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Abstract

We present a masked diffusion language mod-
eling framework for data-efficient training for
the BabyLM 2025 Challenge. Our approach ap-
plies diffusion training objectives to language
modeling under strict data constraints, incor-
porating frequency-informed masking that pri-
oritizes learning from rare tokens while main-
taining theoretical validity. We explore multi-
ple noise scheduling strategies, including two-
mode approaches, and investigate different
noise weighting schemes within the Negative
Evidence Lower Bound (NELBO) objective.
We evaluate our method on the BabyLM bench-
mark suite, measuring linguistic competence,
world knowledge, and human-likeness. Re-
sults show performance competitive to state-
of-the-art hybrid autoregressive-masked base-
lines, demonstrating that diffusion-based train-
ing offers a viable alternative for data-restricted
language learning.

1 Introduction

By the age of 12, human children are typically
exposed to fewer than 100 million words (Gilker-
son et al., 2017). In contrast, state-of-the-art lan-
guage models (LMs) (Touvron et al., 2023; Qwen
et al., 2025) are trained on trillions of tokens. The
BabyLM Challenge (Warstadt et al., 2023a) was
introduced to address this striking efficiency gap
by encouraging research on more data-efficient pre-
training strategies. The 2025 strict track constrains
participants to train models for up to 10 epochs on
a 100M-word corpus (Charpentier et al., 2025).

A prominent recent approach, winning the 2024
iteration of the BabyLM Challenge, GPT-BERT,
combined a Masked Language Modeling (MLM)
and Next Token Prediction (NTP) objective dur-
ing pretraining (Charpentier and Samuel, 2024).
The MLM objective has limited learning (gradi-
ent signal) efficiency, utilizing only „15% of cor-
pus tokens per epoch (Devlin et al., 2019), while

NTP learns from all tokens; as a result, NTP-based
autoregressive (AR) generative models dominate
the landscape of state-of-the-art language model-
ing (Brown et al., 2020). However, AR models
typically use causal attention, only attending to
previous tokens, which limits their bidirectional
understanding and expressive ability (Devlin et al.,
2019).

Recent advances in diffusion models have en-
abled their application to discrete text generation,
with masked diffusion language models (MDLMs
) emerging as a promising approach that com-
bines bidirectional context modeling with genera-
tive training (Sahoo et al., 2024). MDLMs are masked
language models with “parallel” generative capabil-
ities, offering a compelling middle ground between
the bidirectional understanding of MLMs and the
generative efficiency of AR models. Unlike tradi-
tional MLM where a fixed percentage of tokens
is masked at each step, MDLMs employ a diffusion
process that varies masking rates across training,
potentially leading to more efficient learning dy-
namics. This creates a natural curriculum where
the model learns to reconstruct text under varying
levels of corruption.

Recent work has shown that MDLMs can achieve
competitive performance with AR models, while
maintaining the bidirectional context benefits of
masked models (Sahoo et al., 2024; Shi et al.,
2025). However, diffusion models face challenges
in data-sparse settings, with their multi-step train-
ing process potentially amplifying overfitting is-
sues, an area that remains relatively unexplored in
language modeling. Specifically, MDLMs’ effective-
ness in data-constrained settings remains unknown.
In this work, we explore whether MDLMs trained for
just 10 epochs over a 100M word corpus can match
or surpass hybrid state-of-the-art approaches like
GPT-BERT.

We hypothesize that the principled diffusion
training objective of MDLMs, combined with strate-
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gic masking approaches, can achieve more sample-
efficient learning compared to fixed-rate MLM or
purely autoregressive training. To test this hy-
pothesis, we implement a masked diffusion lan-
guage modeling framework and explore multiple
noise scheduling strategies, including two-mode
approaches, while investigating different noise
weighting schemes within the Negative Evidence
Lower Bound (NELBO) objective. We further in-
troduce frequency-informed masking that progres-
sively prioritizes learning from rare tokens during
the diffusion process, directing the model’s atten-
tion toward more informative and challenging as-
pects of language while preserving the theoretical
validity of the diffusion objective.

