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Abstract

Tokenization is often treated as a prepro-
cessing step, yet in data-limited settings
it directly shapes what a model can learn.
We compare four segmentation strategies in
the BabyLM Challenge: merge-based BPE,
morphology-aware, split-based MorPiece and
ParadigmFinder, and syllable-based SylliTok.
Evaluation combines two perspectives. First,
an intrinsic test on the SIGMORPHON 2022
segmentation benchmark, adapted to English,
measures how closely each tokenizer aligns
with morpheme boundaries. Second, extrinsic
tests train GPT-2 on the 10M BabyLM corpus
and evaluate it on the 2025 benchmark. No sin-
gle tokenizer dominates. BPE remains strong
on syntax-heavy tasks, ParadigmFinder excels
in semantic composition and age-of-acquisition
alignment, and SylliTok shows advantages in
discourse tracking. Morphology-aware tok-
enizers achieve the best intrinsic segmenta-
tion scores, and these gains translate into more
robust generalisation in comprehension tasks.
These results highlight tokenization as a core
modeling decision, with direct consequences
for compression, morphology, and the path to
human-like learning.

1 Introduction

The BabyLM Challenge (Warstadt et al., 2023a,b)
was designed to evaluate how language models ac-
quire linguistic competence under data conditions
that approximate human language learning. By
restricting training to corpora of 10M or 100M to-
kens, the benchmark provides a testbed for explor-
ing which modeling choices enable robust acquisi-
tion from limited input. While most submissions
have focused on architecture and training objec-
tives, a less visible but equally fundamental choice
concerns the unit of tokenization. The segmenta-
tion of raw text into model input units determines
not only how words are represented, but also what
kinds of generalisations the model is in principle

able to make.
Standard approaches such as byte pair encoding

(BPE; Gage 1994; Sennrich et al. 2016) treat tok-
enization as a purely statistical compression prob-
lem, merging frequent character pairs without re-
gard for linguistic structure. Recent work, however,
has argued that tokenization should be viewed as
an integral part of the modeling effort (Goldman
et al., 2024; Oh and Schuler, 2025), shaping both
the inductive biases of the system and its ability
to align with humanlike generalisation. In partic-
ular, morphology has long been seen as a critical
domain for testing theories of language acquisition
(Goldsmith, 2001; Xu et al., 2018), and offers a
natural arena for designing tokenizers that attempt
to capture linguistically meaningful units.

In this paper, we ask how different linguistically
oriented tokenizers affect learning in the BabyLM
setting. We consider four segmentation strategies,
ranging from merge-based (BPE) to split-based
(MorPiece, ParadigmFinder) and syllable-based
(SylliTok). To evaluate them, we combine two com-
plementary perspectives: an intrinsic assessment
using the SIGMORPHON 2022 morphological seg-
mentation benchmark, and an extrinsic evaluation
using the BabyLM 2025 test suite. This dual ap-
proach allows us to measure both how well each
tokenizer approximates humanlike segmentation
and how these choices influence downstream learn-
ing and generalisation.

Our results show that no single tokenizer domi-
nates across tasks. Instead, each segmentation strat-
egy introduces its own strengths and weaknesses:
morphology-aware tokenizers excel in capturing
systematic structure and supporting semantic gener-
alisation, syllable-based segmentation contributes
to discourse sensitivity, and frequency-driven BPE
remains a strong all-around baseline. Taken to-
gether, these findings highlight tokenization as a
substantive modeling decision, with implications
for compression, morphological generalisation, and
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the design of cognitively plausible learning sys-
tems.

2 Motivation

Tokenization is a crucial step in natural language
processing, especially in the development and train-
ing of language models. It determines the basic
units with which models will operate, ultimately
shaping their ability to generalize, compress, and
understand linguistic structure. While often treated
as a technical detail, tokenization in fact sits at
the intersection of practical engineering choices,
information-theoretic principles, and linguistic the-
ory. In this section, we articulate three perspectives
on tokenization: as a modeling choice, as a com-
pression strategy, and as a proxy for morphological
segmentation.

2.1 Tokenization as Modeling and
Compression

Tokenization is often viewed as a simple prepro-
cessing step—particularly in languages without ex-
plicit word boundaries (e.g., Chinese, Japanese,
Thai)—but in practice it defines the basic units
on which a model learns. Decisions about how
to segment text into words or subwords affect the
handling of out-of-vocabulary items, the effective
sequence length, and the allocation of parameters
in the embedding layer. This introduces asymme-
tries across languages: scripts, morphology and
resource availability lead to different degrees of to-
ken fragmentation and vocabulary inflation, which
in turn influence the performance of language mod-
els trained on comparable amounts of data.

