizer follows a similar pattern-recognition
strategy as babylm-baseline-10m-gpt2 3, avoiding the need
for training data preprocessing and ensuring maximal simi-
larity with the BabyLLM baseline models.

Training Procedure

MOoEP, MoEP-SwiGLU, and GPT-2 baseline model were
trained from scratch under identical training settings and
with causal language modeling objective. We used AdamW
with cosine learning rate decay for stable model training
with standard dropout and weight decay regularization. Ini-
tially, we pre-tokenized the training data with a stride of 128.
During training, examples were randomly sampled from the

3hllps://huggingface.co/BabyLM» community/babylm-baseline- 10m- gpt2

542

full pre-tokenized dataset using an epoch-based shared seed,
ensuring that all models were trained on the same examples.

Each model was trained for 10 epochs, with training in
each epoch stopped after the model had seen approximately
10M words.

Checkpoints were saved every 1M words up to 9M words,
and subsequently every 10M words up to 100M words. After
training, we ran fast evaluation on all checkpoints, and the
final model weights were taken from the checkpoint with the
best evaluation performance. These weights were then used
for full evaluation. MoEP and GPT-2 achieved their best
accuracy at 30M words, while MoEP-SwiGLU reached its
peak after 80M words.

A model hyperparameters (hidden dimension, number
of layers, parameter counts) were selected to match with
BabyLLM baseline models and these are listed in Appendix A
and Appendix B.

Evaluation Protocol

Evaluation followed the official BabyLM pipeline [3]. Zero-
shot evaluation included BLIMP, EWOK, WUG, and other
tasks, with the full list available in the evaluation pipeline
documentation®. For tasks involving finetuning (e.g., MNLI,
QQP, RTE), the BabyLM evaluation pipeline supplied both
training data and default finetuning parameters, which we
adopted directly.

Environment

All experiments were conducted with single NVIDIA A100
GPU in CSC’s Puhti supercomputing environment [5]. Train-
ing a single model for 10 epochs required approximately 1-2
hours, a duration that could be further reduced with code
optimizations. All code is implemented using PyTorch and
Hugging Face libraries and released for reproducibility 3
and model is directly downloadable in Hugging Face 6,

5 Results

5.1 Evaluation Scores

As table 1 shows, MoEP achieved the highest performance
across all models, including the official BabyLM baselines
under the strict-small track, when the AoA task score was
included in the Macro Average. Even when excluding AoA
from the macro average, MoEP still outperformed the our
and the official BabyLM GPT-2 baseline, which we consider
our primary comparison point due to the similarity (MoEP-
SwiGLU) or full correspondence (MoEP) in layer architec-
ture. MoEP also obtained the best score in five individual
tasks, the highest count among all models evaluated.
Among our models, the GPT-2 variant slightly outper-
formed the BabyLM GPT-2 baseline in macro average with-
out AoA, reaching performance comparable to MoEP. How-
ever, subsequent analysis revealed a key distinction - MoEP
extracted useful patterns earlier during training. This indi-
cates that modular sparse routing can provide better sample
efficiency, even if final scores converge to similar levels.

“https://github.com/babylm/evaluation- pipeline-2025/
5 https://github.com/Jtapsa/BabyLM-2025
6htlps1//hug,‘:zingface.co/J tapsa/moep

https://huggingface.co/BabyLM-community/babylm-baseline-10m-gpt2
https://github.com/babylm/evaluation-pipeline-2025/
https://github.com/Jtapsa/BabyLM-2025
https://huggingface.co/Jtapsa/moep

Tapaninaho

Model Zero-shot Tasks | Finetuned Tasks | Macro
BLiIMP EWOK Entity WUG Comps Reading AoA ‘ BoolQ MNLI MRPC MultiRC QQP RTE WSC ‘ Avg
Our Models
GPT-2 59.70 57.85 13.15 36.00 51.20 6.40 - ‘ 67.50 49.10 69.60 66.70 71.55 62.60 63.45 ‘ 48;10
MoEP 7 59.15 5020 35.65 33.00 50.70 6.70 53.70 ‘ 66.20 48.10 70.10 6450 70.75 62.60 67.30 ‘ izgg
MOEP 8 60.35 49.50 17.10 36.50 51.35 6.60 - 66.30 4830 70.60 6725 69.40 54.70 61.55 47.70
(SwiGLU) -
HF Baselines
GTP-2? 61.75 4990 1390 30.55 51.70 6.50 11.7 ‘ 52.10 33.10 67.60 5750 63.60 56.10 61.50‘ gggg
GPT-BERT 6745 4950 34.60 36.05 52.80 6.70 -3.90 | 68.10 4690 74.50 68.30 7670 56.10 65.40 54.10
(causal) 41.20
GPT-BERT 62.35 49.5 31.10 3270 52.90 6.50 38 | 67.60 51.80 78.90 67.40 7740 57.60 61.50 33.65
(focus-causal) 40.00
GPT_BER? 126560 5020 2540 48.50 25.00 6.40 14.50 | 66.70 53.30 77.50 67.00 76.60 5540 63.50 5240
(mixed-causal) 39.20