Our contributions are threefold: 1) we adapt
masked diffusion language modeling for data-
restricted settings, exploring multiple noise
scheduling strategies including two-mode ap-
proaches and different NELBO weighting schemes,
2) we introduce a frequency-informed masking
strategy that seamlessly integrates into the diffu-
sion objective while preserving theoretical validity,
and 3) we provide comprehensive evaluation on the
BabyLM benchmark demonstrating that diffusion-
based training achieves competitive performance
with established baselines. Our code and weights
are made available1.

2 Related Work

Masked Diffusion Language Modeling In-
spired by continuous-time diffusion models (Sohl-
Dickstein et al., 2015), diffusion frameworks have
emerged as a powerful paradigm for discrete text
generation. Austin et al. (2023) introduced D3PM,
establishing the theoretical foundation for applying
diffusion to text, with concurrent work by Hooge-
boom et al. (2021) and Campbell et al. (2022) devel-
oping discrete and continuous-time formulations.
The intersection of diffusion with masked language
modeling proved particularly promising. Masked
diffusion modeling formulates discrete diffusion as
a Markov process with an absorbing state, where
tokens replaced by [MASK] remain masked in sub-
sequent steps, and the reverse process reconstructs
original data from progressively corrupted repre-
sentations. Sahoo et al. (2024) introduced simpli-
fied MDLMs, unifying masked language modeling
and diffusion through a simplified NELBO expres-

1https://github.com/DespoinaKK/
babylm-diffusion

sion. This combines bidirectional context benefits
with generative training in a unified objective. Sim-
ilar simplified formulations by Shi et al. (2025) and
Ou et al. (2025) demonstrated improved efficiency,
with recent work by Sahoo et al. (2025) bridging
discrete and Gaussian diffusion for enhanced train-
ing techniques.

Masking Strategies for MLMs Several ap-
proaches have extended BERT’s 15% random token
masking (Devlin et al., 2019) with more structured
strategies. SpanBERT masks contiguous random
spans rather than individual tokens and introduces
a span boundary objective to predict entire masked
spans (Joshi et al., 2020), achieving substantial
improvements on span selection tasks. ELECTRA
replaces tokens with plausible alternatives using
a generator-discriminator framework, moving be-
yond simple masking to token replacement detec-
tion (Clark et al., 2020). RoBERTa introduces dy-
namic masking where different tokens are masked
across training epochs, in contrast to BERT’s static
masking approach (Liu et al., 2019). PMI-Masking
proposes a principled approach based on Point-
wise Mutual Information, jointly masking token
n-grams with high collocation scores over the cor-
pus (Levine et al., 2020).

Diffusion Models in Data-Sparse Settings Dif-
fusion models face significant challenges when ap-
plied to data-constrained image scenarios. Zhu et al.
(2022) demonstrated that standard diffusion mod-
els suffer from diversity degradation in few-shot
settings, leading to overfitting on limited training
samples. Wang et al. (2024) identified that image-
agnostic Gaussian noise creates uneven adaptation
effects and proposed adversarial noise selection for
more balanced transfer learning. Lu et al. (2023)
showed efficient adaptation through fine-tuning spe-
cific attention layers, while Kulikov et al. (2023)
explored single-image learning by modeling inter-
nal patch distributions. However, these findings
focus on vision tasks, leaving diffusion models in
data-constrained LM underexplored.

Token Frequency, Weighting and Masking
Frequency-based training strategies have emerged
to address the imbalance of Zipfian distributions
of language tokens. Platanios et al. (2019) demon-
strated that curriculum learning based on word fre-
quency can improve sample efficiency in neural
machine translation. Bengio et al. (2009) showed
that gradually increasing task difficulty, i.e., from
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frequent to rare tokens, can lead to better conver-
gence and generalization. Importance sampling ap-
proaches have been developed to reweight training
examples based on token loss (Lin et al., 2024). Re-
cent work has explored adaptive masking strategies
that prioritize more salient tokens during training
(Choi et al., 2024). However, the application of
frequency-based weighting specifically to diffusion
models remains unexplored, particularly in data-
constrained settings where efficient learning from
rare tokens becomes critical.

3 Methodology

3.1 Pretraining
Architecture Our model architecture is a Trans-
former (Vaswani et al., 2023), based on the
LTG-BERT model (Samuel et al., 2023), with
the attention-gating modifications from (Georges
Gabriel Charpentier and Samuel, 2023). To time-
condition this model for the diffusion process, we
use a timestep embedding and incorporate it with
Adaptive Layer Normalization (AdaLN) modula-
tion, following (Peebles and Xie, 2023). This
approach enables the model to condition its pre-
dictions on the current masking level at diffusion
timestep t, allowing it to adapt its behavior across
different stages (masking rates) of the diffusion
process.