A second and equally important aspect is that to-
kenization originates in data compression. Byte
Pair Encoding (BPE), now ubiquitous in NLP,
was first introduced by Gage (1994) as a general-
purpose compression method. The algorithm it-
eratively replaces the most frequent pair of adja-
cent bytes with a new symbol and stores the map-
ping in a lookup table; modern tokenizers adopt
the same strategy but stop after a fixed number of
merges to obtain a desired vocabulary size. More
recently, Goldman et al. (2024) show that the com-
pression capacity of a tokenizer correlates strongly
with downstream model performance: tokenizers
that reduce entropy more effectively tend to yield
better models, especially in low-resource settings.
Seen through this lens, tokenization is not an af-
terthought but an intrinsic modeling decision that

balances representation granularity, computational
efficiency and information retention. Our experi-
ments therefore compare not only frequency-based
BPE but also linguistically informed alternatives,
asking how different choices of basic units affect
both compression and learning.

2.2 Tokenization as Morphological
Segmentation

At the same time, tokenization is intimately related
to the linguistic structure of words. Natural lan-
guages are compositional at multiple levels, and
morphology provides some of the clearest evidence
of this: words are built from smaller, meaningful
units — morphemes — such as roots, inflectional
markers, and derivational affixes. An ideal tok-
enization system would capture these junctures,
segmenting text in a way that reflects its internal
linguistic organization.

For example, while a frequency-based tokenizer
might store dog and dogs as separate units, a
morphologically-aware tokenizer would recognize
that the plural form is derived from the singular
by appending a regular inflectional morpheme -s.
Segmenting at this level reveals productive patterns
that aid generalization, allowing the model to infer
the meaning and form of novel or rare words from
their components.

Morphological segmentation has long been stud-
ied as a core component of linguistic theory and
cognitive modeling. The psychological reality
of morphemes is attested in experiments like the
WUG test (Berko, 1958), where infants reliably
extend morphological rules to novel forms.

These experiments indicate that children exhibit
clear sensitivity to the distributional properties of
morphemes in their linguistic input, an ability typi-
cally classified under statistical learning (Sandoval
et al., 2017; Mehler et al., 1988). As learners in-
ternalize these patterns, they begin to abstract and
generalize morphological rules following distinct
trajectories, a phenomenon evidenced by system-
atic overgeneralization errors like goed for went,
or falled for fell (Lignos and Yang, 2016). Indeed,
the acquisition of morphological rules appears to
follow what is known as the Tolerance–Sufficiency
Principle (Yang, 2016), which provides a formal
account of when a linguistic rule can be considered
productive given the sparsity and irregularity of the
input data. More concretely, the Tolerance Prin-
ciple (TP) states that if a rule R may potentially
apply to a set of N items, then R is productive if
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and only if the number of exceptions e satisfies (1):

e ≤ θN where θN =
N

lnN
(1)

When the number of exceptions exceeds this thresh-
old (e > θN ), the learner is expected to treat those
cases as lexicalized, and the rule R is considered
unproductive. A complementary formulation is
provided by the Sufficiency Principle (SP), which
specifies the minimum amount of evidence required
to support an observed generalization. Formally,
given a generalization R over N items, where R is
attested in M cases, R is extended to the remaining
N −M items if and only if:

N −M ≤ θN where θN =
N

lnN
(2)

The question, then, is whether artificial systems
can similarly benefit from identifying morphemes
— and whether doing so would support better com-
pression, generalization, and interpretability. Sub-
word tokenization (e.g., Byte-Pair Encoding) is
in fact able to capture recurring internal structure
within words, such as prefixes, suffixes, and roots
(e.g., un- + believ + able), allowing the model
to generalize across unseen words. This can be
viewed as a form of compositional representation
that mirrors the generative flexibility of human
morphology. However, unlike morphemes, LLM
tokens are not guaranteed to be semantically mean-
ingful, and their segmentation is only driven by
frequency optimization rather than grammaticality
or communicative function. A truly cognitively
plausible tokenizer is unlikely to achieve optimal
efficiency as defined purely by compression or pre-
dictive performance. Instead, it might display the
kinds of overgeneralization errors and irregularities
that characterize child language acquisition. Such
“imperfect” segmentation reflects the underlying
learning process rather than a finished, fully opti-
mized system.

2.3 Toward an Integrated Perspective
The three perspectives above—tokenization as
modelling, compression and morphological seg-
mentation—are complementary rather than com-
peting. They suggest that linguistic plausibility,
information-theoretic efficiency and engineering
convenience can, in principle, be aligned. To put
this hypothesis to the test, we explore a diverse
family of tokenizers designed to identify basic lin-
guistic units (syllables and morphemes) as tokens.

We evaluate these tokenizers along two comple-
mentary axes. First, we assess each tokenizer on its
own by measuring how well it segments words into
morphemes using a re-adapted version of the SIG-
MORPHON 2022 morpheme-segmentation bench-
mark (Batsuren et al., 2022), quantifying their mor-
phological “soundness.” Second, we pair each to-
kenizer with a fixed GPT-2 architecture and train
on the BabyLM 2025 strict-small corpus. The re-
sulting models are evaluated on the BabyLM chal-
lenge suite of tasks—ranging from linguistic prefer-
ence tests (BLiMP, BLiMP-Supplement, EWoK) to
downstream fine-tuning (GLUE)—as described by
Warstadt et al. (2023b). By correlating segmenta-
tion quality and model performance, we aim to clar-
ify whether linguistically motivated tokenizations
lead to tangible benefits for small-scale language
modelling.