Table 1: Evaluation scores on BabyLLM tasks for our models (top) and Hugging Face baseline models (bottom). Two
macro averages are reported: the first excludes the AoA result obtained from the Hugging Face leaderboard, while the
second represents the overall text-average. In table, BLIMP refers to the average over BLiMP and BLiMP-supplement,
WUG corresponds to the average of Wug Adjacency and Wug Past Tense, and Readings is the average of Eye Tracking

and Self-Paced Reading tasks.

Smoothed Deviation from Task Mean Accuracy
MoEP performance across BabyLM tasks over training size

Task
© BLiMP
EWOK
© Entity Tracking
® WUG
© Readings
task
@ BLIMP
B EWOK
A Entity Tracking
gh Readings
€ WUG

Smoothed Deviation from Task Mean

20M 30M 40M 50M

10M

50M

70M 80M 90M 100M

Training Words (Millions)

Figure 3: Smoothed deviation from task mean accuracy for MoEP. The dashed origin line represents the average result,
while smoothed deviation shows the task accuracy at specific checkpoint relative to the mean.

By contrast, MOEP-SwiGLU did not reach the same level
of performance. This suggests that lightweight linear experts
are more effective at the small scale, whereas SwiGLU based
feed-forward experts require longer training to stabilize and
still achieve lower overall scores compared to the other mod-
els.

Note that our GPT-2 and MoEP-SwiGLU results do
not include AoA scores, which are provided in the official
BabyLM leaderboard.

5.2 Analysis of Training Development

To better understand how each model architecture learns over
training, we analyze their fast-evaluation scores across check-
points. In the following training dynamics analysis, BLIMP
refers to the average over BLIMP and BLiMP-supplement,

543

WUG corresponds to the average of Wug Adjacency and
Wug Past Tense, and Readings is the average of Eye Track-
ing and Self-Paced Reading tasks.

MoEP

Figure 3 presents results for the MoEP model. Compared
to GPT-2 (see Figure 4), MoEP exhibits more comprehen-
sive early learning, reaching peak performance at the 30M
checkpoint, where nearly all task scores are at or above their
task-specific means. After 90M words, deviations regress to-
ward zero, with Entity Tracking in particular stabilizing well
below the mean. This indicates that MoEP quickly learns
to achieve near-optimal evaluation performance but later be-
gins to overfit, leading to diminished generalization. The

MoEP

Smoothed Deviation from Task Mean Accuracy
GPT-2 performance across BabyLM tasks over training size

Task
© BLIMP
EWOK
© Entity Tracking
® WUG
© Readings

task

@ BLIMP

[l EWOK

A Entity Tracking
gk Readings

© WUG

Smoothed Deviation from Task Mean

10M 20M 30M 40M 50M

60M

70M oM 90M 100M

Training Words (Millions)

Figure 4: Smoothed deviation from task mean accuracy for GPT-2. Where The dashed origin line represents the average
result, while smoothed deviation shows the task accuracy at specific checkpoint relative to the mean.

Smoothed Deviation from Task Mean Accuracy
MoEP-SwiGLU performance across BabylL M tasks over training size

A

Task
® BLiMP
EWOK
© Entity Tracking
® WuG
@ Readings
task
@ BLiMP
B EWOK
A Entity Tracking
gk Readings
© WUG

Smoothed Deviation from Task Mean

10M 20M 30M 40M 50M

60M
Training Words (Millions)

70M 80M 90M 100M

Figure 5: Smoothed deviation from task mean accuracy for MoEP-SwiGLU. The dashed origin line represents the
average result, while smoothed deviation shows the task accuracy at specific checkpoint relative to the mean.

pattern highlights that modular routing accelerates initial pat-
tern discovery but may not sustain improvements throughout
training.