Diffusion Objective Our approach is inspired by
both last year’s winning GPT-BERT method and re-
cent advances in MDLMs (Sahoo et al., 2024, Shi
et al., 2025). While GPT-BERT demonstrates the
effectiveness of combining encoding and genera-
tive objectives through joint training with MLM
and NTP, MDLMs results reveal that a single princi-
pled diffusion objective can achieve similar dual-
purpose training. We adopt the MDLMs framework
to explore whether this unified approach can be
effective in the data-restricted BabyLM setting.

Following (Sahoo et al., 2024), at every train-
ing step, a masking rate 1 ´ αt is sampled from
a distribution over p0, 1q for each sequence. Only
masked tokens contribute to the cross-entropy loss,
and the total objective is a weighted average of
MLM losses across different masking levels.

Specifically, in expectation, we optimize the sim-
plified continuous-time NELBO objective from
MDLMs (Sahoo et al., 2024):

L “ Eq

ż t“1

t“0

α1
t

1 ´ αt

Lÿ

ℓ“1

logxxℓ
θpZtq,xℓy dt (1)

where α1
t denotes the time derivative of the noise

schedule αt, Zt represents the masked sequence
at time t, xℓ the token at position ℓ, xℓ

θpztq is the
model’s prediction at that position, and θ the learn-
able parameters. This formulation provides a prin-
cipled objective that naturally weights different
masking rates according to the diffusion schedule,
and involves maximum-likelihood optimization.

Frequency Informed Masking We propose
frequency-informed masking that assigns higher
masking probabilities to rare tokens. This ap-
proach prioritizes learning from infrequent but se-
mantically rich tokens rather than common func-
tion words. For a given sequence of tokens Z “
rx1, . . . ,xLs with a pre-assigned masking rate of
1 ´ αt, we follow a two-step process to determine
the masking probability for each token. First (step-
1), we rank tokens based on their global frequency,
with rarer tokens receiving higher ranks. These
ranks are min-max normalized to produce initial
per-token weights wℓ P p0, 1q, constructing per-
sequence weights w. To prevent an over-emphasis
on extremely rare tokens, these weights are “soft-
ened” by being raised to a power p ă 1. Our goal
is to scale the weights so that they correspond to
the tokens’ sampling probability. Next (step-2), we
apply conditional scaling to these weights to ensure
their mean equals the target probability 1 ´ αt.

wnew “
#
wp 1´αt

µ if µ ą 1 ´ αt

´p1 ´ wpq αt
1´µ ` 1 otherwise

(2)

Each token xℓ is then masked with a probability
equal to its new weight, wℓ

new.
This weighting scheme can be naturally ex-

tended to a form of curriculum learning (Bengio
et al., 2009) by gradually increasing the softening
power p from 0 to a value ă 1 across training. This
process makes the distribution of masking proba-
bilities sharper over time, which forces the model
to progressively focus on predicting rarer and more
challenging tokens. We note that frequency is only
one option for the relative ranking of tokens. In our
proposed MDLMs framework, any masking strategy
can be flexibly and seamlessly incorporated.

3.2 Evaluation

We evaluate our framework using the BabyLM
Challenge evaluation pipeline, assessing models
across linguistic competence, world knowledge,
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human-likeness measures, and standard Natural
Language Understanding (NLU) tasks. This suite
tests both the quality of learned representations and
their alignment with human language acquisition.

Zero-Shot Evaluation We evaluate our models
on tasks focusing on linguistic performance and
understanding, such as BLiMP (Warstadt et al.,
2023b) and Blimp Supplement (Warstadt et al.,
2023b). Another linguistic test, targeting grammat-
ical generalization is the Derivational Morphology
Test (Hofmann et al., 2024), namely the WUG Ad-
jective Nominalization Test, along with a prior con-
tribution, the WUG Past Tense Test (Weissweiler
et al., 2023). EWoK (Ivanova et al., 2025) tests
the model’s understanding of the world, including
physical concepts and causal relationships. In a
similar minimal pair setting, COMPS (Misra et al.,
2023) tests inheritance of properties between hier-
archical concepts. Entity Tracking (Kim and Schus-
ter, 2023) tests the model’s state tracking abilities.
In the zero-shot setting, the goal is for the model
to assign higher likelihood to the correct sentence,
from a group of sentences.