The next sections build on this motivation. Sec-
tion 3 surveys prior work on unsupervised mor-
phology, paradigm discovery and the role of to-
kenization in language modelling, providing the
theoretical context for our tokenizer designs. Sec-
tion 4 details the datasets, tokenizer construction
and evaluation used in our experiments, followed
by an analysis of results across both morphological
and BabyLM benchmarks.

3 Related Work

3.1 Unsupervised morphological segmentation

Morphological segmentation has long been viewed
as both a descriptive and an information-theoretic
problem. Goldsmith (2001) introduced the Lin-
guistica system, framing the discovery of mor-
phemes and paradigms as a minimum description
length (MDL) optimization task. By balancing
model complexity against data fit, the algorithm
learns a lexicon and a set of affix patterns that
jointly minimize description length, using these
patterns to predict segmentation points in unseen
words. Subsequent work by Xu et al. (2018) pro-
posed a probabilistic model that identifies roots,
suffixes, and transformation rules to generate can-
didate segmentations for each word, and then in-
duces shared paradigms to filter out spurious af-
fixes. Both studies demonstrate that paradigm ex-
traction is critical for capturing the combinatorial
nature of morphology; this insight motivates our
morphology-oriented tokenizers, which aim to dis-
cover recurring patterns rather than simply splitting
words into arbitrary subword units.
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3.2 Tokenization and compression in language
modelling

Subword methods such as byte-pair encoding
(BPE) are now ubiquitous, yet recent research has
emphasized the deeper role tokenization plays in
language modelling itself. Goldman et al. (2024)
systematically investigate how different tokenizers
affect model performance through the lens of text
compression, showing that tokenizers with lower
empirical entropy (i.e., greater compression) tend
to yield better downstream performance. They ar-
gue that tokenization should be viewed as an in-
tegral component of the modelling pipeline rather
than as a mere preprocessing step. Fusco et al.
(2024) first proposed MorPiece, a tokenization
strategy based on a Trie structure for the representa-
tion of the entire lexicon, identifying splits though
the application of the Tolerance–Sufficiency Prin-
ciple (Yang, 2016) (see also Section 4.2). Oh and
Schuler (2025) examine how token granularity in-
fluences the predictive power of language models’
surprisal measures relative to human processing
data. Bunzeck et al. (2025) compare grapheme-
and phoneme-based small models, finding that they
perform comparably to their subword analogues
trained on the same limited token budget. Pagnoni
et al. (2025) introduce an LLM architecture that
eliminates tokenization altogether, instead repre-
senting text as variable-length byte patches defined
dynamically by entropy. Finally, Raj S et al. (2025)
employ a Viterbi-like algorithm that also operates
on a Trie-based representation of the vocabulary to
compute globally optimal segmentations, reporting
improvements over the greedy BPE baseline on
both intrinsic and extrinsic metrics.

3.3 Morphological segmentation as a shared
task

The SIGMORPHON series of shared tasks pro-
vides a valuable benchmark for evaluating morpho-
logical models. In the 2022 edition of the mor-
pheme segmentation task, Batsuren et al. (2022)
challenged systems to decompose words and sen-
tences into sequences of morphemes across a di-
verse set of languages. Subtask 1 comprised a
5 million-word corpus covering nine languages,
while subtask 2 involved sentence-level segmenta-
tion in three languages. The best systems achieved
an average F1 score of 97.3 % across languages
and outperformed standard tokenizers such as BPE
and Morfessor by more than 30 percentage points.

These results demonstrate that data-driven morpho-
logical segmenters can capture complex deriva-
tional and inflectional patterns and that morpho-
logical segmentation yields more accurate bound-
aries than generic subword methods. We adapt the
SIGMORPHON 2022 data for evaluating our tok-
enizers, using its gold-standard segmentations to
quantify how well each tokenizer preserves mor-
phological structure.

3.4 Implications for BabyLM and our study
Previous BabyLM submissions highlight the im-
portance of model architecture and input rep-
resentation. The GPT-BERT model of Charp-
entier and Samuel (2024) shows that combin-
ing masked and causal objectives can improve
BabyLM scores by enabling a single transformer
to operate in both modes. The phoneme-based
approach of Goriely et al. (2024) demonstrates
that non-standard tokenizations (phonemic tran-
scription, character-level segmentation) can yield
competitive performance, albeit with trade-offs
such as slight drops on text-based tasks. Our
work continues this tradition by systematically
comparing GPT-2 models trained with multiple
linguistically oriented tokenizers—including BPE,
character-level, morphology-based and hybrid vari-
ants—and relating their BabyLM performance to
their ability to segment words morphologically. By
bridging insights from unsupervised morphology,
tokenization compression theory and SIGMOR-
PHON evaluations, we aim to better understand
how tokenization choices shape the learning and
generalisation of small language models.