GPT-2

Figure 4 shows the GPT-2 baseline smoothed task-mean fast-
evaluation results. Unlike MoEP, once GPT-2 reaches its
best performance at the 30M checkpoint, it does not stabilize
as quickly but continues to improve on certain tasks. On the
other hand, after the 70M checkpoint, WUG begins to de-
cline and shows no clear signs of stabilization. This reflects a
key tradeoff of dense architectures: the model reaches its best
scores on different evaluation tasks at different checkpoints
rather than converging to a consistent stable state.

MoEP-SwiGLU

Unlike MoEP, MoEP-SwiGLU (see Figure 5) shows a
development more similar to GPT-2. The model exhibits
strong late-phase improvements on WUG and BLiMP, with
performance rising steadily after 60M words, while other
tasks begin to stabilize. MOEP-SwiGLU reaches its best
performance at the 80M checkpoint, much later than the

544

other models. As with MoEP and GPT-2, Entity Tracking
shows strong instability, where early gains at the first check-
points collapse sharply afterward. These results suggest that
SwiGLU-based experts can improve performance on certain
tasks, while other evaluations stabilize without the declines
observed elsewhere.

Comparative Trends

MOEP learns rapidly during its early checkpoints, showing
early specialization particularly on Entity Tracking and
WUG. After the peak at the 30M checkpoint, however, sub-
sequent checkpoints achieve notably lower evaluation scores.

MOoEP-SwiGLU achieves the strongest late-phase gains
on WUG, but this comes at the cost of weaker performance
on Entity Tracking and BLiMP.

GPT-2 shows steadier learning and after reaching its peak
performance it experiences fewer dramatic changes in later
checkpoints compared to the MoEP variants.

In conclusion, these metrics illustrate that sparse modular
routing can accelerate early learning but also introduces insta-
bility. The choice of expert type (linear vs. SwiGLU) further
shifts the balance between stability and specialization.

6 Discussion

Limitations

Despite promising results, MoEP and MoEP-SwiGLU were
trained only on a small dataset. It therefore remains un-
clear whether scaling up the model size and training data
would preserve their relative performance compared to GPT-
2. Within BabyLM, where the training corpus and patterns
to be learned are relatively simple, smaller-dimensional par-
allel blocks can capture these patterns as effectively as dense
GPT-2 layers. With more complex data, however, parallel
layers may no longer operate effectively at reduced dimen-
sionality, forcing an increase in total parameters that could
exceed those required by a dense GPT-2 to learn the same
patterns.

This work also did not include a detailed analysis of expert
and block routing. Routing dynamics may have influenced
the fast-evaluation results, in way that faster learning ob-
served at early checkpoints could be a consequence of more
flexible routing, while the current load-balancing regularizer
may have forced overly uniform usage, negatively impacting
final evaluation scores. Finally, due to the small model and
dataset scale, the present study focused on evaluation bench-
marks only and did not investigate generation capabilities.
Such analysis might reveal additional differences between
sparse MoEP and dense GPT-2 architectures.

Architectural Takeaways

The experiments suggest three main lessons:

e Sparse block and expert routing accelerates early learn-
ing, but overall evaluation scores decline afterwards and
do not fully recover. This drop is driven by permanent
degradation on certain tasks, which lowers the aggregate
performance.

e SwiGLU experts increase task specialization and yield
late-phase gains, but also amplify volatility and fail to
achieve overall results comparable to linear experts.

e Parallel models can match or even outperform dense archi-
tectures in the BabyLM strict-small setting. This shows
that lower-dimensional sparse paths are sufficient to cap-
ture relatively simple language patterns.

Future Work

Future extensions of MoEP could explore:

e Scaling the number of parallel blocks and MoE experts
beyond the current four to further increase model sparsity.

e Testing alternative expert architectures in the MoE projec-
tions.

o Exploring different load-balancing regularization strate-
gies and analyzing their effects on learning dynamics and
evaluation performance.

o Extending evaluation to larger and more complex training
datasets to test whether MoEP retains its ability for fast
learning and stable evaluation performance.

7 Conclusion

We presented MoEP, a sparse decoder-only architecture that
combines top-k routing across parallel blocks with linear and

545

Tapaninaho

feed-forward Mixture-of-Experts projections, allowing the
model to flexibly adjust dimensionality across layers.

Within the BabyLM strict-small track, MoEP outper-
formed all official BabyLM baseline models, not only GPT-2
(the architecture on which it is based), even though GPT-2
itself was the weakest among the BabyLLM baselines.