Finetuning Our pretrained model is further fine-
tuned and evaluated on a subset of GLUE (Wang
et al., 2019) and SuperGLUE (Wang et al., 2020),
testing NLU.

Human-Likeness Alignment with human acqui-
sition is of special interest when training in develop-
mentally plausible settings. We evaluate on a Read-
ing task using data from (de Varda et al., 2024) and
on Age of Acquisition (Chang and Bergen, 2022).
The derivational morphology tests (Hofmann et al.,
2024), (Weissweiler et al., 2023) provide human
annotator data, and the higher model with human
correlation is favorable.

Evaluation Backend We use the provided MLM
backend to estimate pseudo-likelihoods of sen-
tences (Salazar et al., 2020). MDLM can be eval-
uated with or without time conditioning. Without
time conditioning, we set the masking rate to 0,
which corresponds to a fully denoised sequence.
With time conditioning, we set the masking rate to
1{L for a sequence of length L, which matches the
expected masking rate when evaluating one token
at a time.

3.3 On the MLM evaluation backend
We argue that for MDLMs, the MLM evaluation back-
end is a rather myopic view of likelihood estima-

tion, as it only focuses on the very last denoising
(unmasking) steps, ignoring previous ones. In the-
oretical contrast to MLMs, MDLMs are generative
language models. For MDLMs, perplexity estimation
can be viewed as a Monte-Carlo approximation
of the diffusion denoising process (Sahoo et al.,
2024).

We suggest that a more appropriate evaluation
backend would accommodate for the various pos-
sible generation trajectories of the same phrase,
and thus provide an estimation better aligned with
the native diffusion training objective. This ap-
proach would require either exhaustive computa-
tion, at the expense of exponential compute time,
or Monte-Carlo approximation. The latter is prac-
tical for perplexity estimation in large texts, but
the accompanying non-determinism proves unsuit-
able for capturing nuances between similar, short
sentences. Nonetheless, for the purposes of the
BabyLM Challenge, the MLM pseudo-likelihood
estimation, utilized for relatively short sentences,
offers the advantage of efficient computation, suffi-
ciently good performance, and determinism.

4 Experiments

We briefly describe the training setup and proceed
with a series of experiments, ablations, and evalu-
ations which explore different components of the
proposed framework and validate the soundness of
our method. First, we test different noise schedul-
ing options, e.g., uniform and cosine, naturally mo-
tivating our submission’s adopted approach. We
also include an exploration of experimental uni-
modal and bimodal gaussian schedules, ultimately
aiming to design a noise schedule that balances the
advantages of AR and MLM approaches. Next, we
conduct ablation experiments, establishing the ben-
efits of the proposed frequency informed masking
method. Finally, we focus on our submission to
the BabyLM Challenge, providing implementation
details and the full evaluation results.

4.1 Training Setup

Our architecture follows (Charpentier and Samuel,
2024). We use the same tokenization process and
optimizer hyperparameters. The training objective
aligns with MDLMs’ as in Eq. (1). We train our mod-
els for 10 epochs on the BabyLM corpus, with a
constant sequence length of 128 for ablation stud-
ies, and 512 for the submission model.
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SCHEDULE EWoK (Ò) BLiMP (Ò) BLiMP Sup. (Ò)

Eval. w/o Time Conditioning
Uniform 51.98˘0.12 77.91˘1.35 67.63˘3.64
Cosine 52.44˘0.24 79.05˘0.28 70.74˘1.35

Eval. with Time Conditioning
Uniform 52.16˘0.51 77.55˘0.55 67.23˘0.98
Cosine 52.39˘0.48 78.55˘0.70 69.41˘0.93

Table 1: Performance comparison across different noise
schedules, over 5 random seeds. Reported accuracies
are field averages. Likelihoods are estimated with the
standard MLM Backend.

4.2 Experiments and Ablations

Noise Schedules Table 1 illustrates a compari-
son between uniform and cosine masking proba-
bility schedules. Additionally, we evaluate them
with and without time conditioning. We report the
zero-shot results for the four configurations.