4 Experiments

In this section we describe the data, tokenizers,
model configurations and evaluation protocols used
in our study. Wherever possible, we follow the
BabyLM challenge guidelines to ensure compara-
bility with prior work.

4.1 Data and Preprocessing
BabyLM corpus. Our training data come from
the BabyLM 2025 strict-small track, which offers
a fixed corpus of roughly 10M words. The dataset
comprises text from six distinct domains that reflect
diverse linguistic contexts. Data are taken from con-
versational sources, with CHILDES contributing
29% child-directed dialogue data and OpenSubti-
tles providing 20% scripted dialogue, while writ-
ten materials include Project Gutenberg’s fiction
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and nonfiction works (26%) and Simple English
Wikipedia entries (15%). Additional dialogue data
comes from the British National Corpus (8%) and
Switchboard telephone conversations (1%). We
applied a lightweight preprocessing, consisting of
space normalization, lowercasing and separation of
alphabetic characters from digits and punctuation,
except for apostrophes.

SIGMORPHON segmentation benchmark. In
order to perform an intrinsic evaluation of our to-
kenizers, independently of the language model,
we turn to the word-level morpheme segmenta-
tion dataset released as part of the SIGMORPHON
2022 shared task on morpheme segmentation. The
organisers provided gold segmentations for nine
languages (Czech, English, Spanish, Hungarian,
French, Italian, Russian, Latin and Mongolian) and
reported that the best systems achieved an aver-
age F1 score of 97.3 % across languages. Impor-
tantly, the task distinguishes between two kinds
of segmentation. The original “deep” or canoni-
cal segmentation aligns each segment with an un-
derlying lemma; morphemes are restored to their
canonical shapes even if surface forms have under-
gone phonological or orthographic changes. For
example, the English noun collision is canonically
segmented as collide+ion, rather than its surface
segmentation collis+ion; likewise, profitably would
be segmented as profit+able+-ly. This canonical
segmentation is “deeper” in that it recovers latent
morphological structure beyond simple boundary
detection, effectively lemmatising each morpheme.

In this work we focus on a more practical, “shal-
low” segmentation that is closer to tokenization.
We convert the canonical segmentations provided
in the SIGMORPHON test set into surface-level
boundaries by simply inserting split markers at mor-
pheme boundaries without altering the character
sequence. That is, we segment collision as col-
lis+ion and profitably as profit+ably, leaving the
surface text unchanged. This conversion (i) avoids
introducing extra graphemes or lemma forms that
would not appear during training, (ii) aligns the
task with tokenization, where the goal is to identify
basic units in the input rather than to normalise
them, and (iii) is theoretically motivated by the
view that morphological composition operates over
both roots and affixes, so a tokenizer should aim to
segment wherever composition occurs—even if the
base form shows no internal change. The difference
between deep and shallow segmentation is less pro-

nounced in English than in languages with richer
fusional morphology, but the shallow version still
provides a useful proxy for measuring how well a
tokenizer captures morpheme boundaries. In our
experiments we extract only the English portion of
the SIGMORPHON test set and use the resulting
shallow segmentation as a gold standard for eval-
uating each tokenizer’s morphological soundness
(Section 4.4).

4.2 Tokenizers
For our experiments we compare the standard byte-
pair encoding (BPE) tokenizer (Gage, 1994; Sen-
nrich et al., 2016) against three linguistically mo-
tivated tokenizers: MorPiece (MoP) (Fusco et al.,
2024), SylliTok, and ParadigmFinder (ParFind).
All tokenizers are trained on the BabyLM 10M
training data with a maximum vocabulary size of
30 000 tokens, using identical preprocessing. Be-
low we summarise the key design principles of
each.

MorPiece (MoP). MorPiece segments words
into morpheme-like units by postulating a split
whenever the Tolerance–Sufficiency Principle (SP)
(Yang, 2016) can be applied during the traversal of
the lexicon. The current implementation diverges
minimally from the original MoP model (Fusco
et al., 2024) while preserving its Trie-based lex-
ical structure. Consider the word cats: a root
Trie (c → a → t → s) and an inflectional Trie
(s → t → a → c) are created. “Traversing” the
lexicon entails incrementing by one the counter of
each node encountered in both the root and inflec-
tional tries. If a path does not exist, it is assigned
an initial value (i.e., frequency) of one. A split
between t and s is postulated if, and only if, the SP
is satisfied in both the root Trie and the inflectional
Trie, that is:

split iff in root-trie: and in infl-trie:
freq(t)

ln(freq(t)) > freq(s) freq(s)
ln(freq(s)) > freq(t)

If this is the case, the s pendant (in this instance,
simply s) is added to the root Trie, rather than
to the special root node “++” as in the original
MoP. At the end of processing, all nodes with a fre-
quency below the min_freq parameter are pruned.
A MaxLength strategy is then applied to retrieve
the tokens for each word during encoding.