Our analysis demonstrates a tradeoff in which sparse mod-
ular routing accelerates early learning but also introduces
higher training variance, with performance often peaking
early and then declining. The MoEP-SwiGLU variant fur-
ther showed that expert design directly influences both learn-
ing speed and stability. This may be due to the increased
parameter size, which is an effect of the MoEP-SwiGLU
expert design, although the task based learning behavior is
neither similar nor stable compared to MoEP.

These findings suggest that layer-level sparse, routing-
based architectures provide a viable path toward sample-
efficient language modeling, even under small-scale budgets.
Future work will focus on improving learning stability, op-
timizing sparse computation, and extending modular expert
routing to larger-scale settings.

Acknowledgments

This work was made possible through computation environ-
ments provided by the University of Oulu ICT services. 1
would like to thank Prof. Mourad Oussalah and MSc. Moinul
Islam for their valuable feedback and helpful suggestions,
which contributed to the development of this research.

References

[1] Sangmin Bae, Yujin Kim, Reza Bayat, Sungnyun Kim, Jiyoun Ha,
Tal Schuster, Adam Fisch, Hrayr Harutyunyan, Ziwei Ji, Aaron
Courville, and Se-Young Yun. 2025. Mixture-of-Recursions: Learn-
ing Dynamic Recursive Depths for Adaptive Token-Level Computation.
arXiv:2507.10524 [cs.CL] https://arxiv.org/abs/2507.10524

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, et al. 2020. Language models are few-shot
learners. Advances in Neural Information Processing Systems 33 (2020),
1877-1901.

Lucas Charpentier, Leshem Choshen, Ryan Cotterell, Mustafa Omer
Gul, Michael Hu, Jaap Jumelet, Tal Linzen, Jing Liu, Aaron Mueller,
Candace Ross, Raj Sanjay Shah, Alex Warstadt, Ethan Wilcox, and
Adina Williams. 2025. BabyLM Turns 3: Call for papers for the 2025
BabyLLM workshop. arXiv:2502.10645 [cs.CL] https://arxiv.org/abs/
2502.10645

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, and et
al. 2022. PaLM: Scaling Language Modeling with Pathways.
arXiv:2204.02311 [cs.CL] https://arxiv.org/abs/2204.02311

CSC - IT Center for Science. [n.d.]. Puhti Supercomputer. https:
//docs.csc.fi/computing/systems-puhti/. Accessed: 2025-05-06.

Nan Du, Le Hou, Aitor Zhang, Anton Bakhtin, Nathan Scales, Zhifeng
Dai, Xin Li, Shixiang Xie, William Fedus, Mostafa Dehghani, and et
al. 2022. GLaM: Efficient Scaling of Language Models with Mixture-
of-Experts. In International Conference on Learning Representations
(ICLR). https://openreview.net/forum?id=k7K6kB9td9

Abhimanyu Dubey and et al. 2024. The Llama 3 Herd of Models. arXiv
preprint arXiv:2407.21783 (2024).

Ronen Eldan and Yuanzhi Li. 2023. TinyStories: How Small
Can Language Models Be and Still Speak Coherent English?
arXiv:2305.07759 [cs.CL] https://arxiv.org/abs/2305.07759

William Fedus, Barret Zoph, and Noam Shazeer. 2021. Switch Trans-
formers: Scaling to Trillion Parameter Models with Simple and Effi-
cient Sparsity. In Advances in Neural Information Processing Systems
(NeurlIPS), Vol. 34. 8473-8483. https://proceedings.neurips.cc/paper/
2021/hash/2c¢5dc10619a37b0c79ef595¢0bda0592- Abstract.html
Niklas Muennighoff, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Jacob
Morrison, Sewon Min, Weijia Shi, Pete Walsh, Oyvind Tafjord, Nathan
Lambert, Yuling Gu, Shane Arora, Akshita Bhagia, Dustin Schwenk,
David Wadden, Alexander Wettig, Binyuan Hui, Tim Dettmers, Douwe

[2]

3

[4

[5]
(6]

17

[8

[9

[10]

https://arxiv.org/abs/2507.10524
https://arxiv.org/abs/2507.10524
https://arxiv.org/abs/2507.10524
https://arxiv.org/abs/2502.10645
https://arxiv.org/abs/2502.10645
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2204.02311
https://docs.csc.fi/computing/systems-puhti/
https://docs.csc.fi/computing/systems-puhti/
https://openreview.net/forum?id=k7K6kB9td9
https://openreview.net/forum?id=k7K6kB9td9