With the uniform noise schedule all masking
rates are treated equally in the loss calculation,
which leads to weak results. The cosine sched-
ule focuses on lower masking rates, with an aver-
age masking rate of 0.36 compared to the uniform
schedule’s 0.5. Our experiments show that the co-
sine schedule’s lower masking rates consistently
improve the model’s performance in zero-shot like-
lihood estimation tasks, as they provide more fine-
grained focus.

Gaussian schedules In the context of finding a
noise schedule that more effectively unifies the ben-
efits of MLM and AR modeling within the masked
diffusion framework, we experiment with unimodal
and bimodal Gaussian noise schedules. This means
that the distribution of 1 ´ αt is normal (or a
Gaussian mixture) when t is sampled uniformly.
Table 2 presents results of a qualitative compar-
ison of training with a unimodal and a bimodal
noise schedule with similar expected masking rates
across training. Unimodal, is a unimodal gaussian
masking strategy, with masking rates coming from
a N p0.3, 0.1q distribution. Bimodal, is a mixture
distribution w1N pµ1, σ

2
1q`p1´w1qN pµ2pτq, σ2

2q
where the right mode progresses to higher values
over time. In this experiment, the left mode has
weight w1 “ 0.6, mean µ1 “ 0.12, and standard
deviation σ1 “ 0.02. The right mode has time-
varying mean µ2pτq “ 0.4`p0.85´0.4qp1´e´τ q
and standard deviation σ2 “ 0.08, with τ represent-
ing the training progress.

The importance of scaling α1
t Table 2 shows

that using the full derivative term α1
t (γ “ 1.0)

in the NELBO optimization leads to poor zero-
shot results. However, performance improves sig-
nificantly when we scale down the derivatives
with a small power of γ or remove them com-
pletely (γ “ 0.0). The Unimodal schedule shows
modest improvement, while the Bimodal schedule
shows dramatic gains, nearly matching top base-
line scores when derivatives are softened. These
results demonstrate that scaling the derivative term
is essential when training with Gaussian schedules.

SCHEDULE pγq EWoK (Ò) BLiMP (Ò) BLiMP Sup. (Ò)

Unimodal(1.0) 50.24 55.70 51.92
Bimodal(1.0) 51.10 68.13 63.0

Unimodal(0.1) 50.65 64.34 59.32
Bimodal(0.1) 52.46 79.49 72.81

Unimodal(0.0) 50.34 65.34 58.76
Bimodal(0.0) 52.95 78.28 73.13

Table 2: Qualitative performance comparison across
different noise schedules. Reported accuracies are field
averages. Likelihoods are estimated with the standard
MLM Backend. (γ) denotes the softening power for the
derivative factor. Results are run over 1 random seed.

Frequency Informed Masking Table 3 com-
pares our method’s performance across two distinct
configurations:

• No Frequency Weighting: A baseline where
tokens are masked with equal probabilities.

• Frequency Weighting (FW): Our frequency-
informed method is applied with a softening
power of p “ 0.02, progressively (linearly)
reaching this value across epochs.

We inspect the performance of these configura-
tions on EWoK, BLiMP, and BLiMP Supplement,
and report on the accuracy of the Adjective Nomi-
nalization test. All models were trained on a cosine
noise schedule, with sequence length 128.

The frequency informed masking in general pre-
serves or boosts performance across tasks, improv-
ing performance on BLiMP Sup. by an absolute
1% point consistently. On the Adjective Nomi-
nalization test, we observed high variance across
random seeds, so we conducted a paired compar-
ison, measuring the accuracy difference between
models of different configurations trained with the
same seeds. The FW configuration, evaluated with
time conditioning, enhances performance, improv-
ing it by an average of 7.5 percentage points.
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CONFIG. EWoK (Ò) BLiMP (Ò) BLiMP Sup. (Ò)

Eval. w/o Time Conditioning
Cosine 52.44˘0.24 79.05˘0.28 70.74˘1.35
Cosine + FW 52.63˘0.36 78.92˘0.34 71.77˘0.86

Eval. with Time Conditioning
Cosine 52.39˘0.48 78.55˘0.70 69.41˘0.93
Cosine + FW 52.21˘0.47 78.90˘0.37 70.65˘1.87

Table 3: Performance comparison across different to-
ken frequency weighting configurations, over 5 random
seeds. The FW configuration uses weights softened by
raising the frequency distribution to power p “ 0.02
before scaling. Likelihoods are estimated with the stan-
dard MLM Backend.