In our experiments, the training procedure was
constrained to prune the dictionary according to the
min_freq parameter and to save a vocabulary ver-
sion every 100K tokens of exposure. The resulting
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vocabularies are useful for verifying each splitting
hypothesis and the evidence required to postulate
it (with the order of acquisition, ooa parameter, set
to True).

During vocabulary construction, the algorithm
traverses the Trie and identifies candidate segmen-
tation points according to two hyper-parameters: a
cutoff threshold and a branching factor (bf ). The
cutoff specifies the minimum frequency a mother
node must reach before a split is postulated (set to
100 in all our experiments). The branching factor
specifies the minimum number of distinct daugh-
ters a mother node must have in order for the SP to
apply (set to 2 in all our experiments).

Unlike BPE, MorPiece relies on linguistic
cues—high type frequency and morphological vari-
ability—to determine split points. It does not de-
pend on precompiled morpheme lists (as in (Jabbar,
2023)), but instead induces potential morphemes
directly from the data using the trie. The settings
we adopted favor plausible segmentations and cap-
ture frequent inflectional and derivational affixes
(e.g., -ed, -ing, -s, -ness, un-) while preventing over-
segmentation of rare strings. However, the current
vocabulary-building procedure does not delete a
pendant when a split is postulated; pendants are
removed only during the pruning step of the op-
timization phase. For this reason, we applied an
aggressive optimization strategy, pruning nodes be-
low the min_freq threshold every 100K tokens of
exposure. This process yielded a vocabulary of
approximately 23K tokens under the strict-small
training regime and about 40K tokens under the
strict training regime.

SylliTok. SylliTok is a rule-based tokenizer de-
signed to align token boundaries with the syllabic
structure of English. Linguistic and psycholin-
guistic research has shown that infants are highly
sensitive to syllable-level patterns in continuous
speech, often segmenting syllables before larger
morphological units. Building on this insight, Syl-
liTok uses deterministic syllabification rules to split
words into syllables, yielding a token vocabulary of
size 20K. For example, banana is tokenised as ba-
na-na and computer as com-pu-ter. In languages
with relatively transparent orthography, such as
Spanish and Italian, the mapping from orthogra-
phy to syllables is straightforward; in English it is
more complex due to inconsistent spelling–sound
correspondence. Nonetheless, a syllable-based to-
kenizer provides a cognitively plausible baseline

and reduces token length in a way that may benefit
low-resource models.

ParadigmFinder (ParFind). ParFind is another
unsupervised tokenizer that extracts paradigms
from the vocabulary and uses them to segment
words, following previous work by Goldsmith
(2001) and Xu et al. (2018). In our framework,
a paradigm consists of a set of roots and a corre-
sponding set of suffixes that co-occur with system-
atic regularity. For example, the words walk, walks,
walked and walking are evidence for a paradigm
with root walk and suffixes {-∅, -s, -ed, -ing}.
ParFind induces such paradigms from the data in
a multi-step process. The search is initialized by
enumerating all possible binary splits of words into
candidate roots and suffixes, and then grouping to-
gether roots that share identical suffix sets (see Fig.
1). The algorithm then normalizes suffixes by fac-
toring out common prefixes and appending them
to the roots, ensuring that segmentation points cor-
respond to genuine morphological variation in at
least one case in each paradigm. This step prevents
the formation of spurious paradigms such as {-t,
-ts, -ted, -ting}, which arise when several verb
roots share the final letter (e.g., -t) (see also Gold-
smith, 2001 on this issue). At this point, paradigms
are expanded according to a Tolerance–Sufficiency
Principle, enabling generalization to unseen forms.
Formally, given two paradigms Pi and Pj with root
sets Ri and Rj and corresponding suffix sets Si

and Sj , where |Si| < |Sj |, Pi is merged into Pj if
and only if a majority of roots in Rj occur in Ri,
that is, if

|Rj | − |Ri ∩Rj | ≥ θ|Rj |

where θ|Rj | =
|Rj |

ln |Rj |
(3)

This condition ensures that paradigms are
merged only when the overlap between root sets
provides sufficient evidence for systematic exten-
sion rather than accidental co-occurrence. When
words can still be analyzed with different segmenta-
tions according to multiple paradigms, suffixes are
checked against existing paradigms to determine
whether nested suffixation is possible. For instance,
the words singer and singers can be segmented as
singer-∅ and singer-s under paradigm P1, and as
sing-er and sing-ers under paradigm P2. In this
case, since P1 is already a productive paradigm, -er
and -ers are in turn analyzed as -er-∅ and -er-s. Fi-
nally, the algorithm prunes redundant or subsumed
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Figure 1: All possible binary splits for want, hunt, play,
wants, hunts and plays. Boxes in purple indicate recur-
ring roots, boxes in green stand for recurring suffixes.
The paradigm that best accounts for the six lexical items
is the one formed by productive roots want, hunt and
play, and the productive suffixes -∅ and-s.

paradigms and ranks the remaining ones using a
support score (adapted from Goldsmith, 2001): for
any paradigm P with root set R and suffix set S,
the support score is defined as

ScoreP = log2(|R|)× log2(|S|). (4)

Words that do not belong to any paradigm are
assigned to a “residual” paradigm, preventing spu-
rious segmentations. During tokenization, ParFind
first attempts to match a word against known
paradigms and segment it accordingly; if no ex-
act match is found, a fallback strategy matches the
longest known suffix to recover partial structure.