MoEP

[11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

Kiela, Ali Farhadi, Noah A. Smith, Pang Wei Koh, Amanpreet Singh,
and Hannaneh Hajishirzi. 2025. OLMOoE: Open Mixture-of-Experts
Language Models. arXiv:2409.02060 [cs.CL] https://arxiv.org/abs/
2409.02060

Yifan Peng, Siddharth Dalmia, Ian Lane, and Shinji Watanabe. 2022.
Branchformer: Parallel MLP-Attention Architectures to Capture Lo-
cal and Global Context for Speech Recognition and Understanding.
arXiv:2207.02971 [cs.CL] https://arxiv.org/abs/2207.02971

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei,
and Ilya Sutskever. 2019. Language Models are Unsupervised Multitask
Learners. OpenAl Blog (2019).

Noam Shazeer, Azalia Mirhoseini, Andrew Maziarz, Krzysztof Davis,
Quoc Le, Geoffrey Hinton, and Jeff Dean. 2017. Outrageously large
neural networks: The sparsely-gated mixture-of-experts layer. In In-
ternational Conference on Learning Representations (ICLR). https:
/lopenreview.net/forum?id=B 1ckMDqlg

Joonas Tapaninaho and Mourad Oussala. 2025. PaPaformer: Language
Model from Pre-trained Parallel Paths. arXiv:2508.00544 [cs.CL]
https://arxiv.org/abs/2508.00544

DeepSeek Team. 2024. DeepSeek V2: Scaling Vision-Language Models
with Mixture of Experts. arXiv:2401.00733 [cs.CL]

Gemini Team and et al. 2023. Gemini: A Family of Highly Capable
Multimodal Models. Google DeepMind Technical Report (2023).
Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Alma-
hairi, Yasmine Babaei, Nikolay Bashlykov, Sharan Batra, Akshat Bhar-
gava, Shruti Bhosale, et al. 2023. LLaMA 2: Open foundation and
fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023).

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh,
Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. 2019.
SuperGLUE: A Stickier Benchmark for General-Purpose Language
Understanding Systems. In Advances in Neural Information Processing
Systems, Vol. 32.

Alex Warstadt, Yining Cao, Jun Ho, Ellie Pavlick, and Samuel R Bow-
man. 2020. BLiMP: The Benchmark of Linguistic Minimal Pairs for
English. Transactions of the Association for Computational Linguistics
8 (2020), 377-392.

546

https://arxiv.org/abs/2305.07759
https://arxiv.org/abs/2305.07759
https://arxiv.org/abs/2305.07759
https://proceedings.neurips.cc/paper/2021/hash/2c5dc10619a37b0c79ef595e0bda0592-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/2c5dc10619a37b0c79ef595e0bda0592-Abstract.html
https://arxiv.org/abs/2409.02060
https://arxiv.org/abs/2409.02060
https://arxiv.org/abs/2409.02060
https://arxiv.org/abs/2207.02971
https://arxiv.org/abs/2207.02971
https://openreview.net/forum?id=B1ckMDqlg
https://arxiv.org/abs/2508.00544
https://arxiv.org/abs/2508.00544
https://arxiv.org/abs/2508.00544
https://arxiv.org/abs/2401.00733

A Model Hyperparametrs

Comparison of architectural hyperparameters across model

variants.
Hyperparameter GPT-2 MoEP MoEP SwiGLU
Vocabulary size ~ 16K ~ 16K ~ 16K
dmodel 384 384/192 384/192
Layers 12 2/10 2/10
Parallel blocks - 4 4
Heads 6 6/3 6/3
Head dimension 64 64 64
FF multiplier 4 4 4
FF type MLP MLP SwiGLU
MoE FF type - Liner SwiGLU
N experts - 4 4
Top k - 2 2
Normalization LN LN LN
Attention MHA MHA MHA
Train seq len 512 512 512
Total Parameter 28M 28M 38M

(millions)

Table 2: Architectural hyperparameters of GPT-2, MoEP,

and MoEP-SwiGLU.

547

B Training Setup

Detailed training configurations for all models.

Tapaninaho

Hyperparameter Value
Optimizer AdamW
Learning rate 3x 1074
Batch size 16
Training epochs 10
Gradient accumulation steps 1
Weight decay 0.1
Adam betas (0.9, 0.95)
Adam epsilon 1x1078
Scheduler type Cosine
‘Warmup steps 800
Random seed 42

Table 3: Training setup and optimization parameters.