4.3 Submission Model

Implementation Training Recipe: A BPE tok-
enizer (Gage, 1994) was trained with a vocabulary
of 16384 tokens. The submission models have size
equal to 126.6 M parameters and were trained with
a fixed sequence length of 512. The batch size
was set to 512, and sequences were not packed.
Documents exceeding this length were divided into
independent segments. The total training duration
was 10 epochs, or 7530 training steps.

Diffusion Model: For our submission to the
leaderboard we employed a cosine masking sched-
ule, with at “ cospπ2 p1´tqq. Timestep embedding
dimension was set to 128. For the frequency in-
formed masking, we used p “ 0.02, starting from 0
at epoch 0 and linearly reaching p at the last epoch.

Evaluation We provide2 the submission’s
internal evaluation results, comparing them
with the scores of the baseline with the
maximum average score under the name
Baseline-gpt-bert-base-mixed (mntp)).
Zero-shot results were computed evaluating
with the standard MLM backend, without time
conditioning.

Our model is competitive with the baseline mod-
els, particularly in the Finetuning evaluation suite,
where it performs especially well on the MRPC and
RTE tasks ( Table 5). On certain zero-shot evalu-
ation tasks, the model slightly underperforms the
top-scoring baseline (e.g. BLiMP Sup., EWoK),
while it achieves better performance in Entity
Tracking ( Table 4). In terms of human likeness
measures, the submission outperforms the top base-
line in Reading and on the Adjective Nominaliza-
tion Test ( Table 6).

2We will further update our results with the stronger bi-
modal gaussian schedule in our code release.

TASK TOP BASELINE SUBMISSION:

Linguistics

BLiMP 80.5 76.9
BLiMP Sup. 73.0 72.4

World Understanding

EWoK 52.4 51.8
COMPS 59.7 56.4
Entity Tracking 39.9 40.8

Table 4: Evaluation results for Linguistics and World
Understanding tasks; †: results refer to cosine schedule

Natural Language Understanding (Finetuning)

TASK TOP BASELINE SUBMISSION:

BoolQ 73.4 72.2
MNLI 63.4 63.8
MRPC 85.8 88.7
MultiRC 69.8 69.0
QQP 81.2 79.2
RTE 59.0 64.7
WSC 63.5 65.4

Table 5: Evaluation results for Natural Language Under-
standing tasks; †: results refer to cosine schedule

Human Alignment

TASK TOP BASELINE SUBMISSION:

Reading 6.3 7.4
WUG Adj. N. 41.2 49.6
WUG Past T. 27.1 15.4
AoA 22.3 -22.0

Table 6: Evaluation results for Human Likeness tasks;
†: results refer to cosine schedule

5 Conclusions

MDLMs emerge as a compelling pretraining
paradigm for data-constrained LM environments,
demonstrating competitive performance against
state-of-the-art baselines. Our findings reveal that
the choice of masking strategy and its induced ob-
jective weighting critically determines model effec-
tiveness. Specifically, we demonstrate that cosine
noise schedules yield substantial performance gains
over uniform schedules, while bimodal approaches
unlock even greater potential, but may require spe-
cial weighting in the NELBO. Furthermore, we
establish a principled framework for integrating
intra-token masking strategies within the diffusion
paradigm, maintaining theoretical coherence while
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expanding practical applicability. These results po-
sition masked diffusion as a viable path forward for
efficient language model pretraining, particularly
valuable when computational resources or training
data are limited.

Limitations

This work represents a conceptual integration of
MDLMs into the LTG-BERT model family, doing min-
imal architectural modifications. Standard imple-
mentations of MDLMs often incorporate additional
optimizations that can substantially impact perfor-
mance; such optimizations are not explored here.
Furthermore, accurately and efficiently estimat-
ing likelihoods for zero-shot tasks with short se-
quences using conventional diffusion approaches
while maintaining low variance remains an open
challenge. We hypothesize that, while the current
MLM-based likelihood estimation approach cap-
tures relative trends well, it may be suboptimal,
further undermining the MDLMs performance.
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