All roots and suffixes from the paradigms, in-
cluding those of the residual paradigm, are assigned
unique token IDs. The vocabulary size obtained
through this procedure was explicitly set to 30K.

4.3 Model Architecture and Training

We use GPT-2 as our base model to align with
the BabyLM baselines and previous submissions.
Unless stated otherwise, we train separate models
for each tokenizer in both the strict and strict-small
tracks.

Architecture. Our GPT-2 implementation fol-
lows the “base” configuration with 12 transformer
layers (nlayer = 12), hidden size nembd = 768, and
12 self-attention heads (nhead = 12). Each model
has a context window of npositions = 1024 tokens.
This architecture yields approximately 110M train-
able parameters. For fair comparison across tok-
enizers, we keep the non-embedding parameters

fixed and adjust only the input embedding layer
to accommodate the vocabulary size of each tok-
enizer.

Training procedure. Models are trained using
the official BabyLM recipe. We adopt the following
hyper-parameters:

• Sequence length: 512 tokens per example.

• Batch size: 16 examples.

• Optimiser and learning rate schedule:
AdamW with a base learning rate of 5×10−5,
linear warm-up over the first 2,000 steps and
weight decay of 0.01.

• Training steps: 200,000 steps (roughly 10
epochs over the strict-small data).

• Gradient clipping: max norm of 1.0.

4.4 Results
We evaluate both the tokenizers and the trained
language models.

Morphological segmentation. For each tok-
enizer, we segment the SIGMORPHON benchmark
words and compute precision, recall, F1 and Leven-
sthein distance against the gold morpheme bound-
aries, following the SIGMORPHON 2022 evalu-
ation procedure. These scores allow us to quan-
tify how well each tokenizer captures linguistically
meaningful units.

Results are shown in Table 2. The best
performance on this benchmark is reached by
ParadigmFinder, with an F1 score of 33.99, fol-
lowed by MorPiece (F1 = 26.80), BPE (F1 =
23.50) and finally SylliTok (F1 = 14.98). This or-
dering is consistent with our expectations: both
ParadigmFinder and MorPiece explicitly target
morphemes as the fundamental units of segmenta-
tion, albeit in fully unsupervised ways, and there-
fore align more closely with the gold morpholog-
ical boundaries. In contrast, BPE optimises for
compression rather than linguistic structure, and
SylliTok splits on syllables, a unit that often does
not coincide with morpheme boundaries in English.

Tokenizer Avg. Lev. Dist. Prec Rec F1
BPE 2.08 21.03 26.62 23.50
MoP 1.96 24.54 29.52 26.80
SillyTok 2.77 12.45 18.81 14.98
ParFind 1.24 38.99 30.12 33.99

Table 1: Tokenizers’ evaluation on SIGMORPHON
using BabyLM 10M as training corpus.
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BabyLM evaluation. We use the official
BabyLM 2025 evaluation pipeline to assess our
custom tokenizers when paired with a standard
GPT-2 model architecture. These tasks collectively
probe a wide range of linguistic and cognitive abil-
ities—from syntactic acceptability and morpholog-
ical generalisation to world knowledge, entity state
tracking and alignment with human reading be-
haviour—providing a comprehensive evaluation of
our tokenizers and models. We refer to the Ap-
pendix for a detailed description of the various
tasks.

In Table 2, we report the macro-averaged score
for each section of the benchmark. We compare
the performance of our models with that of the
challenge’s baseline GPT-2 model with the BPE
tokenizer. The results show no single tokenizer
dominating across all tasks, but rather a comple-
mentary pattern that reflects the different linguistic
biases each segmentation strategy encodes.

SylliTok performs surprisingly well on
comprehension-oriented tasks: it achieves the
best scores on BLiMP Supplement (58.8) and
GLUE (58.1), while matching BPE performance
on EWoK (≈49.9). However, it shows only a weak
positive correlation with human judgements on
WUG_ADJ (33.1) and a negative correlation on
WUG_PAST (-29.4), highlighting the limits of a
syllable-based representation when it comes to
morphosyntactic generalisation.

MorPiece, which segments words into mor-
phemes, offers a different trade-off: it im-
proves semantic and discourse tasks—scoring
higher on COMPS (55.8), EWoK (50.6) and
by far the best on Entity Tracking (64.4) and
WUG_PAST (12.1)—but it trails BPE on BLiMP
and BLiMP Supplement and yields weaker results
on WUG_ADJ (37.6) and AoA (-25.6), suggesting
that morphological segmentation alone does not
uniformly translate to improved performance.

ParadigmFinder achieves the best scores on the
semantic task COMPS (56.6) and on BLiMP Sup-
plement, matching SylliTok performance (58.8). It
also yields the best AoA score (16.3), indicating a
degree of alignment with developmental learning
patterns of words. The surprisingly low perfor-
mance on WUG_ADJ (-43.1) may be attributed to
the difficulty of recognising multiple derivational
suffixes.

BPE, while linguistically shallow, remains a
strong baseline. It leads on BLiMP (66.4)
and WUG_ADJ (66.1), showing that purely

frequency-driven segmentation can sometimes out-
perform more linguistically motivated methods.
Nonetheless, its generally moderate scores across
the other tasks confirm that frequency alone is in-
sufficient to consistently capture the kinds of reg-
ularities targeted by BabyLM with a small token
budget (10M).

5 Discussion

The results indicate that introducing linguistically
informed tokenizers does not lead to clear improve-
ments on the more traditional grammar-oriented
sections of the BabyLM benchmark. On BLiMP,
for instance, all models perform at a similar level,
with BPE in fact yielding the highest score. Like-
wise, on BLiMP Supplement, the differences are
small, with ParadigmFinder and SylliTok only
slightly surpassing BPE. This suggests that mor-
phologically and syllable-aware tokenizations do
not provide systematic advantages on syntactic ac-
ceptability judgments, at least under the strict 10M
training budget.

More interestingly, gains appear in tasks that re-
quire richer semantic generalisation and discourse
tracking. Both SylliTok and ParadigmFinder
equate BPE on EWoK, while MorPiece slightly
outperforms it. All of our models also surpass it
on COMPS and Entity Tracking, pointing to im-
provements in comprehension-oriented evaluation.
In particular, MorPiece achieves the highest score
on Entity Tracking, highlighting the potential of
morpheme-based segmentation for tasks that de-
mand sensitivity to discourse-level dependencies.
ParadigmFinder, on the other hand, shows com-
petitive results on semantic composition (COMPS)
and also exhibits a modest advantage in word Age
of Acquisition (AoA), suggesting that a paradigm-
based segmentation may capture aspects of lexi-
cal development more effectively than frequency-
based subword units.

These results align with the findings from the
intrinsic evaluation on the SIGMORPHON seg-
mentation benchmark. There, ParadigmFinder and
MorPiece achieved the best correspondence to mor-
pheme boundaries, while BPE and SylliTok lagged
behind. The parallel between segmentation ac-
curacy and downstream comprehension/discourse
gains suggests that morphological faithfulness in
tokenization may indeed translate into advantages
for meaning-sensitive tasks, even if not for purely
grammatical ones.
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Model BLiMP BLiMP Suppl. COMPS EWoK Eye Track. SPR Entity Track. WUG_ADJ WUG_PAST GLUE AoA
GPT-2 + BPE 66.4 57.1 51.7 49.9 8.7 4.3 13.9 66.1 -5.0 55.9 11.7
GPT-2 + MoP 63.5 52.6 55.8 50.6 1.2 0.7 64.4 37.6 12.1 57.7 -25.6
GPT-2 + SylliTok 63.1 58.8 55.3 49.9 0.9 0.1 33.9 33.1 -29.4 58.1 -31.7
GPT-2 + ParFind 65.2 58.8 56.6 49.4 0.1 0.3 21.0 -43.1 -2.6 57.8 16.3

Table 2: Results of the BabyLM tasks evaluation of the baseline GPT-2 model trained using different tokenization
strategies.

6 Conclusion

In this work, we evaluated several tokenizers de-
signed to approximate linguistic units and tested
them both in isolation (via the SIGMORPHON
2022 morpheme segmentation benchmark) and
when paired with GPT-2 on the BabyLM 2025
evaluation suite. The findings indicate that while
linguistically motivated tokenizers do not consis-
tently outperform BPE on grammar-focused bench-
marks, they offer complementary benefits on tasks
targeting comprehension, discourse tracking, and
developmental plausibility.

Taken together, the results reinforce our three-
fold perspective on tokenization: (i) modeling,
since the segmentation choice directly affects the
inductive biases available to the language model;
(ii) compression, since different strategies vary in
how efficiently they reduce entropy and distribute
representational resources; and (iii) morphology,
since tokenization determines the extent to which
models can access and exploit the systematic struc-
ture of words. The SIGMORPHON results demon-
strate that more morphology-aware tokenizers are
indeed closer to humanlike segmentation, and the
BabyLM evaluation reveals that this morphologi-
cal consistency carries over into improvements in
meaning-sensitive tasks.

Future work should expand evaluation to multi-
ple languages, integrate hybrid tokenization strate-
gies, and further investigate the alignment between
human morphological acquisition and artificial seg-
mentation methods. Ultimately, our findings sug-
gest that tokenization should be treated not as a
fixed preprocessing step, but as a substantive mod-
eling decision with theoretical and practical conse-
quences.

7 Limitations

Our experiments were conducted on the strict-
small BabyLM corpus (10K tokens) rather than
the full strict version (100K tokens). A direct
comparison with models and tokenizers trained on
the larger corpus would be essential to assess how

data scale influences both tokenization quality and
downstream performance.

Furthermore, we restricted our evaluation to a
single baseline architecture (GPT-2). While this
choice allowed for controlled comparisons across
tokenization strategies, future work should test the
generality of our findings across models of different
sizes and architectures.

Finally, the relation between tokenization and
compression remains to be explored in greater
depth. In particular, future work should incorporate
an explicit Minimum Description Length (MDL)
metric (Goldsmith, 2001) to quantify how effi-
ciently each tokenizer represents linguistic struc-
ture.
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A Appendix

The BabyLM 2025 benchmark is structured as fol-
lows:

Zero-shot linguistic preference tasks.

• BLiMP — The Benchmark of Linguistic Min-
imal Pairs (Warstadt et al., 2020) is a chal-
lenge set designed to probe what language
models know about core grammatical phe-
nomena in English. It comprises 67 automati-
cally generated sub-datasets, each containing
1,000 minimal sentence pairs that isolate a par-
ticular syntactic, morphological or semantic
contrast. Models are scored by whether they
assign higher probability to the grammatical
sentence in each pair.

• BLiMP Supplement — An extension of
BLiMP tailored for BabyLM (Warstadt et al.,
2023b). The supplement introduces additional
contrasts (e.g. lexical and morphological judg-
ments) not covered in the original BLiMP. As
with BLiMP, models must prefer the accept-
able sentence in each minimal pair.

• EWoK — The Elements of World Knowledge
framework (Ivanova et al., 2025) evaluates ba-
sic world-modeling abilities by asking mod-
els to judge which of two context/target pairs
is more plausible. The EWoK-CORE-1.0
dataset contains 4,374 items spanning 11
knowledge domains (from social interactions
to spatial relations). Minimal pairs are con-
structed so that only one sentence aligns with
commonsense world knowledge.

• Entity Tracking — Based on the task of Kim
and Schuster (2023), this evaluation tests a
model’s ability to keep track of entities and
their states as a text unfolds. A model is given
an initial description of an entity and a se-
ries of state-changing operations and must as-
sign higher probability to the correct continua-
tion that reflects the entity’s final state. In the
BabyLM pipeline this task is evaluated in a
zero-shot setting by computing sentence logit
scores.

• Derivational Morphology (WUG_ADJ) —
Following Hofmann et al. (2024), this task
tests morphological generalisation via an
adjective-nominalisation “wug” experiment.
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Models see nonce adjectives (e.g. daxen) and
must decide whether the corresponding noun
uses the suffix -ity or -ness. Performance is
measured by the correlation between model
probabilities and human judgements.

• WUG_PAST — From Weissweiler et al.
(2023), this hidden task evaluates how mod-
els generalise past-tense formation to nonce
verbs. Models are presented with a novel verb
and several possible past-tense forms; their
probability distribution is correlated with hu-
man responses.

• COMPS — The Conceptual Minimal Pair
Sentences dataset (Misra et al., 2023) tests
whether language models know that proper-
ties of superordinate concepts are inherited
by subordinate concepts. Sentences feature
nonce words standing in hierarchical relations
(e.g. a lorp is a type of bim); models must
assign higher probability to the sentence that
correctly inherits the property.

• Cloze probability and reading time
(Self-paced Reading and Eye-tracking) —
Adapted from de Varda et al. (2024), this
benchmark links language model predictions
to human reading times. The evaluation
computes the increase in explained variance
(R2) in human eye-tracking measures with
no spill-over effect and in self-paced reading
with a one-word spillover. It assesses the
alignment between model surprisal and
human processing difficulty.

• Age of Acquisition (AoA) — Based on Chang
and Bergen’s (2022) methodology, this bench-
mark tracks word surprisal across training
checkpoints to estimate when a model “ac-
quires” each word. The resulting learning
curves are fitted with sigmoid functions and
correlated with human Age-of-Acquisition
norms from the MacArthur–Bates Commu-
nicative Development Inventory.

Fine-tuning tasks.

• (Super)GLUE — The General Language
Understanding Evaluation benchmark (Wang
et al., 2018, 2019) comprises a suite of
natural-language understanding tasks (e.g.
sentiment analysis, paraphrase detection,
natural-language inference). In BabyLM it

is used to assess models’ ability to generalise
via supervised fine-tuning on tasks such as
MNLI, SST-2, QQP and QNLI.
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